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ABSTRACT. Background: Interferon-stimulated gene 15 (ISG15) is a small ubiquitin-like protein that can be conju-
gated to its target proteins through an enzymatic cascade known as ISGylation, thereby altering their function. 
Elevated levels of free ISG15 (non-conjugated) and ISGylation are observed in several cancer types, including medul-
loblastoma (MB) a malignant pediatric cerebellar tumor categorized into four molecular subgroups: Wingless, Sonic 
Hedgehog, Subgroup 3 (G3), and Subgroup 4 (G4). However, ISG15 gene expression in MB remains unexplored. In 
this study, we evaluated the ISG15 protein levels, the expression of the ISG15 and ISGylation system, and interferon 
gamma signaling mediators in human MB samples to propose the role of ISG15 in this tumoral context. Methods: 
ISG15 expression in MB samples was comparatively analyzed against normal tissue using the Oncopression database. 
Expression levels were further assessed in various pediatric tumors within the Childhood Brain Tumor Tissue 
Consortium dataset via the University of Alabama at Birmingham Cancer Data Analysis Portal database. ISG15 
protein abundance in MB samples was then evaluated via immunohistochemistry on a tumor tissue microarray. To 
broaden the analysis, ISG15 expression was profiled across multiple MB cell lines using the R2 Genomics Analysis 
and Visualization Platform. Finally, to determine clinical significance, the association between ISG15 expression 
and patient survival was assessed using Kaplan-Meier analysis. Results: ISG15 expression was significantly lower 
in MB samples than in other pediatric tumors (p < 0.05) and normal tissue (p < 0.0001). Immunohistochemical 
analysis further confirmed a marked reduction in ISG15 protein abundance in MB samples compared to healthy 
tissue (p < 0.001). Elevated ISG15 levels correlated with improved survival outcomes in the G3 and G4 subgroups 
(p < 0.05). Conclusion: ISG15 is downregulated in MB tissues compared to controls. High ISG15 expression within 
the G3/G4 MB subgroups correlates with prolonged survival, suggesting a potential tumor-suppressive function. 
These results collectively indicate that ISG15 may serve as a valuable prognostic biomarker for G3/G4 MB patients.
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T he interferon-stimulated gene 15 (ISG15) enco-
des a 15-kDa protein, which contains a conju-
gation motif  in its C-terminal domain formed 

by the amino acid sequence LRLRGG that allows it to 
interact covalently with the lysine residues of its target 
proteins through an enzymatic sequential reaction sys-
tem called ISGylation [1-4]. The enzymes involved in 
the ISGylation system are the E1 activating enzyme: 
E1-activating enzyme ubiquitin-proteasome system 
(UBA1L), the E2 conjugating enzyme: Ubiquitin/
ISG15-conjugating enzyme E2 L6 (UBCH8/UBE2L6), 
and the E3 ligases for ISG15. The three E3 enzymes 
known are HECT and RLD domain enzymes contai-
ning E3 ubiquitin-protein ligase (HERC5), tripartite 
motif  protein 25 (TRIM25), and Ariadne RBR E3 ubi-
quitin protein ligase 1 (ARIH1) [5-8]. ISGylation can 
modulate the localization, stability, or function of 
ISG15-target proteins [2]. However, this process is rever-
sible through deISGylation, a process where 

ubiquitin-specific peptidase enzymes cleave the covalent 
bond, effectively removing ISG15 from its targets and 
increasing the pool of free, non-conjugated ISG15 
[9-11].
While ISG15 can promote tumors in some contexts, it 
functions as a suppressor in certain cancers. For ins-
tance, in high-grade serous ovarian cancer, increased 
ISG15 levels inhibit cancer progression and correlate 
with better patient survival [12-14]. Similarly, in cervical 
cancer, ISGylation enhances the tumor-suppressive 
activity of the phosphoprotein 53 [15], and in leukemia 
and myeloma cells, the overexpression of ISG15 pro-
motes apoptosis [16]. However, ISG15 expression is 
increased in most cancer types, and when its expression 
is reduced, proliferation decreases, suggesting that 
ISG15 functions as an oncoprotein [17, 18]. This 
demonstrates that ISG15 can play a dual role in cancer 
depending on the cancer type.
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ISG15 expression is regulated by interferons (IFNs) 
[19]. In particular, it has been reported that IFN gamma 
(IFN-γ) can increase ISG15 levels in some cancer cells, 
such as breast cancer and glioblastoma [20-22]. 
However, its role has not been explored in other cancer 
types. The IFN-γ signaling pathway begins with the 
binding of IFN-γ to its heterotetrameric receptor com-
plex, which is composed of 2 IFN-γ receptor subunit 1 
(IFNGR1) and 2 IFN-γ receptor subunit 2 (IFNGR2) 
subunits. Receptor activation triggers the associated 
Janus kinase 1 (JAK1) and Janus kinase 2 
(JAK2) enzymes. The activated JAKs phosphorylate 
the signal transducer and activator of transcription 1 
(STAT1) proteins, resulting in the formation of pSTAT1 
homodimer complexes, which then translocate to the 
nucleus. Once inside the nucleus, these complexes bind 
to gamma-activated sites in the promoters of ISGs, ulti-
mately regulating gene expression [23, 24].
In breast cancer, IFN-γ increases ISG15 expression, 
ISGylation patterns, and free ISG15 levels, all of which 
correlate with an unfavorable prognosis [22]. Moreover, 
the IFN-γ/ISG15 signaling axis has been proposed to 
have a pro-tumor effect in glioblastoma, a malignant 
brain tumor that develops primarily in adults [21, 25]. 
However, in other central nervous system (CNS) can-
cers, the ISG15/ISGylation profile and its modulation 
by IFN-γ have not been explored.
Medulloblastoma (MB) is a malignant grade 4 tumor 
that develops in the cerebellum and is the most common 
brain cancer in children aged 0-14 years [26-28].  
MB recurrence is frequent, and the primary route of 
metastasis is through the cerebrospinal fluid, signifi-
cantly increasing patient mortality [29]. While histopa-
thological classifications exist, the 2021 World Health 
Organization (WHO) emphasizes four molecular sub-
groups: Wingless (WNT), Sonic Hedgehog (SHH), 
Group 3 (G3), and Group 4 (G4) [30, 31]. These sub-
groups display significant heterogeneity and are charac-
terized by the deregulation of different signaling and 
oncogenic pathways [31-34]. Almost 90% of WNT MB 
patients present with CTNNB1 mutations; this is the 
least common subgroup but carries the best prognosis. 
SHH MB is further classified into four subtypes (SHHα, 
β, γ, and δ) based on age and specific gene mutations 
involved [35]. The G3 group has the worst prognosis, 
with a 5-year survival rate of less than 50% [36, 37], and 
MYC status plays a relevant role in patient survival 
within this subgroup [38]. G4 is the most common MB 
tumor, accounting for nearly 40% of all MB patients, 
yet it remains the least explored and understood sub-
group [36, 39, 40]. G3 is rare in adults, appearing fre-
quently in infants and children between 3 and 5 years. 
Interestingly, some adults are diagnosed with G4 MB 
and have the worst prognosis among all MB subgroups 
[38]. It has also been suggested that an additional 
G3-G4 subgroup exists, displaying characteristics 
between G3 and G4 [41-43].
Standard MB treatment combines tumor resection, 
radiation therapy to the entire craniospinal axis, and 
age/risk-stratified chemotherapy [44]. However, chemo-
therapy faces toxicity and blood-brain barrier limita-
tions, hindering its effectiveness. In other brain tumors, 
researchers have proposed the use of nanocarriers that 

allow drugs to penetrate the blood-brain barrier [45], 
targeted therapies that focus on the neurotrophic axis, 
neurotransmitters, and their receptors [46], as well as 
immunotherapy as an efficacious and safe alternative 
[47]. However, in the MB context, identifying protein 
targets and molecular markers that enable proper clas-
sification [39] and the development of effective therapies 
and novel disease models remains a challenge, particu-
larly for G3 and G4 MBs, which currently lack faithful 
models [44]. In this study, we evaluated the ISG15 
protein levels, the expression of the ISG15 and 
ISGylation system, and IFN-γ signaling mediators in 
human MB samples to propose the role of ISG15 in this 
tumoral context.

MATERIALS AND METHODS

Database analysis

Cancer-specific databases were analyzed using The 
Cancer Genome Atlas dataset via the University of 
Alabama at Birmingham Cancer Data Analysis Portal 
(UALCAN) (http://ualcan.path.uab.edu/) and the 
Childhood Brain Tumor Tissue Consortium (CBTTC) 
dataset (https://ualcan.path.uab.edu/analysis-cbttc.
html) [48, 49]. To evaluate ISG15 expression in MB 
relative to healthy tissue, the Oncopression database 
(http://www.oncopression.com/) was utilized [50]. In 
addition, the R2 Genomics Analysis and Visualization 
Platform (https://hgserver1.amc.nl/) was used to analyze 
ISG15 expression across MB molecular subgroups and 
to perform the Kaplan-Meier graphic analysis [51].

Analysis of  human cerebellar MB tissue microarray 
(TMA)

The TMA included triplicate cores of 20 MB cases (60 
cores total) and 3 normal cerebellum tissue samples (3 
cores), representing patients aged 4 to 47 years. The MB 
cases lacked detailed clinical data, specifically anatomi-
cal location, histological classification, and molecular 
subtype information. The TMA was purchased from 
Biomax (GL631: MB of cerebellum with cerebellum 
tissue array, U.S Biomax), now operating as 
TissueArray.com. The microarray is a human, paraf-
fin-embedded tissue array previously baked for 2 h. 
According to the supplier, the tissues were fixed with 
formalin for less than 48 h, sectioned at 5 µm, and 
mounted on a SuperFrost Plus glass slide. All tissue was 
collected in accordance with Health Insurance 
Portability and Accountability Act-approved protocols, 
with fully informed donor consent. All samples tested 
negative for HIV and Hepatitis B and were approved 
for commercial product development (https://www.tis-
suearray.com/tissue-arrays).

Immunohistochemical assay 

ISG15 protein was detected by immunohistochemistry 
(IHC) using a specific anti-ISG15 monoclonal antibody 
(clone F-9, sc-166755, Santa Cruz Biotechnology, 
Dallas, Texas 75220, USA). The TMA section was 
deparaffinized and rehydrated through a series of 
xylol-ethanol solutions, followed by antigen retrieval 
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with 0.01 M citrate buffer (pH 6/Tween 20) in the oven 
at 95°C for 10 min. Endogenous peroxidase activity was 
blocked with 3% hydrogen peroxide for 30 min, fol-
lowed by sequential blocking with 2% albumin and 
permeabilization with 0.1% Triton X-100 (20 min each). 
The TMA was incubated overnight at 4 °C with the 
primary antibody (1:100 dilution). Detection was achie-
ved using the MILLIPORE IHC Select 
Immunoperoxidase Secondary Detection System 
(DAB500 system; 28820 Single Oak Drive, Temecula, 
CA 92590, USA & Canada). First, the slide was incu-
bated with a biotinylated goat anti-mouse IgG 
secondary antibody (1:100) for 10 min, followed by 
streptavidin HRP for 10 min and visualization with 3,3’ 
diaminobenzidine chromogen reagent for 10 min. 
Finally, the slide was counterstained with hematoxylin 
for 1 min. The TMA was dehydrated through a series 
of ethanol-xylol solutions, and mounting media was 
added to the slide.

Immunohistochemical analysis

Images were captured using an AxioScan.Z1 micros-
cope equipped with an AxioCam MRc5 camera (Zeiss, 
Germany). Five photomicrographs at 40× magnifica-
tion from each sample were obtained. Positive and nega-
tive controls (negative control: lacking the ISG15 
antibody) were used. Semiquantitative analysis was 
performed using photomicrographs of five randomly 
selected fields taken from each representative tumor 
tissue on the microarray. The expression was catego-
rized by the proportion of positive cells (0-3), with 0 
indicating absence, 1 indicating 0%-10%, 2 indicating 
11%-50%, and 3 indicating >50%. This established the 
immunoexpression score. The multipoint tool in ImageJ 
version 1.54D software (from U.S. National Institutes 
of Health) was used to determine the immunostaining 
intensity (optical units per micrometer squared [ou/
μm2]) of positive cells for each image. Subsequently, the 
immunostaining intensity for positive cells was corre-
lated with immunoexpression score using the formula 
x = (y - b)/m, where “x” is the immunoexpression score 
and “y” is the immunostaining intensity, based on pre-
viously reported methodology [52].

Statistical analysis

Each database includes analytical and statistical tools 
for analyzing the data it uses. In UALCAN-CBTTC, 
RNA-seq gene expression data were normalized to 
transcripts per million (TPM) and transformed using 
log2 (TPM + 1). Protein expression value was first log2 
normalized, and the Z-value was subsequently calcu-
lated [49]. The Oncopression database uses public 
microarray data and compares gene expression in can-
cer and its matched healthy samples [50]. To compare 
expression between two conditions, UALCAN and 
Oncopression use the parametric t-test for statistical 
analysis, and Oncopression corrects the statistical test 
using the Area Under the Receiver Operating 
Characteristic Curve to reinforce the difference between 
the two groups and identify if the changes of expression 
that we observed are random or if there is no overlap 
of values between the two groups. The R2 platform uses 

the nonparametric log-rank test to compare survival 
between groups. These statistical analyses allowed us 
to identify whether the ISG15 gene expression and 
ISG15 protein levels have differential expression 
between MB and the normal condition or other pedia-
tric tumors. Likewise, survival analysis allowed us to 
evaluate whether ISG15 expression levels correlate with 
patient survival times. With respect to the IHC statisti-
cal analysis, the Shapiro-Wilk test was performed to 
determine whether the IHC data have a normal distri-
bution. The statistical differences between groups on 
IHC data were assessed using nonparametric test of the 
Mann-Whitney rank-sum test. GraphPad Prism sof-
tware (v8.0.1) was used for statistical analyses. Results 
were considered significant when p < 0.05 (*), 
p < 0.01 (**), p < 0.001 (***), and p < 0.0001 (****).

RESULTS

ISG15 expression is deregulated in pediatric tumors and 
downregulated in MB patients

ISG15 expression was analyzed in pediatric CNS 
tumors, and the findings revealed that ISG15 expression 
in MB was statistically lower than in most pediatric 
CNS malignant tumors (figure 1A). Specifically, ISG15 
expression was statistically significantly higher in high-
grade and low-grade gliomas, teratoma, atypical tera-
toid rhabdoid tumor, chordoma, diffuse intrinsic 
pontine glioma, craniopharyngioma, schwannoma, 
dysembryoplastic neuroepithelial tumor, neurofibroma/
plexiform, supratentorial or spinal cord primitive neu-
roectodermal tumor, and ependymoma than in MB. 
The ISG15 protein levels were also analyzed in several 
pediatric CNS tumors, and the findings revealed that 
ISG15 levels were decreased in MB tumors compared 
with high-grade and low-grade gliomas, atypical tera-
toid rhabdoid tumor, ependymoma, craniopharyn-
gioma, and ganglioma (figure 1B). These results indicate 
that ISG15 is downregulated in patients with MB at 
both the mRNA and protein levels compared with other 
pediatric CNS tumors.

ISGylation system enzymes and IFN-γ signaling 
elements are deregulated in patients with MB

ISG15 mRNA expression was analyzed in MB tumor 
samples relative to normal tissue using the Oncopression 
database. The results revealed that ISG15 expression 
was lower in MB samples than in normal tissue samples 
(figure 2A). Interestingly, a subsequent analysis of 
ISGylation enzyme expression demonstrated a varied 
expression pattern: the E1 enzyme and the E3 ligase 
TRIM25 showed no significant change in expression; 
the E3-ligase HERC5 was downregulated; and the 
E3-ligase ARIH1 and the E2-enzyme were upregulated 
(figure 2B). Therefore, ISG15 expression was downre-
gulated in MB, and the expression of the associated 
ISGylation system enzymes was widely deregulated.
As previously reported, the ISG15 profile is modulated 
by IFN-γ in glioblastoma [21], a common malignant 
brain tumor in adults. To investigate this further, the 
expression of key elements within the IFN-γ pathway 
on MB was examined. Our findings indicated that 
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IFNGR1, IFNGR2, JAK1, JAK2, and STAT1 were ove-
rexpressed in MB tissues compared to normal control 
conditions (figure 2C). Hence, although IFN-γ signaling 
mediators were upregulated, ISG15 expression was 
decreased in MB samples compared to normal tissue.

ISG15 protein levels are decreased in MB samples 

ISG15 protein levels in MB patients were measured and 
compared to those in the healthy cerebellum. IHC was 

performed on a tumor tissue array that included 20 MB 
samples (in triplicate) and 3 healthy human CNS 
samples. The results showed that ISG15 immunostai-
ning was low or absent in spots containing MB tissue 
compared to those containing normal tissue 
(figures 3A, B). The data were statistically significant, 
confirming lower immunodetection of ISG15 in MB 
than in normal cerebellar tissue (figure 3C). The findings 
indicate that ISG15 protein levels were higher in healthy 

Figure 1
ISG15 expression is deregulated in pediatric tumors and downregulated in MB patients. 

A) ISG15 RNA expression in several pediatric tumors based on tumor histology from UALCAN. B) Comparison of ISG15 protein levels in 
several pediatric CNS tumors, including MB. MB samples are marked in red. Box-plot graphs were generated using UALCAN based on RNA 
and proteomic expression of ISG15 in the pediatric CNS tumors (CBTTC dataset) [49,53]. Expression values were log₂-transformed (TPM + 

1). The results were considered statistically significant when p < 0.05.
ISG15: Interferon-stimulated gene 15, ATRT: Atypical teratoid rhabdoid tumor, CHDM: Chordoma, CPP: Choroid plexus papil-
loma, CRANIO: Craniopharyngioma, DIPG: Diffuse intrinsic pontine glioma, DNT: Dysembryoplastic neuroepithelial tumor, 

EPMT: Ependymoma, ES: Ewings sarcoma, GMN: Germinoma, GNG: Ganglioglioma, GNOS: Glial-neuronal tumor not otherwise 
specified, MBL: Medulloblastoma, MNG: Meningioma, NFIB: Neurofibroma/plexiform, PBL: Pineoblastoma, PHGG: High-grade 
glioma/astrocytoma (WHO grade III/IV), PLGG: Low-grade glioma/astrocytoma (WHO grade I/II), PNET: Supratentorial or spinal 

cord primitive neuroectodermal, TT: Teratoma, SCHW: Schwannoma, DNET: Dysembryoplastic neuroepithelial tumor, AT/RT: 
Atypical teratoid/rhabdoid tumor, UALCAN: University of Alabama at Birmingham Cancer Data Analysis Portal, n: Number of 
samples, Z-value: Standardized score, CBTTC: Childhood Brain Tumor Tissue Consortium, CNS: Central nervous system, TPM: 

Transcripts per million.
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CNS tissue than in MB samples, suggesting a downre-
gulation of the ISG15 protein expression in MB.

Reduced ISG15 levels are associated with poor survival 
in G3 and G4 MB patients

The results indicated that ISG15 was downregulated in 
MB, with low mRNA and protein levels observed in 
patient samples. An analysis was conducted to deter-
mine whether ISG15 expression and the ISGylation 
system, including ubiquitin-specific peptidase 18 
(USP18), differed across molecular MB subgroups and 
if these differences affected patient survival. As shown 
in figure 4A, the expression of ISG15 and ISGylation 
system was similar across the different MB subgroups 
(figure 4A). ISG15 expression was further analyzed in 
several MB-derived cell lines using the R2: Genomics 
Analysis and Visualization Platform. As shown in 
figure 4B, the d283 cells, derived from a patient with 
MB, exhibited the lowest ISG15 expression compared 
to other cell lines (figure 4B). Interestingly, d456 and 
x21584 are glioma-derived cells, while the remainder 
are MB-derived (d324 are SHH-derived; d341 and d556 
are G3-derived). To date, the d283 cells have been 

considered G3/G4-derived [36,54]; however, their cha-
racterization remains debated [38]. Thus, cells derived 
from the G3 and G4 subgroups showed lower ISG15 
expression than those from other cell lines.
For subsequent analysis, focus was placed on the G4 
subgroup, the most frequent and largest MB subgroup, 
and the G3 subgroup, which has a poorer prognosis. 
The association of ISG15 expression with patient sur-
vival in the G3 and G4 subgroups was analyzed. The 
results indicated that higher ISG15 levels were asso-
ciated with better survival in both the G3 and G4 sub-
groups (figure 4C). These findings revealed the molecular 
complexity of the ISG15-associated pathway across 
different cancer types, highlighting that low ISG15 
expression in the G3 and G4 subgroups is associated 
with poor prognosis.

DISCUSSION

ISG15 expression typically increases in several car-
cinoma types, functioning as an oncoprotein [2]. 
However, ISG15 expression has not been explored in 
all cancer types. The upregulation of ISG15 by IFN-γ 
signaling has been specifically reported in breast cancer 

Figure 2
ISGylation system enzymes and IFN-γ signaling elements are deregulated in patients with MB. 

A) ISG15 expression in MB samples compared to normal tissue using the Oncopression database. Expression levels of B) ISGylation 
enzymes (E1: UBA1L, E2:UBCH8, and three E3: TRIM25, HERC5, and ARIH1) and C) IFN-γ pathway elements (IFNGR1, 

IFNGR2, JAK1, JAK2, and STAT1) in MB samples compared to normal tissue. Letters in red denote overexpression, while those in 
blue indicate underexpression. Box-plot graphs were retrieved from the Oncopression web server based on the expression of interest 
gene in MB and normal tissues [50]. The contents of the Oncopression database are available under the GNU Lesser General Public 
License v3.0 (LGPL v3). Values between 0 and 1.0 indicate UPC-normalized gene expression. The result was considered significant 

when *: p < 0.05, **: p < 0.01, ****: p < 0.0001.
UBA1L: E1-activating enzyme ubiquitin-proteasome system, UBCH8: Ubiquitin conjugating enzyme E2 L6, TRIM25: Tripartite 

motif  containing 25, HERC5: HECT and RLD domain containing E3 ubiquitin protein ligase 5, ARIH1: Ariadne RBR E3 ubiquitin 
protein ligase 1, IFNGR1: Interferon gamma receptor subunit 1, IFNGR2: Interferon gamma receptor subunit 2, JAK1: Janus kinase 

1, JAK2: Janus kinase 2, and STAT1: Signal transducer and activator of transcription 1, AUC: Area under the curve, MB: 
Medulloblastoma, ISG15: Interferon-stimulated gene 15, IFN-γ: Interferon gamma, UPC: Universal expression code.
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Figure 3
ISG15 protein levels are decreased in MB samples compared to normal cerebellum tissue samples.

A) Representative images of IHC negative control (lacking the ISG15 antibody) and positive control (with 1:100 ISG15 antibody 
dilution). Scale bar: 60 μm. B) Representative images of ISG15 IHC samples on a human TMA of MB tissue and normal cerebellum 
tissue. The selected representative samples are indicated by black circles. Scale bars: 200 μm (tissue spots), 60 μm (middle image), and 

30 μm (zoom image). C) Graphical representation of the scoring performed for ISG15 IHC staining in MB samples and normal 
cerebellum tissue from the TMA, alongside a heat map illustrating the immunoexpression levels of the ISG15 protein across all TMA 

samples. The Mann-Whitney test was performed to analyze IHC data. The result was considered significant when ***: p < 0.001.
MB: Medulloblastoma, ISG15: Interferon-stimulated gene 15, IHC: Immunohistochemistry, TMA: Tissue microarray.
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and glioblastoma [19, 21, 22]. For instance, in glioblas-
toma, a malignant brain tumor associated with aging, 
IFN-γ has been shown to upregulate ISG15, which in 
turn promotes tumor progression [22]. Nevertheless, the 
specific profile of ISG15 and its modulation by IFN-γ 
have not been studied in other CNS tumors, including 
those affecting children. 
In this study, we analyzed the expression and abun-
dance of ISG15 across various pediatric CNS tumors 
and found the lowest levels in MB. In addition, we 
observed that MB samples exhibited downregulation 
of ISG15 alongside the upregulation of IFN-γ pathway 
mediators when compared with healthy tissue. These 
findings are notable because glioblastoma is reportedly 
characterized by the upregulation of both IFN-γ 
pathway mediators and ISG15. Therefore, a different 
correlation between the expression of IFN-γ signaling 

mediators and ISG15 is observed in pediatric MB cases 
than in the adult brain tumor, glioblastoma. This sug-
gests that the molecular pathways underlying ISG15 
expression can differ across various CNS tumors. 
Our IHC analysis of the TMA showed decreased ISG15 
protein levels in MB samples compared to normal CNS 
tissue. However, information on the subgroup for these 
MB samples was not available. Although we do not 
know the specific subgroups of the MB samples in our 
study, and given that the G4 subgroup is reportedly the 
largest [36,39,40], most of our samples may belong to 
G4. 
Interestingly, our results suggest that ISG15 may func-
tion as a tumor suppressor in the G3 and G4 subgroups, 
as elevated ISG15 expression is associated with impro-
ved survival in G3 and G4 patients. In contrast, ISG15 
expression is higher in d324 SHH-derived cells than in 

Figure 4
Reduced levels of ISG15 correlate with poor survival prognosis in G3/G4 MB patients. 

A) ISG15 gene expression and ISGylation enzymes expression in several MB subgroups. B) ISG15 gene expression in several CNS 
tumor-derived cell lines from the R2 database. C) Kaplan-Meier curves illustrating the overall survival probability of patients within 

the MB G3 and G4 subgroups, stratified by their respective ISG15 gene expression levels. Analysis was performed using the R2: 
Genomics Analysis and Visualization Platform (http://r2.amc.nl) retrieved from the Cavalli database. Expression values were log₂ 

(Transcripts Per Million + 1). n: Number of samples. The result was considered significant when p < 0.05.
MB: Medulloblastoma, ISG15: Interferon-stimulated gene 15, CNS: Central nervous system, WNT: Wingless, SHH: Sonic Hedgehog, 

ARIH1: Ariadne RBR E3 ubiquitin protein ligase 1, HERC5: HECT and RLD domain containing E3 ubiquitin protein ligase 5, 
TRIM25: Tripartite motif  containing 25, UBE2L6: ubiquitin conjugating enzyme E2 L6, UBA7: Ubiquitin-like modifier-activating 

enzyme 7.
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other MB cells (G3/G4), which may explain why the 
SHH subgroup has a better prognosis, as it is more 
sensitive to chemotherapy and radiotherapy [55]. Data 
on the WNT subgroup is limited due to its rarity, repre-
senting only about 10% of MB cases [35,36]. The diverse 
and complex role of ISG15 across MB subgroups sug-
gests that ISG15-triggered molecular mechanisms are 
interconnected with the affected signaling pathways 
within each molecular subgroup. Some deregulated 
genes in recurrent adult and pediatric brain tumors have 
been linked to cytokine production [53]. Free ISG15 
can be found intracellularly and extracellularly and 
mediates cytokine signaling [56,57]. Further investiga-
tion is required to define the role of ISG15 forms in each 
MB subgroup.
Therefore, the biology of the G3 and G4 subgroups 
remains less clear compared to other MB subgroups. 
Our data are mainly relevant to the G3 and G4 sub-
groups, as they share some molecular characteristics 
[35, 37, 43]. Notably, while the G4 subgroup is the lar-
gest, its specific clinical relevance remains unclear. In 
contrast, the G3 subgroup is relevant due to its poor 
prognosis [39, 41]. Consequently, research efforts are 
focusing on elucidating the underlying molecular 
mechanisms and master regulators within the MB G3/
G4 subgroups [40, 43]. It has been reported that genes 
involved in the ubiquitin-proteasome pathway are diffe-
rentially expressed among the various MB subgroups 
[34]. ISG15 is a member of the ubiquitin-like protein 
family; the processes of ISGylation and ubiquitination 
may cooperate to modulate the stability of certain 
proteins in MB [2]. Thus, the deregulation of ISG15 
may be a critical factor in the G3/G4 subgroups. 

Limitations

While a larger sample size would improve the analysis, 
this is challenging due to the rarity of MB, which is an 
uncommon CNS tumor primarily affecting pediatric 
patients. Furthermore, despite an established molecular 
classification for MB, the tumor’s inherent heteroge-
neity remains a limitation, as MB tumors often exhibit 
characteristics of two distinct groups [30, 42, 43]. For 
instance, there is a proposal to define a new G3/G4 sub-
group within MB, and D283 cells have been suggested 
as a G3/G4-derived line [54, 58]. Furthermore, the avai-
lability and characterization of MB cell lines represen-
tative of these subgroups are also limited [36]. Together, 
these aspects underscore the significant molecular com-
plexity of this cancer.
Moreover, ISG15 expression is primarily associated 
with pro-tumor activity in carcinomas (e.g., mammary 
carcinomas) and other CNS tumors (e.g., glioblastoma). 
Nevertheless, it has also demonstrated anti-tumor acti-
vity against ovarian, cervical, and blood cancer cells 
[14-16], suggesting that ISG15 expression is context-de-
pendent and could potentially function as a tumor sup-
pressor in other cancer types as well. In addition, free 
or conjugated ISG15 may have opposing effects. For 
instance, in breast cancer, extracellular free ISG15 was 
associated with anti-tumor activity, whereas ISGylation 
was linked to tumor progression [59]. Based on our 
results, we hypothesize that ISG15 exhibits anti-tumor 

activity in MB G3 and G4 cases. However, this hypo-
thesis requires future investigation using in vitro cell 
experiments and/or in vivo animal models to clarify the 
molecular mechanisms triggered by ISG15 and verify 
its potential tumor-suppressor function. Thus, the fin-
dings presented here provide a basis for further research 
into the role of ISG15/ISGylation in MB.

CONCLUSION

In conclusion, our findings demonstrate that the expres-
sion of ISG15 is downregulated in MB, and the lower 
expression level correlates with poorer survival rates in 
the G4 and G3 molecular subgroups. There is a complex 
interplay between ISG15 levels and altered molecular 
pathways in the MB subgroups, which may influence 
tumor progression in a molecular subgroup-dependent 
manner. Specifically, low ISG15 levels appear to be a 
potential indicator of poor prognosis for patients in the 
G3 and G4 subgroups. ISG15 deregulation may serve 
as a valuable prognostic biomarker for these specific 
MB subgroups.
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ABBREVIATIONS
CBTTC: The Childhood Brain Tumor Tissue Consortium 
CNS: central nervous system 
G3: Group 3 
G4: Group 4
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