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ABSTRACT. Background: Psoriasis is a challenging immune-mediated dermatological disorder with an urgent need
for effective clinical therapeutics, while astilbin has shown considerable efficacy in suppressing psoriasis progression,
its underlying mechanisms are not fully clarified. This study aimed to systematically investigate the anti-psoriatic
effects of astilbin and to elucidate its potential mechanisms of action. Methods: A psoriasis-like mouse model was
established via cold water swimming, dietary restriction, and topical application of 5% propranolol emulsion, followed
by daily treatment with low- (25.6 mg/kg), middle- (51.2 mg/kg), or high-dose (76.8 mg/kg) astilbin for 6 consecutive
days, with evaluations including PASI scoring, histopathological examination, Baker scoring, inflammatory cytokine
detection, and flow cytometric analysis of lymphocyte populations in lymph nodes and spleen. Results: Middle and
high doses of astilbin significantly reduced skin lesions and erythema, with PASI scores decreasing by 23.6%, and
44.9% respectively, Baker scores significantly reduced by 23.1% and 24.1% in the middle- and high-dose groups, and
astilbin also significantly suppressed skin IL-17A, IL-6, and IFN-y levels; moreover, middle and high doses substan-
tially downregulated Th1, Th17, and Treg cell populations in lymph nodes and effectively restored Th17/Treg balance.
Conclusions. Astilbin effectively ameliorates psoriatic skin lesions through immunomodulatory mechanisms involving
the correction of lymph node Th17/Treg imbalance, highlighting its potential as a therapeutic agent for psoriasis.
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immune-mediated inflammatory condition that

predominantly affects the skin, nails, and joints
[1,2]. The global population of psoriasis patients almost
doubled between 1990 and 2021, reaching 43 million,
while 5.1 million new diagnoses were recorded in 2021
[3, 4]. The pathological hallmarks of psoriasis include
epidermal hyperproliferation, dilation of dermal vascu-
lar networks, and pronounced inflammatory cell infil-
tration [5]. Contemporary research indicates that
psoriasis pathogenesis involves complex interactions
between genetic predisposition and environmental trig-
gers, creating a multifactorial disease landscape.
As a prototypical autoimmune disorder, psoriasis
pathophysiology encompasses the activation of diverse
lymphocyte populations, including T helper 1 (Th1), T
helper 17 (Th17), and regulatory T (Treg) cells. Th17
cells represent an activated T-cell subset that mediates
inflammatory and autoimmune responses, while Treg
cells function to maintain immune tolerance and prevent

P soriasis-like dermatitis constitutes a chronic

spontaneous autoimmune reactions [6, 7]. Accumulating
evidence substantiates that the equilibrium between
Th17 and Treg cells plays a pivotal role in the pathoge-
nic mechanisms underlying various autoimmune condi-
tions [8]. Consequently, maintaining an appropriate
Th17/Treg ratio is essential for preserving immune
homeostasis. Clinical investigations have consistently
demonstrated significantly elevated levels of Th17 cells
and their associated inflammatory mediators, including
IL-6, IL-17, and IL-23 [9-13], in the serum of psoriatic
patients. Concurrently, diminished expression of Treg
cells and their regulatory cytokine TGF-$ has been
observed in psoriatic sera, collectively indicating a pro-
nounced Th17/Treg imbalance in this condition [14, 15].
Furthermore, this immunological dysregulation pro-
motes additional T-cell activation [16, 17] and facilitates
the infiltration of inflammatory cells into the superficial
dermis and epidermis. These events subsequently sti-
mulate increased IFN-y expression, thereby inducing
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keratinocyte proliferation and exacerbating psoriatic
symptomatology [18]. Accordingly, therapeutic strate-
gies aimed at rebalancing the Th17/Treg axis may offer
promising approaches for mitigating psoriatic skin
manifestations.

Current clinical management of psoriasis predominantly
relies on immunosuppressive agents, including corticos-
teroids, vitamin D analogs, calcipotriol, and methotrexate
[19, 20]. Although these pharmacological interventions
can achieve satisfactory short-term therapeutic outco-
mes, their long-term utility is frequently compromised by
adverse effects and the development of drug resistance
[21]. Consequently, the discovery and development of
safer anti-psoriatic agents with reduced side effect profiles
represents a crucial objective in psoriasis therapeutics.
In recent years, traditional Chinese medicine and its
principal active constituents have shown considerable
promise in managing psoriasis. Astilbin, a dihydrofla-
vonol glycoside, is widely distributed in edible Chinese
herbal medicines such as Rhizoma smilacis glabrae [22]
and Sarcandra glabra [23], as well as in common food
sources including grapes and wine [24]. Substantial
research has confirmed that astilbin possesses diverse
biological activities encompassing immunomodulatory,
antioxidant, anti-inflammatory, and anticancer proper-
ties [25]. Although studies demonstrate astilbin alleviates
psoriasis by reducing reactive oxygen species [26], sup-
pression of IL-6 and IL-22 expression [27], and inhibi-
ting Th17 activation [28-30], its overallimmunoregulatory

mechanism remains poorly defined, limiting further
therapeutic development. Notably, psoriasis onset and
flares are frequently associated with psychological stress
and metabolic disturbances, which can induce transient
immunosuppression through dysregulation of the hypo-
thalamic-pituitary-adrenal axis and sympathetic nervous
system [31]. This hypoimmune state may paradoxically
precede or exacerbate inflammatory episodes in suscep-
tible individuals [32]. Clinically, many patients, espe-
cially after prolonged use of biologics, cyclosporine, or
methotrexate, exhibit similar immune compromise.
However, whether and how astilbin modulates psoriatic
inflammation under such a hypoimmune background
remains unexplored. Therefore, to better simulate this
common clinical scenario and evaluate the immunomo-
dulatory potential of astilbin in a more translationally
relevant context, we established a novel psoriasis model
combining chronic stress and metabolic preconditioning
before propranolol-induced lesion formation.

METHOD AND MATERIALS

Drugs and reagents

Propranolol (purity 280%) was procured from Hubei
Maiyuan Chemical Co., Ltd (Hubei, China). Astilbin
(purity >95%) was obtained from Chengdu Purui
Technology Co., Ltd (Chengdu, China) and subjected
to HPLC analysis (figure 14) following established
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Figure 1

Astilbin identification and characterization of immunocompromised animal model. (A) Representative HPLC chromatogram of
astilbin standard; (B) Schematic representation of immunocompromised model establishment; (C) Skin concentration of 1L-6; (D)
Skin concentration of 1L-22; (E) Skin concentration of 1L-23. Data presented as Mean £ SEM; NS indicates no statistical signifi-

cance; **P<0.01 versus control group. NC: Normal control group; Ctrl: Model control without propranolol; HPLC: High-
performance liquid chromatography; IL-6: Interleukin-6; IL-22: Interleukin-22; IL-23: Interleukin-23; SEM: Standard error of the
mean.
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methodological protocols from previous research [33].
Methotrexate was purchased from Shanghai Xinyi
Pharmaceutical Co., Ltd (Shanghai, China).
Pentobarbital sodium was acquired from Sinopharm
Group Rongsheng Pharmaceutical Co., Ltd. (Jiaozuo,
China). The BCA protein quantification kit was pro-
cured from Thermo Scientific (MA, USA). Enzyme-
linked immunosorbent assay (ELISA) kits for
interleukin-6 (IL-6), IL-22, IL-23, and IL-17A were
obtained from RayBio Co., Ltd (Georgia, USA). The
interferon-gamma (IFN-y) ELISA kit was purchased
from Wuhan Huamei, Co., Ltd (Wuhan, China). Red
blood cell lysate, PerCP-CY5.5 conjugated anti-mouse
CD3e antibody, transcription factor buffer set, phy-
coerythrin (PE)-conjugated anti-mouse TNF-y anti-
body, Alexa Fluor 647-conjugated anti-mouse IL-17A
antibody, Alexa Fluor 647-conjugated anti-mouse CD4
antibody, allophycocyanin (APC)-conjugated anti-
mouse CD25 antibody, PE-conjugated anti-mouse
Foxp3 monoclonal antibody, and Leukocyte Activation
Cocktail (with GolgiPlug) were all sourced from BD
Biosciences (California, USA).

Animal experiments

Sixty specific-pathogen-free (SPF) grade Kunming mice
(female, 25-30 g, 8 weeks old) were purchased from the
Guangdong Medical Laboratory Animal Center
(Guangdong, China) (certification No: SYXK Yue,
2013-0002). All animals were housed in SPF-controlled
environments with ad libitum access to water and stan-
dard laboratory diet, maintained under a 12-hour light/
dark cycle with controlled temperature (2242 °C) and
humidity (55£5%). All experimental procedures were
conducted in strict accordance with the National
Institutes of Health Guide for the Care and Use of
Laboratory Animals and received approval from the
Animal Ethics Committee of Guangzhou University of
Chinese Medicine (Approval No. 2017024).

Following one week of acclimatization, mice were ran-
domly allocated into two primary groups based on body
weight: normal control group (n=10) and model group
(n=50). Except for the normal control group, all remai-
ning mice underwent daily swimming sessions in cold
water (4 °C) for 5 minutes concurrently with dietary
restriction to one-third of normal daily intake for 15
consecutive days to induce a hypoimmune state.
Subsequently, 200 uL of 5% propranolol microemul-
sion, prepared in-house, was topically applied to the
depilated dorsal skin region of model mice. The model
mice were then randomly divided into five experimental

Yayun Wu et al.

groups (n=10 per group): model control group, astilbin
low-dose group (25.6 mg/kg), astilbin middle-dose
group (51.2 mg/kg), astilbin high-dose group (76.8 mg/
kg), and positive control group (methotrexate, MTX,
3.792 mg/kg). The MTX dose was calculated via body
surface area conversion (factor of 9.1) from the com-
mon human clinical dose (25 mg/week for a 70 kg
adult), aligning with established protocols in murine
psoriasis studies [34, 35]. Treatment compounds or
equivalent volumes of 0.9% saline (for the normal and
model control groups) were administered once daily via
the appropriate route. On the sixth day of treatment,
skin lesions were comprehensively evaluated according
to the PASI scoring criteria detailed in table 1. Following
assessment, all mice were humanely euthanized through
deep anesthesia induced by intraperitoneal injection of
pentobarbital sodium (80 mg/kg). Blood samples were
collected via cardiac puncture, and dorsal skin tissues,
spleens, and lymph nodes were carefully harvested. Skin
specimens designated for histological analysis were
immediately fixed in 4% paraformaldehyde solution.
Serum samples, spleen tissues, and remaining skin
samples were rapidly frozen and stored at -80 °C for
subsequent biochemical and molecular analyses.

Determination of inflammation cytokines in the skin

The collected back skin tissues were thoroughly
homogenized in RIPA lysis buffer at a weight/volume
ratio of 1:10 using a mechanical homogenizer on ice.
The homogenates were subsequently centrifuged at
12,000 X g for 15 minutes at 4 °C, and the resulting
supernatants were collected for cytokine quantification.
The concentrations of key inflammatory cytokines,
including IL-6, IL-22, IL-23, IL-17A, IFN-y, TNF-a,
and TGF- in skin tissues were precisely determined
using commercially available ELISA kits according to
the manufacturers’ detailed protocols. Absorbance
measurements were performed using a microplate rea-
der, and cytokine concentrations were calculated based
on appropriate standard curves generated for each
assay.

Hematoxylin and eosin (H&E) staining and baker
score

The collected skin tissues were fixed in 4% parafor-
maldehyde solution for 48 hours at room temperature,
followed by sequential dehydration through graded
ethanol series, clearing in xylene, and embedding in
paraffin blocks. Tissue sections of 5 um thickness were

Table 1.
PASI scoring criteria for skin lesions.

Extent of skin lesions (Score)
Items Asymptomatic Mild moderate Severe Extremely severe
Erythema 0 1 2 3 4
Scaly 0 1 2 3 4
Thicken 0 1 2 3 4

PASI: Psoriasis Area and Severity Index.
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prepared using a rotary microtome, mounted on glass
slides, and subjected to standard H&E staining proce-
dures. Briefly, sections were deparaffinized, rehydrated,
stained with hematoxylin solution, differentiated, blued,
counterstained with eosin, dehydrated, cleared, and
mounted with neutral balsam. Pathological alterations
in mouse skin sections were systematically examined
and photo-documented under an upright optical
microscope with 20X objective lens magnification.
Baker scoring, a semi-quantitative histopathological
assessment method, was performed by experienced
pathologists blinded to experimental groups using pho-
tomicrographs obtained under 100X magnification
according to the established criteria detailed in table 2.
This scoring system evaluates multiple parameters,
including hyperkeratosis, epidermal thickness, inflam-
matory cell infiltration, and dermal vascular changes.

Splenic lymphocytes determination in psoriatic mice

Splenic lymphocyte isolation was performed using
mechanical dissociation and density gradient centrifu-
gation. Briefly, 0.5 g of spleen tissue was gently ground
on a 200-mesh stainless steel mesh, and splenocytes were
eluted with cold PBS. The cell suspension was filtered
through a 300-mesh nylon sieve to remove tissue debris
and aggregates. The filtrate was centrifuged at 400 X g
for 5 minutes at 4 °C to pellet cells. Erythrocyte conta-
mination was eliminated by resuspending the cell pellet
in 5 mL of red blood cell lysis buffer followed by incu-
bation at 37 °C for 3 minutes. The lysis reaction was
terminated by adding excess PBS, and cells were washed
twice with cold PBS. After final centrifugation, viable
lymphocytes were resuspended in 2 mL of RPMI-1640
medium supplemented with 10% heat-inactivated fetal
bovine serum.

For flow cytometric analysis, 1 X 10° splenic lympho-
cytes were transferred to sterile centrifuge tubes and
incubated with 2 uL of F¢ receptor blocking solution at
4 °C for 5 minutes to prevent nonspecific antibody bin-
ding. For Treg cell characterization, surface staining
was performed using PerCP-CyS5.5-conjugated anti-
mouse CD3e, FITC-conjugated anti-mouse CD4, and
APC-conjugated anti-mouse CD25 antibodies. All
samples were incubated with antibody cocktails for
30 minutes at 4 °C in the dark. Following incubation,

Table 2 .
The Baker scoring criteria of skin pathology.

Extent of skin lesions (Score)

Extremely
Items Mild  Moderate Severe severe
Degree of 0.5 1 1.5 2
tortuous basal
layer
Inflammatory 0.5 1 1.5 2
cell infiltration
Mastoid — 0.5 1 —
protrusion
score
Telangiectasia — 0.5 — —

SCOre

cells were washed twice with PBS, centrifuged at 4 °C
for 5 minutes, and supernatants were carefully removed.
Cell pellets were resuspended in 400 uL of 4% parafor-
maldehyde fixative solution and stored at 4 °C pending
flow cytometric analysis. For intracellular Foxp3 stai-
ning, fixed cells were permeabilized with 1 mL of per-
meabilization buffer at 4 °C for 50 minutes, followed
by incubation with PE-conjugated anti-mouse Foxp3
monoclonal antibody at 4 °C for 40 minutes. Cells were
subsequently washed with 500 uL. permeabilization
buffer and resuspended in 400 uL. of 4% parafor-
maldehyde. Treg cell subsets in the spleen were analyzed
using a BD FACS Calibur flow cytometer (BD
Biosciences, USA). Thl and Th17 cells in splenic pre-
parations were processed according to the pretreatment
methodologies established for lymph node specimens,
as comprehensively described in section 2.6.

Determination of Thl, Thl7, and Treg cells in Iymph
nodes

Lymphocyte isolation from lymph nodes was performed
using mechanical dissociation. Briefly, freshly harvested
lymph nodes were placed in sterile Petri dishes contai-
ning cold PBS and gently ground using the plunger of
a syringe. The resulting cell suspension was collected
and passed through a cell strainer to remove tissue frag-
ments. The filtrate was centrifuged at 400 X g for
5 minutes at 4 °C to pellet cells. The cell pellet was was-
hed twice with PBS and resuspended in 1 mL of RPMI-
1640 culture medium supplemented with 10% fetal
bovine serum.

For Thl and Th17 cell analysis, 1 X 10° lymphocytes
from each sample were transferred to 96-well plates and
incubated at 37°C in a 5% CO, atmosphere for
30 minutes. Cells were then stimulated with 2 pL of
phorbol 12-myristate 13-acetate (PMA) and incubated
for 6 hours at 37 °C to induce cytokine production.
Following stimulation, cells were washed with PBS,
centrifuged, and resuspended in fresh PBS. Fc receptor
blocking solution was added and incubated at 4 °C for
30 minutes. Cells were subsequently washed with PBS,
centrifuged, and resuspended in 100 pL of permeabili-
zation buffer for 20 minutes. After two washes with
permeabilization buffer and centrifugation for
S minutes, intracellular staining was performed using
antibodies specific for IFN-y and IL-17A. Samples were
incubated with antibodies at 4 °C for 40 minutes, fol-
lowed by resuspension in 400 uL. of 4% parafor-
maldehyde. Th17 and Th1 cell subsets in lymph nodes
were quantified using flow cytometry. Treg cells in
lymph nodes were processed according to the pretreat-
ment protocols established for splenic samples, as
detailed in section 2.5.

Statistical analysis

All experimental data in this study are presented as
mean * standard error of the mean (SEM). Statistical
analyses were performed using SPSS statistical software
version 19.0 (IBM Corporation, Armonk, NY, USA).
For multiple group comparisons of data conforming to
normal distribution and homogeneity of variance, one-
way analysis of variance (ANOVA) was employed,
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followed by appropriate post-hoc tests. Non-parametric
tests were utilized for multiple group comparisons of
data that violated assumptions of normal distribution
or homogeneity of variance. Differences between group
means were considered statistically significant when the
P-value was less than 0.05.

RESULTS

Therapeutic effect of astilbin on psoriasis-like skin
lesion mice

Initial investigations focused on characterizing the ani-
mal model with induced low immunity. Following cold
stimulation and dietary restriction, animals exhibited
noticeable darkening of skin coloration, with faint
purple spots becoming visibly apparent (figure IB).
After six days of continuous topical application of 5%
propranolol, back skin samples were collected and
concentrations of IL-6, IL-22, and I1L-23 in skin tissues
were quantitatively measured. Results demonstrated
that the cold stimulation and dietary restriction did not
significantly elevate inflammatory markers. However,
following stimulation with 5% propranolol, psoria-
sis-related inflammatory factors in experimental ani-
mals showed substantial increases compared to the
normal control group (figure 1 C-E, P<0.01), indicating
that the hypoimmune state can predispose to severe
psoriasis development. In this study, the skin of normal
mice maintained smooth and flat morphology without
evident thickening, erythema, or other pathological
manifestations.
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In contrast, the dorsal skin of psoriasis model mice exhi-
bited pronounced thickening, redness, swelling, and
characteristic ~ erythema infiltration (figure 2A).
Following astilbin administration, the middle- and
high-dose groups demonstrated significant reductions
in PASI scores by 23.6% and 44.9%, respectively, com-
pared to the model control group (figure 2B, P<0.05).
The middle- and high-dose astilbin also reduced
erythema scores by 21.7% and 22.2%, respectively
(figure 2C), although these changes did not reach sta-
tistical significance (P>0.05). Moreover, all astilbin
treatment groups showed no significant difference in
infiltration (figure 2D) but substantial reductions in sca-
ling scores by 67.1%, 58.6%, and 61.9%, respectively
(figure 2E, P<0.05 or P<0.01), demonstrating improve-
ment comparable to the methotrexate positive control
group. Collectively, these findings indicate that astilbin
possesses promising therapeutic effects on psoriatic skin
lesions.

Pathological changes in skin

To systematically investigate the reparative effects of
astilbin on psoriatic skin lesions, a comprehensive his-
topathological examination using H&E staining was
conducted, with results quantified using the Baker sco-
ring. As shown in figure 34, characteristic psoriatic
features, including hyperkeratosis, epidermal hyperpla-
sia, dermal papillary vasodilation, and perivascular
inflammatory cell aggregation around superficial der-
mal blood vessels, were evident, confirming successful
establishment of the psoriasis model. Baker scoring
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Figure 2
Astilbin ameliorates psoriasis-like skin lesions and reduces PASI scores in immunocompromised mice. (A) Representative photo-
graphic documentation of animal skin conditions across experimental groups; (B) Quantitative analysis of PASI scores; (C) Erythema
severity scores; (D) Skin infiltration scores; (E) Scaling severity scores. Data presented as Mean = SEM; *P<(.05, **P<0.01 versus
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analysis revealed that methotrexate, high-dose astilbin,
and middle-dose astilbin treatments significantly
reduced Baker scores by 20.2%, 24.1%, and 23.1%, res-
pectively, indicating substantial improvement in histo-
pathological parameters (figure 3B). Particularly
noteworthy, the high-dose astilbin group demonstrated
significant inhibition of acanthosis (increased thickness
of the spinous layer) (figure 3C), which may be mecha-
nistically linked to the observed suppression of psoriatic
skin erythema.

Astilbin inhibits inflammatory cytokines in the skin

Both gross morphological and histopathological obser-
vations confirmed that astilbin and methotrexate effec-
tively ameliorate psoriasis-like skin lesions. To further
elucidate the effects of astilbin on cutaneous inflamma-
tion, this study quantitatively determined inflammatory
cytokine profiles in mouse skin tissues. Our results
demonstrated that the concentration of IL-17A, IL-6,
and IFN-y were significantly elevated in skin lesions of
the psoriasis model group (P<0.01). Astilbin adminis-
tration substantially reduced the release of IL-17A and
IFN-y in skin lesions in a dose-dependent manner
(figure 44, B, P<0.05 or P<0.01). However, astilbin
treatment did not exhibit significant regulatory effects
on IL-6, TNF-a, and TGF-B levels in skin lesions
(figure 4C-E). These findings suggest that suppression
of IL-17A and IFN-y may represent crucial mechanistic
components in the anti-psoriatic activity of astilbin.

Astilbin reduces the cell proliferation of lymphocytes
in lymph nodes

To investigate whether astilbin influences immune cell
populations in lymphoid tissues, we quantitatively
assessed the ratios of Th17 and Treg cells in lymph
nodes. Following propranolol stimulation, significant
activation of Thl17 cells was observed in the psoria-
sis-like model (figure 5A4). After intervention with the
high, middle, and low-dose of astilbin, the proportion
of activated Th17 cells was decreased by 45.4%, 51.9%
(P<0.05), and 38.6%, respectively, compared with the
model group (figure 5B).

Interestingly, propranolol induction also generated a
significant increase in Treg cell numbers in lymph nodes
(figure 64). While Treg cells are typically downregu-
lated in psoriasis, their induction under hypoimmune
conditions resulted in upregulation. Middle and high
doses of astilbin significantly decreased Treg cells by
26.6% and 22.8%, respectively, compared to the model
group (figure 6B, P<0.01 or P<0.05).

To further characterize the comprehensive immune acti-
vation profile in lymph nodes, additional T-cell subsets
including Th1, CD3"CD4" T, and CD4"CD25" T cells
were evaluated. As shown in figure 7 A, the proportion
of Thl cells in lymph nodes of propranolol-induced
psoriatic animals increased significantly (P<0.01), and
astilbin intervention substantially reduced Thl cell
populations (P<0.05 or P<0.01). However, the relative
abundance of CD3"CD4" T cells in lymph nodes
remained unchanged following both modeling and
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Effects of astilbin on Treg cell proliferation in lymph nodes. (A) Representative flow cytometric plots of CD25+Foxp3+ cell popula-
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versus model control group. NC: Normal control; Foxp3: Forkhead box P3; CD25: Cluster of differentiation 25; SEM: Standard
error of the mean.

astilbin intervention (figure 7B). Additionally, com-
pared to the normal control group, the proportion of
CD4"CD25" T cells increased dramatically after mode-
ling (P<0.01), but only the middle-dose astilbin group
significantly reduced CD4"CD25" T cell numbers fol-
lowing intervention (figure 7C, P<0.01). Most impor-
tantly, the critical Th17/Treg ratio in lymph nodes
showed significant increase following propranolol
induction, indicating disruption of immune homeosta-
sis. The high-dose astilbin group significantly downre-
gulated the Th17/Treg ratio, suggesting that astilbin
possesses substantial potential for restoring immune
balance (figure 7D, P<0.05). These collective findings
indicate that the anti-inflammatory effects of astilbin
may be mechanistically linked to inhibition of Th1 cell
proliferation and restoration of Th17/Treg balance in
lymph nodes.

The effect of astilbin on lymphocytes in the spleen of
psoriasis-like mice

To further explore the immunological mechanisms of
astilbin, we analyzed psoriasis-associated lymphocyte
populations in the spleen. As shown in figure S1,
although Th17 cells increased moderately following
model establishment, astilbin did not demonstrate signi-
ficant regulatory effects on splenic Th17 cells. Treg cells
in the spleen were activated after modeling (P<0.01),
but modulatory effects of astilbin on splenic Treg cells
were minimal (figure S2). Furthermore, results indi-
cated that Thl and CD3"CD4" T cell populations in

the spleen remained unchanged following modeling,
while CD4°CD25" T cells increased significantly
(figure S3, P<0.05). However, astilbin administration
did not produce significant effects on these splenic
immune cell populations.

DISCUSSION

Psoriasis is a chronic inflammatory dermatosis driven
by complex interactions among keratinocytes, dendritic
cells, and T lymphocytes [36], highlighting the central
role of immunomodulation in its pathogenesis.
Consequently, immunomodulation plays an essential
role in both the initiation and progression of psoriatic
pathology. The present study demonstrates that astilbin
effectively alleviates psoriatic skin lesions in a novel
animal model, as evidenced by reduced PASI and Baker
scores, along with decreased secretion of 1L-17A and
IFN-y in skin tissue and rebalancing Th17/Treg in the
lymph nodes. These findings underscore the therapeutic
potential of astilbin.

Psoriasis is conventionally considered an immune hype-
ractivation disorder, and numerous immunosuppressive
agents, including methotrexate and cyclosporine A, are
routinely employed in clinical management, yet clinical
observations indicate that patients frequently exhibit a
hypoimmune state during remission, which may predis-
pose them to subsequent flares [37, 38]. These clinical
observations suggest that immune compromise may
represent a crucial factor in precipitating psoriasis onset
and progression. In social contexts, low immunity often
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Figure 7
Comprehensive effects of astilbin on Thl, CD3"CD4" T, and CD4"CD25" T cell proliferation and Th17/Treg ratio in lymph nodes.
(A) Quantitative analysis of relative Th1 cell numbers; (B) Quantitative analysis of relative CD3+CD4+ T cell numbers; (C)
Quantitative analysis of relative CD4"CD25" T cell numbers; (D) Th17/Treg ratio in lymph nodes. Data presented as Mean * SEM;
*P<0.05, **P<0.01 versus model control group. NC: Normal control; Thl: T helper 1 cell; Th17: T helper 17 cell; CD3: Cluster of
differentiation 3; CD4: Cluster of differentiation 4; CD25: Cluster of differentiation 25; SEM: Standard error of the mean.

correlates with chronic malnutrition or insufficient
energy intake [39]. Preliminary investigations have cor-
roborated that reduced immune competence increases
susceptibility to psoriasis induction under conditions of
cold stress [40, 41] and dietary restriction [42]. To inves-
tigate the pathogenesis and therapeutic strategies under
this clinically relevant condition, we established a com-
posite model that combines chronic cold stress and die-
tary restriction to induce a systemic hypoimmune state,
with topical propranolol administration serving as a
“second hit” to trigger psoriasis. Unlike the acute,
IL-23/Th17-centered response driven by imiquimod
(IMQ) via TLR7/8[10, 43], our model mimics the dyna-
mic interplay between systemic immune compromise
and localized inflammation triggered by common stres-
sors, providing a complementary tool for etiological
and therapeutic research.

Treg cells are essential for maintaining immunological
homeostasis [44]. Further immunophenotyping revealed
that astilbin downregulated propranolol-induced

activation of Th1, Th17, and Treg cells in lymph nodes
of this model. This is consistent with previous reports
that astilbin modulates T-cell differentiation and func-
tion, including enhancing Treg activity and inhibiting
Th17 polarization [45, 46]. This coordinated downre-
gulation of key pathogenic axes alongside regulatory T
cells suggests a multi-target mechanism. It aligns with
reports that astilbin inhibits pivotal signaling pathways
like JAK/STAT3 and NF-xB [47], and extends previous
findings by demonstrating integrated regulation of the
Th1/Th17/Treg network in vivo under stress conditions.
Such broad modulation of the Th1/Th17/Treg network
positions astilbin not merely as a selective inhibitor but
as a regulator of immune homeostasis, capable of atte-
nuating the synergistic inflammation characteristic of
psoriasis. Although a downward trend in skin IL-6
expression was observed, this trend lacked statistical
significance. This may be attributed to sampling timing
or experimental variability, yet the consistent suppres-
sion of key effector cytokines supports its functional
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impact. Overall, astilbin appears to exert its anti-pso-
riatic effect through a pluralistic immunoregulatory
approach, underscoring its potential as a multi-target
therapeutic agent.

Moreover, two model-related observations warrant
further discussion. First, an increase in Treg numbers
was observed, contrasting with some clinical reports in
chronic psoriasis. This is consistent with findings in
acute murine models like IMQ-induced psoriasis, where
a transient compensatory rise in Tregs occurs during
active inflammation [48]. This highlights that the critical
defect may be the functional insufficiency of Tregs
against an overwhelming Thl7 response, a balance
effectively restored by astilbin. Second, the effects of
astilbin were pronounced in lymph nodes but minimal
in the spleen. This differential response is compounded
by pharmacokinetics: distribution studies indicate that
astilbin achieves relatively low exposure in the spleen
compared to other organs [49], while in our model,
lymph nodes, as draining sites receiving both systemic
stress and local propranolol signals, contain T cells in
a highly activated state [50, 51], making them more sus-
ceptible to the modulatory effects of astilbin.
Furthermore, our study demonstrated that astilbin did
not significantly affect CD3"CD4" T cell populations
in lymph nodes, suggesting that propranolol-induced
skin lesions primarily represent localized inflammatory
responses with minimal impact on CD4" T cell dyna-
mics. This observation also implies that astilbin may
exert negligible effects on systemic immunity.
Conversely, the effects of astilbin on CD4"CD25" T
cells paralleled its regulation of Treg cells. The reduc-
tion in pro-inflammatory Th17 cells exceeded that of
total Treg cells, confirming that astilbin specifically
modulates immune balance in lymph nodes.

In summary, astilbin ameliorates psoriasis-like inflam-
mation in a stress-precipitated model through pluralistic
immunoregulation, primarily targeting the dysregulated
Th1/Th17/Treg axis in draining lymph nodes. Our fin-
dings support its potential as a multi-target therapeutic
agent. Future studies should directly assess the functio-
nal capacity of Tregs in this context, investigate formu-
lation strategies to overcome pharmacokinetic
limitations for systemic effects, and further elucidate
the precise molecular targets of astilbin within the
immune network.

Limitations

In this study, we only examined the number and pro-
portion of cells at specific time points, but failed to
directly evaluate the suppressive function of the
expanded Treg cells in the model. This limitation
constrains the understanding of the depth of immune
homeostasis restoration. Secondly, the pharmacological
effects of astilbin exhibit marked tissue specificity,
which is partially consistent with its pharmacokinetic
distribution characteristics. However, this study did not
directly determine the actual concentration of astilbin
in different lymphoid organs; thus, the evidence for the
mechanism underlying its tissue selectivity remains indi-
rect inference. Furthermore, the established combined
stress model was designed to simulate the clinically
common pathogenic scenario induced by hypoimmune

status, yet its correlation with the pathological progres-
sion of specific clinical subtypes of psoriasis requires
further validation and confirmation through additional
preclinical and clinical studies.

CONCLUSION

This study demonstrates that astilbin effectively ame-
liorates psoriatic lesions in a novel stress-induced
hypoimmune model. Its therapeutic mechanism invol-
ves the coordinated downregulation of pathogenic Th1
and Th17 responses alongside the modulation of Treg
cells in lymph nodes, thereby restoring the critical Th17/
Treg balance and showcasing multi-target immunomo-
dulatory properties. These findings highlight the poten-
tial of astilbin as a promising therapeutic agent that acts
by rebalancing immune homeostasis.
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