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ABSTRACT. Immunotherapy has demonstrated limited efficacy in immunologically “cold” breast cancers char-
acterized by absent T-cell infiltration and inadequate interferon signaling. The purpose of this work is to propose 
and articulate a mechanistic and therapeutic framework in which mitochondrial stress is deliberately harnessed 
to convert immunologically “cold” breast tumors into “hot,” T cell–inflamed, immunotherapy-responsive lesions. 
This review synthesizes emerging evidence positioning mitochondrial stress as a strategic lever to transform these 
immune-excluded tumors into inflamed, therapy-responsive lesions. We examine how mitochondrial dysfunction 
triggers cytosolic release of mitochondrial DNA (mtDNA), a potent damage-associated molecular pattern that acti-
vates the cGAS-STING pathway, initiating type I interferon responses and secretion of T-cell-recruiting chemokines 
such as CCL5 and CXCL10. This axis functions as a “double-edged sword”—while acute activation converts “cold” 
tumors into “hot” immune-responsive states, chronic engagement drives immunosuppressive cytokine networks and 
therapeutic resistance, with outcomes varying across breast cancer subtypes. We explore six combination therapeutic 
strategies: mitochondrial poisons, radiotherapy/chemotherapy, PARP/ATR inhibitors, metabolic reprogramming 
agents, mitochondrial quality control modulators, and localized mitochondrial stress induction, each paired with 
immune checkpoint blockade. The review emphasizes “controlled ignition” as a paradigm whereby precisely dosed 
mitochondrial stress amplifies tumor antigenicity and favorable cytokine landscapes while avoiding chronic immu-
nosuppression. Cytokine networks emerge as both integrators and therapeutic targets of mitochondrial-immune 
crosstalk. Future advances require mapping subtype-specific thresholds, developing tumor-restricted delivery sys-
tems, and implementing biomarker-guided trials to safely harness mitochondrial stress, potentially redefining these 
organelles as programmable immunological adjuvants in breast cancer therapy.
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B reast cancer remains a leading cause of mortal-
ity worldwide [1], with triple-negative breast 
cancer (TNBC) being particularly aggressive 

due to its lack of hormone receptors [2]. While immu-
notherapy has revolutionized treatment for some, base-
line response rates in breast cancer remain low because 
many tumors are immunologically “cold”, characterized 
by T-cell exclusion and mitochondrial dysfunction  
[3, 4]. Priming strategies are essential to overcome these 
resistance mechanisms and improve survival outcomes 
across all molecular subtypes.
Immunologically “cold” breast tumors, particularly 
hormone receptor–positive and many HER2-enriched 
and triple-negative breast cancers (TNBC), show limited 
benefit from current immune checkpoint inhibitors 
because they lack robust T-cell infiltration, interferon 
signaling, and effective antigen presentation [5, 6]. This 

therapeutic ceiling has prompted a shift toward under-
standing and therapeutically exploiting tumor-intrinsic 
and microenvironmental mechanisms that govern 
immune exclusion, among which mitochondrial signa-
ling has emerged as a central and druggable node [7].
Across current trials, only a minority of breast cancer 
patients—most notably a subset of PD L1–positive 
TNBC—achieve durable responses to checkpoint 
blockade [8-12], with luminal and many HER2 positive 
tumors remaining largely non responsive [13-15]. TNBC 
typically displays higher mutational burden, greater 
chromosomal instability [2, 16, 17], and more frequent 
baseline activation of the cGAS–STING axis, leading 
to partially inflamed, ‘hot leaning’ immune phenotypes 
[18, 19], whereas hormone receptor–positive luminal 
tumors are often immune excluded with low TILs and 
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cytokine milieus dominated by TGF-β and IL-10 [6, 13, 
20, 21]. These subtype specific immune and cytokine 
landscapes imply that strategies harnessing mitochon-
drial stress to prime immunotherapy must be tailored—
using relatively modest perturbation in TNBC to avoid 
chronic immunosuppression, and more intensive or 
repeated priming regimens, often combined with 
cytokine/myeloid targeted agents, in luminal and HER2 
enriched disease.
Traditionally viewed as bioenergetic engines, mitochon-
dria in breast cancer cells and infiltrating immune cells 
are now recognized as hubs integrating metabolism, 
redox state, cell death pathways, and innate immune 
sensing to shape the tumor immune microenvironment 
[22-25]. Recent work shows that mitochondrial dysfunc-
tion, altered dynamics, and metabolic rewiring in breast 
tumors influence antigen presentation, oxidative stress, 
and susceptibility to immunogenic cell death [7], while 
mitochondrial fitness in T cells, NK cells, and myeloid 
cells critically determines their effector function within 
the hostile breast tumor niche [26].
A key conceptual advance is that mitochondrial stress 
can convert organelles into platforms for innate immune 
activation through release of mitochondrial DNA 
(mtDNA) and other damage-associated molecular 
patterns (DAMPs) into the cytosol [27-29]. These mito-
chondrial signals engage pathways such as cGAS–
STING to induce type I interferons and chemokines that 
orchestrate dendritic cell activation and T-cell recruit-
ment, suggesting that controlled mitochondrial pertur-
bation in breast cancer may help drive “cold-to-hot” 
transition required for effective immunotherapy.
Within this framework, mitochondria move from 
passive metabolic supporters to master regulators of 
breast tumor immunity whose stress responses can be 
pharmacologically tuned. The following sections will 
dissect how mtDNA–cGAS–STING signaling, its 
downstream cytokine and chemokine networks, and the 
context-dependent consequences of mitochondrial 
stress can be leveraged—alone and in combination with 
checkpoint blockade—to “ignite” non-immunogenic 
breast cancers and improve the depth and durability of 
immunotherapy responses (figure 1).

MITOCHONDRIA AS MASTER 
REGULATORS OF THE TUMOR IMMUNE 
MICROENVIRONMENT

Mitochondria shape the tumor immune microenviron-
ment (TIME) through their control of cancer cell 
metabolism, redox balance, organelle quality, and 
innate immune signaling, thereby influencing how 
visible tumor cells are to the immune system and how 
effective antitumor effector cells can be [26]. In breast 
cancer, dysregulated mitochondrial dynamics, biogen-
esis, and oxidative phosphorylation (OXPHOS) not 
only fuel proliferation and metastasis but also remodel 
antigen presentation, cytokine production, and suscep-
tibility to T-cell–mediated killing, while mitochondrial 
fitness in tumor-infiltrating lymphocytes and 
macrophages critically determines whether the TIME 
is “hot” or “cold” [26].

Mitochondrial dynamics and cancer cell 
immunogenicity

In breast cancer, metastatic and stem-like populations 
typically display enhanced mitochondrial fission and 
fragmented networks driven by factors such as DRP1 
and related fission mediators, whereas more fused mito-
chondrial architectures are associated with lower meta-
static potential and reduced aggressiveness [30]. 
Imbalanced dynamics have dual effects on immuno-
genicity: excessive fission promotes mitochondrial reac-
tive oxygen species (mtROS), mtDNA damage, and 
neoantigen generation, yet also downregulates MHC-I 
antigen presentation and favors secretion of immuno-
suppressive mediators, enabling immune escape despite 
increased mutational load [31].

Biogenesis, mitophagy, and danger signaling

Coordinated mitochondrial biogenesis and mitophagy 
maintain organelle quality, whereas defective turnover 
permits accumulation of damaged mitochondria that 
leak mtROS and mtDNA, acting as DAMPs [32]. These 
signals can engage pathways such as cGAS–STING and 
NF-κB to induce type I interferons and inflammatory 
cytokines that, in principle, enhance dendritic cell acti-
vation and T-cell priming, but chronic, unrestrained 
stress skews toward immunosuppressive transcriptional 
programs and checkpoint upregulation, shaping a 
tolerant TIME [33].

OXPHOS, ROS, and antigen presentation

Breast cancer cells flexibly toggle between glycolysis and 
OXPHOS; high OXPHOS states provide ATP and 
anabolic intermediates but also generate mtROS that 
influence both cell death and immune visibility [34]. 
Moderate mitochondrial stress and ROS can promote 
immunogenic cell death with exposure of calreticulin, 
ATP release, and cGAS–STING-dependent interferon 
signaling, whereas excessive ROS and fragmented mito-
chondria impair MHC-I expression, reduce antigen 
presentation, and enhance secretion of factors such as 
IL-10 that dampen cytotoxic T-cell function [26].

Mitochondrial control of  T cells in the TIME

Tumor-infiltrating CD8+ T cells in solid tumors 
frequently exhibit mitochondrial defects, including 
reduced mitochondrial mass, impaired OXPHOS, and 
dysfunctional dynamics, which collectively drive 
exhaustion and limit effector cytokine production [35, 
36]. Interventions that restore mitochondrial fitness—
such as improving mitochondrial content and respira-
tory capacity through metabolic conditioning or 
exercise—enhance T-cell persistence, granzyme produc-
tion, and tumor control, highlighting mitochondria as 
central regulators of T-cell functionality in “hot” versus 
“cold” environments [37]. 

Macrophages, ROS, and polarization

Tumor-associated macrophages (TAMs) integrate envi-
ronmental cues via mitochondrial metabolism, with 
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OXPHOS- and fatty acid oxidation–driven programs 
favoring M2-like, immunosuppressive phenotypes and 
more glycolytic, ROS-producing states supporting 
pro-inflammatory, M1-like functions [36]. Mitochondrial 
reprogramming in TAMs, influenced by tumor-derived 
metabolites and acidity, can thus either sustain immune 
evasion or, when redirected, promote antigen presenta-
tion, cytokine production, and cross-priming of CD8+ 
T cells within the breast TIME [36, 38].

Bidirectional mitochondrial crosstalk in the  
tumor microenvironment

Beyond cell-autonomous effects, tumor and immune 
cell mitochondria engage in bidirectional metabolic 
crosstalk. Tumor-derived lactate, kynurenine, and 
adenosine suppress T-cell OXPHOS and promote 
exhaustion [39, 40], while robust mitochondrial fitness 
in infiltrating T cells and NK cells sustains granzyme 
and IFN-γ production that, in turn, induces tumor 
mitochondrial stress, mtDNA release, and cGAS–
STING activation [41, 42]—creating a reinforcing loop.

Integrating cancer and immune cell mitochondria

Collectively, mitochondrial dynamics, biogenesis, and 
OXPHOS in breast cancer cells dictate the balance 
between immunogenic stress signals and immune 
evasion, while mitochondrial health in T cells and 
macrophages governs effector capacity and polariza-
tion. This multi-compartment mitochondrial network 
positions mitochondria as master regulators of the 
TIME and provides a mechanistic basis for strategies 

that deliberately impose “controlled” mitochondrial 
stress to enhance antigen presentation, type I interferon 
and chemokine production, and ultimately the efficacy 
of breast cancer immunotherapy.

THE MTDNA–CGAS–STING AXIS: A PIVOTAL 
INNATE IMMUNE SENSING PATHWAY IN 
CANCER

The mitochondrial DNA (mtDNA)–cGAS–STING 
axis has emerged as a central innate immune sensing 
pathway that links organelle stress to inflammatory and 
antitumor signaling in cancer [43, 44]. In breast tumors 
and other solid malignancies, diverse mitochondrial 
insults can drive leakage of mtDNA into the cytosol, 
where it is recognized as a foreign-like nucleic acid, 
thereby triggering cGAS–STING–dependent type I 
interferon and chemokine responses that shape the 
tumor immune microenvironment [44]. Figure 2 illus-
trates mechanism of cytosolic DNA sensing via cGAS-
STING triggers a coordinated innate immune response.

Mitochondrial stress and mtDNA destabilization

Oncogenic signaling, hypoxia, metabolic overload, and 
therapy-induced damage all impose chronic stress on 
tumor cell mitochondria, leading to elevated ROS, 
impaired replication, and accumulation of oxidatively 
damaged mtDNA [32]. When mitophagy and mitochon-
drial quality control are compromised, these damaged 
genomes persist, increasing the likelihood that nucleoids 
will be mispackaged, clustered, or exposed at sites of 
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membrane instability that predispose them to escape 
the organelle [45].

Routes of mtDNA release into the cytosol

Multiple, partially overlapping mechanisms mediate 
mtDNA efflux from stressed mitochondria. BAX/BAK 
macropores formed during mitochondrial outer 
membrane permeabilization can allow inner membrane 
“herniations” that carry nucleoids through the outer 
membrane, releasing mtDNA into the cytosol even 
under sublethal, minority mitochondrial outer 
membrane permeabilization (MOMP) conditions [45]. 
In parallel, opening of the mitochondrial permeability 
transition pore and voltage‑dependent anion channel 
(VDAC)-dependent permeabilization increase inner 
membrane leakage, while impaired mitophagy and 
mitochondrial-derived vesicles can misdirect 
mtDNA-containing material to the cytosol rather than 
to lysosomal degradation, sustaining low-level DNA 
leakage without overt cell death [45, 46]. 

Cytosolic mtDNA as a DAMP sensed by cGAS

Once in the cytoplasm, mtDNA behaves as a potent 
damage-associated molecular pattern because of its 
bacterial ancestry, circular form, and relative CpG 
enrichment, features that distinguish it from well-pack-
aged nuclear chromatin. The cytosolic DNA sensor 
cyclic GMP–AMP synthase (cGAS) binds double-
stranded mtDNA in a largely sequence-independent 
manner, and DNA binding promotes cGAS dimeriza-
tion and higher-order oligomerization, which in turn 

catalyzes synthesis of the cyclic dinucleotide 2′3′-
cGAMP from ATP and GTP [45]. This enzymatic step 
converts the presence of mtDNA into a diffusible 
second messenger that can act cell-autonomously or 
spread to neighboring cells and immune populations 
via transport mechanisms such as gap junctions or 
extracellular vesicles [45, 46].

STING engagement and downstream signaling

STING, an adaptor protein residing on the endoplasmic 
reticulum, binds cGAMP and undergoes conformational 
changes that drive its oligomerization and trafficking 
from the ER to perinuclear compartments, including the 
ER–Golgi intermediate compartment and Golgi [47]. In 
these locations, STING recruits and activates TBK1 and 
IKK kinases, leading to phosphorylation and nuclear 
translocation of IRF3, together with NF-κB activation, 
thereby inducing a transcriptional program dominated 
by type I interferons, interferon-stimulated genes, and 
inflammatory chemokines such as CXCL10 and CCL5 
that are critical for dendritic cell activation and effector 
T-cell recruitment [27, 43, 48].
In cancer biology, the mtDNA–cGAS–STING pathway 
functions as a molecular bridge between mitochondrial 
integrity, cell death pathways, and adaptive immune 
priming. Transient, therapy- or stress-induced mtDNA 
release can promote immunogenic cell death, enhance 
antigen presentation, and convert poorly infiltrated 
“cold” tumors into inflamed lesions more amenable to 
checkpoint blockade, whereas chronic or deregulated 
activation may drive tolerogenic or immunosuppressive 
feedback, contributing to immune evasion [43]. 
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Understanding how distinct forms and magnitudes of 
mitochondrial stress control mtDNA leakage and 
cGAS–STING activation is therefore pivotal for ration-
ally designing interventions that harness this axis to 
ignite productive antitumor immunity in breast cancer.

A DOUBLE-EDGED SWORD: CONTEXT-
DEPENDENT OUTCOMES OF STING 
ACTIVATION

Downstream of the cGAS-STING axis (detailed in 
Figure 2), the immunological outcome is dictated by the 
temporal dynamics of signaling. Transient activation 
successfully ‘ignites’ the tumor by triggering an acute type 
I interferon wave that is crucial for dendritic cell cross-
priming. In breast cancer, this context dependence is 
particularly evident across molecular subtypes, where 
STING can either ignite productive antitumor immunity 
or, when chronically engaged, foster immune evasion, 
stromal remodeling, and therapeutic resistance [49].

Igniting antitumor immunity: from “cold” to “hot”

Acute or well-timed STING activation in the tumor 
microenvironment triggers a robust type I interferon 
program that enhances dendritic cell maturation, cross-
priming of CD8+ T cells, and natural killer (NK) cell 
activation [50-52]. Downstream of IRF3 and NF-κB, 
STING stimulation induces chemokines such as 
CXCL9, CXCL10, and CCL5, which drive recruitment 
and retention of effector T cells and NK cells, facili-
tating conversion of immune-desert or immune-ex-
cluded lesions into inflamed, T cell–infiltrated tumors 
[53-57]. Preclinical models show that intratumoral or 
systemic STING agonists can induce IFN-I–dependent 
tumor regression, promote trafficking of antigen-bearing 
myeloid cells to draining lymph nodes, and synergize 
with checkpoint blockade to deepen and prolong 
responses [58-60]. In breast cancer, transcriptomic and 
immunologic analyses indicate that tumors with intact 
cGAS–STING signaling and high STING-driven 
chemokine signatures are more likely to display “hot” 
immune phenotypes and enhanced sensitivity to immu-
notherapy, particularly in subsets of triple-negative 
disease [61-63].

Fueling resistance and immunosuppression

In contrast, chronic or dysregulated STING activation 
can skew cytokine output toward protumor inflamma-
tion, immunosuppression, and tissue remodeling [64]. 
Sustained NF-κB and inflammasome engagement 
downstream of STING promotes production of IL-6, 
TNF-α, and TGF-β, which support myeloid-derived 
suppressor cell and regulatory T-cell expansion, drive 
fibrosis and aberrant angiogenesis, and ultimately 
dampen effective cytotoxic T-cell function [49, 65, 66].
Breast cancer studies highlight that STING pathway 
status and output differ across luminal, HER2+, and 
TNBC subtypes, with prolonged or maladaptive acti-
vation linked to epithelial–mesenchymal transition, 
resistance to HER2-targeted therapy, and upregulation 
of checkpoints such as PD-L1 [67, 68]. Moreover, 
tumor-intrinsic mechanisms (for example, MYC-driven 

repression or selective loss of cGAS/STING compo-
nents) can either silence beneficial signaling or bias it 
toward tolerogenic cytokine profiles, underscoring that 
therapeutic strategies must carefully calibrate the inten-
sity and duration of STING engagement to avoid 
tipping from immune activation into immune escape 
[29, 43, 69].
Despite the therapeutic potential of the STING pathway, 
its systemic activation poses significant safety risks, 
including cytokine release syndrome and T-cell apoptosis 
driven by excessive type I interferons. Clinical data from 
first-generation STING agonists revealed that uncon-
strained signaling can lead to dose-limiting systemic 
inflammation and autoimmunity [70]. To mitigate these 
‘dark side’ effects, current strategies employ tumor-re-
stricted delivery systems, such as mitochondria-targeted 
nanocarriers or pH-responsive polymers, which localize 
the ‘ignition’ signal to the tumor microenvironment. This 
spatial control is critical to uncouple the beneficial anti-
tumor immunity from detrimental systemic toxicity, 
ensuring that mitochondrial stress serves as a precise 
adjuvant rather than a systemic toxin [70, 71].
Although preclinical models clearly distinguish acute, 
beneficial mitochondrial stress from chronic, suppres-
sive stress, this threshold is not yet quantitatively 
defined in clinical settings. In practice, it will likely need 
to be operationalized using dynamic pharmacodynamic 
readouts rather than fixed dose or time cut-offs. Short-
lived surges in type I IFNs and T-cell–recruiting 
chemokines such as CXCL9, CXCL10, and CCL5 [49, 
72-76], without sustained elevation of IL6, IL8, IL10, 
or TGFβ [77, 78], may represent a desirable ‘ignition’ 
pattern, whereas persistent pro-tumor inflammatory 
and immunosuppressive cytokine signatures would 
signal a shift into detrimental chronic stress. Early-
phase trials of mitochondrial stress–based regimens 
should therefore incorporate serial cytokine profiling 
and interferon-stimulated gene signatures, together with 
careful toxicity monitoring, to empirically define safe 
and effective activation windows.

CYTOKINE NETWORKS: FUNCTIONAL 
READOUTS AND INTEGRATORS OF 
MITOCHONDRIAL-IMMUNE CROSSTALK

Cytokine networks sit at the interface of mitochondrial 
stress, cGAS–STING activation, and the emergent 
immune phenotype of breast tumors, acting both as 
readouts of underlying organelle-immune crosstalk and 
as active sculptors of the tumor microenvironment [79]. 
In this context, distinct cytokine signatures—ranging 
from interferon- and chemokine-dominated pro-inflam-
matory profiles to IL-6/IL-10/TGF-β–rich immunosup-
pressive states—provide mechanistic insight into 
mitochondrial and STING pathway activity (figure 3), 
while serving as prognostic biomarkers and therapeutic 
targets in breast cancer.

Cytokines as readouts of mitochondrial–STING 
signaling

Acute mitochondrial stress with controlled mtDNA 
release typically engages cGAS–STING and drives a type 
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I interferon program characterized by IFN-α/β, interfer-
on-stimulated genes, and T-cell–recruiting chemokines 
such as CXCL9, CXCL10, and CCL5 [43, 44, 80]. These 
cytokines correlate with enhanced dendritic cell activa-
tion, improved antigen presentation, and higher densities 
of cytotoxic and memory T cells in the tumor, reflecting 
a “hot,” inflamed microenvironment that is more permis-
sive to checkpoint blockade. In contrast, chronic or 
dysregulated STING and mitochondrial stress can shift 
the cytokine output toward IL-6, IL-1β, TNF-α, IL-8, 
IL-10, and TGF-β, reflecting an exhausted or rewired 
STING axis and establishing a milieu that supports 
myeloid-derived suppressor cells, regulatory T cells, and 
tumor-promoting inflammation [81].

Pro-inflammatory versus immunosuppressive  
cytokine profiles in breast cancer

Recent systematic and multiplex analyses in breast 
cancer show that elevated pro-tumor inflammatory and 
immunosuppressive cytokines—especially IL-6, TNF-α, 
IL-1β, IL-8, IL-10, and TGF-β—associate with higher 
stage, increased metastasis, and poorer survival, under-
scoring their value as negative prognostic biomarkers 
[20, 79, 82]. Conversely, signatures enriched for IL-12, 
IFN-γ, and interferon-induced chemokines correlate 

with more effective antitumor immunity, higher 
tumor-infiltrating lymphocyte scores, and better 
outcomes or improved response to immunotherapy in 
selected breast cancer cohorts [83]. Spatial and tran-
scriptomic studies further reveal that many breast 
tumors display “mixed” cytokine niches, where immu-
nostimulatory and suppressive factors coexist, high-
lighting that the net functional state of the cytokine 
network—rather than any single mediator—captures 
the integrated output of mitochondrial, STING, and 
cellular stress signaling [84, 85].

Cytokine signatures as biomarkers and  
therapeutic targets

Because cytokine patterns reflect upstream mitochon-
drial integrity and cGAS–STING activity, composite 
cytokine signatures are increasingly explored as 
biomarkers to stratify patients, forecast immunotherapy 
benefit, and monitor pharmacodynamic responses to 
mitochondrial- or STING-targeted agents [20, 69]. 
Clinical and translational studies support the develop-
ment of cytokine-based indices (for example, IL-6/
IFN-γ ratios or multi-cytokine panels) and systemic 
inflammation scores as predictors of prognosis and 
treatment response in breast cancer, including 
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inflammatory and immune-enriched subtypes [20, 86]. 
At the same time, cytokines themselves are being 
targeted or harnessed therapeutically: blockade of IL-6, 
IL-1β, or TGF-β aims to dismantle mitochondrial 
stress–driven immunosuppressive circuits, while 
agonistic strategies or engineered delivery of IL-12, 
IFN-α/β, or IFN-γ seek to amplify STING-induced 
pro-inflammatory signaling and consolidate cold-to-hot 
conversion [87-89].
While STING activation is essential for priming anti-
tumor immunity, its consequences are highly subtype-de-
pendent. In Triple-Negative Breast Cancer (TNBC), 
DNA damage-induced STING signaling predominantly 
drives a type I interferon response (IFN-α/β) and the 
secretion of CXCL10 and CCL5, which correlates with 
prolonged progression-free survival by recruiting CD8+ 
cytotoxic T lymphocytes [29]. Conversely, in hormone 
receptor-positive (Luminal A/B) subtypes, chronic 
low-level STING activation is frequently linked to an 
immunosuppressive cytokine milieu rich in IL-6 and 
TGF-β, which promotes macrophage polarization 
toward an M2-like phenotype and facilitates therapeutic 
resistance [66]. Furthermore, recent profiling of “hot” 
versus “cold” tumors confirms that a sustained pro-in-
flammatory cytokine signature (IFN-γ, IL-12, CXCL9] 
is the primary determinant of cytolytic activity, whereas 
“cold” tumors exhibit elevated TGF-β and IL-10 levels 
that blunt mitochondrial stress signals [71]. Table 1 
summarizes differential cytokine signatures and mito-
chondrial stress responses across breast cancer subtypes.
Taken together, cytokine networks can be viewed as 
dynamic integrators that encode the balance between 

beneficial and detrimental consequences of mitochon-
drial stress and cGAS–STING signaling in breast 
tumors. By reading out these cytokine states—and selec-
tively modulating them with antibodies, receptor traps, 
or cytokine/chemokine agonists—future therapies may 
both report on and recalibrate mitochondrial-immune 
crosstalk, enabling rational combination regimens that 
align controlled mitochondrial stress, STING activa-
tion, and a favorable cytokine landscape to support 
durable antitumor immunity.

THERAPEUTIC STRATEGIES TO 
EXPLOIT MITOCHONDRIAL STRESS FOR 
IMMUNOTHERAPY

Mitochondrial stress represents a tractable lever to 
convert breast tumors from immune-deserted to 
inflamed states, but it must be engaged in a controlled, 
context-sensitive manner to avoid tipping into chronic 
immunosuppression. Figure 4 demonstrates mitochon-
dria-centric strategies of combination therapy. 
Targeting mitochondrial function, mtDNA–cGAS–
STING signaling, and associated cytokine networks has 
therefore become a focus of translational efforts to 
improve immunotherapy responses in solid tumors, 
including breast cancer [43, 69, 90].

Inducing controlled mitochondrial stress to  
trigger immunity

Several classes of agents can induce mitochondrial stress 
in a way that favors acute, immunogenic signaling 
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Table 1.  
Differential cytokine signatures and mitochondrial stress responses across breast cancer subtypes.

Breast Cancer 
Subtype

Baseline Immune 
Phenotype

Dominant Cytokine 
Signature (Baseline)

Mitochondrial Stress 
/ STING Response 
Potential

Pro-Inflammatory 
Output (Target)

Immunosuppressive 
Risks (Avoid)

Luminal A / 
B (HR+/HER2-)

“Cold” / 
immune-ex-
cluded with low 
TILs and 
prominent 
myeloid–stromal 
barriers that 
prevent effective 
T-cell entry [91]

Cytokine milieu 
dominated by TGF-
β, IL-10, and 
CXCL12, produced 
by cancer-asso-
ciated fibroblasts 
and M2-like 
macrophages, 
reinforcing T-cell 
exclusion and 
immune paralysis 
[91]

Intrinsic signaling (e.g., 
ER-driven transcriptio-
nal programs) tends to 
dampen cGAS–STING 
activation, resulting 
in low basal mitochon-
drial–STING 
responsiveness and 
weak spontaneous type 
I IFN signaling [66]

Therapeutic 
mitochondrial stress 
aimed at inducing 
type I IFNs 
(IFN-α/β) and 
CCL5 may help 
overcome the 
exclusion barrier and 
initiate de novo 
CD8+ T-cell 
recruitment into 
these tumors [66]

Chronic or 
uncalibrated stress 
risks upregulating 
IL-6 and IL-1β, 
fostering fibrosis, 
stromal remode-
ling, and endo-
crine-therapy 
resistance through 
an inflammatory 
feedback loop [71]​.

HER2-En-
riched (HER2+)

Intermediate / 
mixed pheno-
type, with some 
tumors 
exhibiting “hot” 
features under 
HER2-directed 
therapy but 
others remaining 
immune-desert 
or myeloid-do-
minant [92]

IL-6, TNF-α, and 
CCL2 are 
frequently elevated 
and contribute to 
HER2-targeted 
therapy resistance 
by expanding 
cancer stem-like 
populations and 
sustaining chronic 
inflammation [93]

HER2 signaling and 
downstream PI3K/
AKT can attenuate 
STING, but HER2 
blockade or antibody–
drug conjugates can 
restore mtDNA–
cGAS–STING activity, 
creating windows of 
enhanced innate 
immune sensing [66]

Properly timed 
mitochondrial stress 
combined with 
HER2-targeted 
agents can boost 
CXCL9, CXCL10, 
and IFN-γ, thus 
enhancing ADCC 
and cytotoxic T-cell 
retention within the 
tumor bed [92]

Excess or 
prolonged 
activation 
favors TGF-β and 
VEGF upregula-
tion, promoting 
angiogenesis, 
epithelial–mesen-
chymal transition 
(EMT), and escape 
from HER2-direc-
ted therapy [71]

Triple-Nega-
tive (TNBC)

Often exhibits 
a partially “hot” 
phenotype with 
higher mutatio-
nal burden and 
greater baseline 
TILs, but many 
cases remain 
functionally 
exhausted due to 
strong check-
point and 
myeloid 
suppression [71]

Baseline inflamma-
tory milieu enriched 
for IFN-γ, 
CXCL10, and IL-8, 
reflecting chronic 
genomic stress and 
ongoing innate 
immune sensing, 
yet counterba-
lanced by PD-L1 
and immunosup-
pressive myeloid 
cells [63]

High chromosomal 
instability and cytosolic 
DNA burden 
confer high intrinsic 
cGAS–STING 
activation, although 
this signaling can be 
diverted toward 
protumor inflammation 
when NF-κB dominates 
over IRF3 [29]

Controlled 
mitochondrial stress 
or pharmacologic 
STING agonism 
can amplify 
IFN-α/β, IL-12, 
CXCL9, CXCL10, 
and CCL5, thereby 
reinvigorating 
exhausted T cells 
and strengthening 
T-cell trafficking into 
TNBC lesions [66, 
94]

Abbreviations: HR, hormone receptor; HER2, human epidermal growth factor receptor 2; TNBC, triple-negative breast cancer; TIME, tu-
mor immune microenvironment; mtDNA, mitochondrial DNA; cGAS, cyclic GMP–AMP synthase; STING, stimulator of interferon genes; 
OXPHOS, oxidative phosphorylation; ROS, reactive oxygen species; DAMPs, damage-associated molecular patterns; IFN, interferon; TILs, 
tumor-infiltrating lymphocytes.

rather than catastrophic organelle failure or chronic 
inflammation [95]. Low-dose mitochondrial poisons 
(for example, complex I or III inhibitors, mild uncou-
plers) and selected radiotherapy or chemotherapy regi-
mens can enhance mtROS, promote mtDNA oxidation 
and release, and stimulate cGAS–STING–dependent 
type I interferon and chemokine production without 
immediately triggering irreversible cell death in all 
tumor cells [27, 28, 89]. However, because mitochondria 
are essential for neurons, cardiomyocytes, and hemato-
poietic cells, systemic or prolonged inhibition of respira-
tory complexes or mitophagy carries substantial risks 
of neurotoxicity, cardiotoxicity, and myelosuppression 
[96-104]. In a ‘controlled ignition’ framework, these 
agents are therefore best deployed as short, sublethal 
priming pulses, ideally using tumorrestricted delivery 
systems or local administration [105-110], with phar-
macodynamic monitoring of both cytokine output and 
organ toxicity to avoid sustained offtumor mitochon-
drial damage. Precision dosing and scheduling are 
crucial to maintain “sublethal” stress that allows suffi-
cient antigen processing and cytokine elaboration, 

rather than overwhelming necrosis that floods the 
microenvironment with tolerogenic DAMPs and 
suppressive cytokines [34, 88].
A second strategy exploits targeted modulation of mito-
chondrial quality-control pathways. Pharmacologic or 
genetic interference with mitophagy and nucleoid main-
tenance (for example, via modulation of TFAM, 
PINK1/Parkin signaling, or mitochondrial proteases) 
can increase the pool of damaged mitochondria and 
facilitate mtDNA leakage into the cytosol, thereby 
amplifying cGAS–STING activation and type I inter-
feron responses [32, 45, 46]. When carefully titrated, 
such interventions enhance immunogenic signaling, but 
excessive or prolonged blockade risks accumulation of 
dysfunctional mitochondria, chronic NFκB–biased 
output, and a shift toward IL6/IL10/TGFβ–dominated 
immunosuppressive states [43, 81, 111].
Third, mitochondria-targeted delivery systems and nano-
medicines are being developed to impose spatially 
restricted stress. Conjugating chemotherapeutics, photo-
sensitizers, or redox-active molecules to mitochon-
dria-targeting moieties (such as triphenylphosphonium) 



32� Hung-Yu Lin, et al.

or encapsulating STING-stimulating payloads in mito-
chondria-accumulating nanocarriers enables direct orga-
nelle engagement at lower systemic doses, enhancing 
immunogenic cell death, mtDNA release, and STING-
driven chemokine production within the tumor while 
limiting off-tumor toxicity [87, 89, 90]. Photosensitizer- 
or radiotherapy-based mitochondria-targeted approaches 
are particularly attractive for localized disease or oligo-
metastatic settings, where temporal control of light or 
dose can be synced with immunotherapy cycles to maxi-
mize acute immune activation [49, 112].
Finally, metabolic reprogramming agents—such as 
inhibitors of OXPHOS, fatty acid oxidation, or 
glutamine metabolism—can be used to reshape mito-
chondrial function in both tumor and immune compart-
ments. In tumor cells, transient OXPHOS inhibition 
can augment ROS, enhance antigenicity, and increase 
susceptibility to T-cell killing [26, 34]. In T cells, inter-
ventions that improve mitochondrial biogenesis and 
spare respiratory capacity—through exercise-mimetic 
strategies, PGC1α activation, or cytokine support—can 
restore effector function and resilience in the nutri-
ent-poor tumor microenvironment [35-37]. Here, a 
central challenge is separating beneficial stress in tumor 
cells from detrimental exhaustion in effector cells, neces-
sitating careful attention to timing, dosing, and cell-type 
specificity.

Rational combination therapies: pairing mitochondrial 
modulators with checkpoint blockade

Because mitochondrial stress and cGAS–STING acti-
vation principally function as priming and inflaming 
signals, they naturally complement checkpoint 
blockade, which acts downstream to unleash pre-ex-
isting or nascent T-cell responses [64]. A central concept 
is to use mitochondrial modulators as “ignition” agents 
that increase tumor antigenicity, dendritic cell activa-
tion, and chemokine-driven T-cell trafficking, while 
PD1/PDL1 or CTLA4 blockade prevents exhaustion of 
the recruited effector pool [43, 69, 113]. In preclinical 
breast and other solid tumor models, sequencing mito-
chondrial stress–inducing chemotherapy, radiation, or 
targeted agents before or concurrent with checkpoint 
inhibitors enhances infiltration of CD8+ T-cells and NK 
cells, elevates CXCL9/CXCL10/CCL5 levels, and 
improves response rates compared with checkpoint 
blockade alone [53, 58-60].
Rational combinations can be organized along several 
axes. Mechanistically, agents that induce mtDNA release 
or immunogenic cell death—such as selected 
DNA-damaging drugs, PARP or ATR inhibitors, and 
mitochondrial complex inhibitors—are combined with 
checkpoint inhibitors to couple antigen/IFN/chemokine 
induction with relief of T-cell inhibition, an approach 
supported by recent ATR–cGAS–STING data and 
PARP inhibitor–ICI combinations [28, 47]. Spatial and 
temporal integration is achieved by using local mitochon-
drial stress (for example, via mitochondria-targeted 
photodynamic therapy or stereotactic radiotherapy) to 
create an “in situ vaccine” effect at the primary tumor or 
oligometastatic sites, followed by systemic checkpoint 
blockade to control microscopic or distant disease  

[49, 88, 112]. Optimizing the interval between mitochon-
drial perturbation and checkpoint dosing is key to align 
peak antigen presentation and chemokine production 
with maximal T-cell reinvigoration.
Given the risk that chronic STING activation and mito-
chondrial stress promote IL6/TGFβ–dominated immu-
nosuppression, combinations that add cytokine or 
myeloid-targeted therapies are gaining interest. Pairing 
mitochondrial stress–inducing regimens and checkpoint 
blockade with IL6 or TGFβ inhibitors, CSF1R or CXCR2 
antagonists, or modulators of myeloid metabolism may 
tilt the balance toward a durable pro-inflammatory 
cytokine landscape and reduce myeloid-derived suppressor 
cell and M2-like TAM accumulation [20, 49, 66, 79].

Subtype specific considerations

Subtype-specific considerations are likely to be critical 
for mitochondrial stress based combinations. In TNBC, 
where where genomic instability and baseline STING 
activity can be relatively higher and tumor-infiltrating 
lymphocytes (TILs) are more abundant, milder mito-
chondrial perturbation or intermittent dosing may 
suffice to amplify type I interferons and CXCL9/10/
CCL5 without provoking sustained IL 6/TGF β–domi-
nated immunosuppression [49, 61, 62]. In hormone 
receptor–positive and many HER2-enriched tumors, 
which commonly exhibit immune exclusion and TGF-β 
rich cytokine milieus, more intensive or cyclic priming 
strategies—potentially combined with blockade of 
dominant suppressive cytokines or myeloid pathways—
may be required to first convert the tumor into a T 
cell–permissive state before or during checkpoint 
blockade (table 1) [67, 68, 114]. Recent evidence further 
highlights that resistance to hormonal and targeted 
therapies in breast cancer can be driven by suppression 
of the NR6A1/DNMT3A axis [115], reinforcing the 
need to tailor metabolic and epigenetic interventions to 
subtype-specific vulnerabilities.
Overall, the most compelling therapeutic vision is a 
multi-layered regimen in which mitochondrial modula-
tors are used not simply as cytotoxic agents but as 
programmable “danger signal” generators. By cali-
brating the intensity, duration, and cellular targets of 
mitochondrial stress, and embedding this within a 
framework of checkpoint inhibition and cytokine/
myeloid control, future therapies may reliably ignite 
and sustain productive antitumor immunity in breast 
cancer while minimizing the risk that the same pathways 
are co-opted to drive resistance and immune escape. 
Table 2 summarizes the combination strategy targeting 
mitochondria for Immunotherapy.

CONCLUSION AND FUTURE PERSPECTIVES

Mitochondrial stress has emerged as a unifying frame-
work to understand and therapeutically exploit how 
breast tumors interact with the immune system, repo-
sitioning mitochondria from passive metabolic orga-
nelles to programmable hubs of innate immune sensing 
and cytokine control. By linking mtDNA leakage, 
cGAS–STING activation, and cytokine network 
remodeling to cold-to-hot tumor conversion, this para-
digm offers a mechanistic basis for designing 
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combination strategies that move beyond empiric cyto-
toxicity toward deliberate immune priming in otherwise 
immunologically barren breast cancers [116]. 

Key conceptual advances

This review highlights three central advances: first, that 
mitochondrial architecture, quality control, and meta-
bolic wiring in cancer and immune cells collectively deter-
mine whether mitochondrial stress yields immunogenic 
interferon–chemokine programs or entrenched immuno-
suppression. Second, mtDNA–cGAS–STING signaling 
operates as a dose- and context-dependent rheostat 

whose acute activation can ignite T cell–inflamed pheno-
types, whereas chronic engagement fuels resistance, 
stromal remodeling, and checkpoint upregulation. Third, 
cytokine networks function as both readouts and effec-
tors of this mitochondrial–immune crosstalk, integrating 
upstream organelle stress into prognostic signatures and 
actionable therapeutic targets.

Translational opportunities

Therapeutically, these insights converge on a strategy 
of “controlled ignition,” in which mitochondrial stress 
is imposed in a spatially and temporally constrained 

Table 2.  
Combination strategy targeting mitochondria for Immunotherapy

Combination Strategy Biological Roles Current Status Reference 

Low-dose mitochon-
drial poisons (e.g., 
complex I/III 
inhibitors) + Immuno-
therapy

Sublethal inhibition of mitochondrial complexes increases 
mtROS and mtDNA leakage, acutely activating cGAS–
STING to induce type I IFNs (IFN-α/β) and T-cell–
recruiting chemokines CXCL9, CXCL10, and CCL5, 
thereby enhancing CD8+ T-cell priming and trafficking; 
however, chronic exposure risks skewing toward IL-6 and 
IL-10 upregulation, promoting myeloid-derived suppres-
sor cell (MDSC) accumulation and immunosuppression

Predominantly preclinical (mouse 
models and early combination 
concepts with checkpoint 
inhibitors; no large dedicated 
Phase II trials yet)

[27, 28]

Selected radiotherapy 
or chemotherapy 
regimens + Checkpoint 
Inhibitors

DNA damage and mitochondrial injury trigger immu-
nogenic cell death with DAMP release and transient 
bursts of type I IFNs and CXCL10/CCL5, supporting 
dendritic cell activation and effector T-cell recruitment; if 
fractionation or dosing drives persistent tissue 
damage, sustained NF-κB activation can elevate IL-6, 
TNF-α, and TGF-β, favoring fibrosis, T-cell exhaustion, 
and resistance

Preclinical + Phase I/II (multiple 
ongoing or completed early-phase 
trials combining radiotherapy or 
selected chemotherapies with PD1/
PDL1 or CTLA4 blockade in 
breast and other solid tumors)

[53, 58, 60]

PARP or ATR 
inhibitors + Check-
point Inhibitors

Inhibition of DNA damage response enhances cytosolic 
DNA and mtDNA accumulation, amplifying cGAS–
STING–driven IFN-α/β and ISG expression as well as 
CXCL10 and CCL5, which couples enhanced antigenicity 
with stronger lymphocyte infiltration; prolonged DDR 
inhibition, however, can shift the cytokine milieu toward 
IL-6 and IL-8, supporting chronic inflammation and 
clonal selection of resistant cells

Preclinical + early Phase I/
II (clinical trials testing PARP or 
ATR inhibitors with ICIs in TNBC 
and other solid tumors, often as 
biomarkerenriched exploratory 
studies)

[28, 47]

Metabolic reprogram-
ming agents (e.g., 
OXPHOS inhibitors) + 
Immunotherapy

Transient OXPHOS or FAO inhibition in tumor 
cells increases mtROS and can favor a shift toward 
IFN-α/β and IL-12 production with higher CXCL9/
CXCL10, improving antigen presentation and susceptibi-
lity to T-cell killing; in immune cells, excessive metabolic 
stress may drive IL-10 and TGF-β expression and T-cell 
exhaustion, necessitating careful dosing to preserve T-cell 
mitochondrial fitness

Mainly preclinical (mechanistic 
and efficacy studies in murine 
models; only limited, indirect 
clinical experience from metabo-
lism‑targeting drugs combined 
with ICIs)

[26, 34]

Modulators of 
mitochondrial quality 
control (e.g., mito-
phagy inhibitors) + 
Immunotherapy

Interference with mitophagy and nucleoid homeosta-
sis expands the pool of damaged mitochondria and 
enhances mtDNA release, promoting cGAS–STING 
activation with acute induction of IFN-α/β and che-
mokines such as CXCL10 and CCL5; if  blockade is 
prolonged, accumulation of dysfunctional mitochondria 
favors chronic NF-κB–biased output and increased IL-6, 
IL-8, and IL-10, driving protumor inflammation and 
T-cell dysfunction

Preclinical (proof‑of‑concept 
studies in cell lines and mouse 
models; no dedicated clinical trials 
yet combining mitophagy/nucleoid 
modulators with ICIs)

[45, 46]

Local mitochondrial 
stress (e.g., stereotactic 
radiotherapy, 
mitochondria-targeted 
photodynamic 
therapy) + Systemic 
Checkpoint Blockade

Spatially restricted mitochondrial damage at the tumor 
site generates a localized ‘in situ vaccine’ with high levels 
of IFN-α/β/γ, and CXCL9/CXCL10, driving robust local 
and systemic T-cell responses and abscopal effects; 
inadequate spatial or temporal control may provoke 
excessive TNF-α, IL-1β, and IL-6, increasing the risk of 
tissue necrosis, systemic inflammatory toxicity, and 
treatment-limiting adverse events

Preclinical + early Phase I 
(mitochondria‑targeted photody-
namic and ablative approaches in 
animal models; small early-phase 
studies of local ablative therapies 
plus ICIs in selected solid tumors)

[49, 112]

Abbreviations: TNBC, triple-negative breast cancer; HR, hormone receptor; HER2, human epidermal growth factor receptor 2; mtDNA, mitochondrial DNA; 
OXPHOS, oxidative phosphorylation; IFN, interferon; ICI, immune checkpoint inhibitor; TME, tumor microenvironment; STING, stimulator of interferon genes; 
DAMP, damage‑associated molecular pattern; ROS, reactive oxygen species.
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manner to amplify antigenicity, type I interferons, and 
T cell–recruiting chemokines while avoiding sustained 
NF-κB-biased, IL-6/IL-10/TGF-β–dominated states. 
Emerging platforms—including mitochondria-targeted 
small molecules and nanomedicines, rationally dosed 
OXPHOS and mitophagy modulators, and STING 
agonists or epigenetic restorers of cGAS–STING—
provide a growing toolbox for such programmable 
danger signaling, particularly when layered onto check-
point blockade. As multiplex cytokine profiling and 
immune gene signatures mature clinically, they are 
poised to guide patient selection, monitor pharmaco-
dynamic responses, and adapt combination regimens 
in real time.

Future research directions

Several priorities must be addressed to safely and effec-
tively bring mitochondrial stress–based immuno-on-
cology into the clinic. Mechanistic studies should dissect 
cell type–specific and subtype-specific thresholds for 
beneficial versus deleterious mitochondrial stress, 
including how luminal, HER2-enriched, and triple-neg-
ative tumors differentially tune cGAS–STING output 
and cytokine landscapes. Systems-level approaches 
integrating single-cell and spatial multi-omics with 
metabolic and mitochondrial profiling will be critical 
to map how mitochondrial reprogramming in tumor, 
stromal, and immune compartments co-evolves under 
therapy and shapes response or resistance to immuno-
therapy. Parallel translational work should focus on 
rational trial designs that sequence and dose mitochon-
drial modulators as priming agents around immune 
checkpoint inhibitors, with built-in biomarker programs 
capturing mtDNA–STING activity, cytokine states, 
and immune cell fitness. Finally, safety frameworks 
must anticipate off-tumor inflammation and chronic 
STING-driven toxicities, motivating development of 
tumor-restricted delivery systems, reversible agonists, 
and combination strategies that simultaneously ignite 
anti-tumor immunity and restrain maladaptive cytokine 
circuits. If these challenges can be met, targeting mito-
chondrial stress has the potential to transform immu-
nologically cold breast cancers into consistently 
treatable, inflamed diseases and to redefine mitochon-
dria as programmable adjuvants at the core of breast 
cancer immunotherapy.

Limitations for this study

This review is primarily conceptual and therefore has 
several important limitations. First, most of the 
discussed mitochondrial stress–cGAS–STING mecha-
nisms and combination strategies are derived from 
preclinical models, with limited validation in large, 
prospective breast cancer trials, so their translational 
robustness and safety remain uncertain. Second, 
subtype-specific differences in mitochondrial wiring, 
cytokine networks, and STING pathway status are still 
incompletely mapped, which constrains precise patient 
stratification and may oversimplify the heterogeneity 
of luminal, HER2-enriched, and TNBC tumors. Third, 
the proposed “controlled ignition” paradigm does not 
yet incorporate quantitative thresholds for beneficial 

versus deleterious mitochondrial stress or fully account 
for systemic toxicities observed with STING agonists, 
highlighting the need for biomarker-guided dosing, 
longitudinal cytokine monitoring, and tumor-restricted 
delivery platforms before these concepts can be reliably 
applied in the clinic.
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LIST OF ABBREVIATIONS

cGAS	 Cyclic GMP-AMP synthase
STING	 Stimulator of interferon genes
mtDNA	 Mitochondrial DNA
DAMPs	 Damage-associated molecular patterns
TNBC	 Triple-negative breast cancer
TIME	 Tumor immune microenvironment
OXPHOS	 Oxidative phosphorylation
mtROS	 Mitochondrial reactive oxygen species
MHC-I	 Major histocompatibility complex class I
DRP1	 Dynamin-related protein 1
IFN	 Interferon (IFN-α/β for type I interferons)
IRF3	 Interferon regulatory factor 3
NF-κB	 Nuclear factor-kappa B
cGAMP	 2’3’-cyclic GMP-AMP
TNF-α	 Tumor necrosis factor alpha
CCL5	 C-C motif  chemokine ligand 5
CXCL10	 C-X-C motif  chemokine ligand 10
PD-L1	 Programmed death-ligand 1
NK cells	 Natural killer cells
ER	 Endoplasmic reticulum
HER2	 Human epidermal growth factor receptor 2
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