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ABSTRACT. Malaria causes more than one million deaths annually, worldwide. Understanding the genetic
defenses against this disease is an important challenge for science. We know that the long-term presence of
endemic malaria has led to a prevalence of the f°39 heterozygous thalassemia mutation in the two islands of
Corsica and Sardinia. The populations of both islands are isolated, which could make it easier to find other
genetic traits selected by disease pressure. We chose to investigate genes implicated in the primary defenses
against Plasmodium falciparum: oxidative metabolism and the immune response. We indeed selected genes cod-
ing for nitric oxide synthase 2 (NOS2 promoter, polymorphisms NOS2(AAAT) I/D and NOS2(CCTTT)n) and
genes coding for tumor necrosis factor-o (TNFA 3’UTR, polymorphisms TNFd(GA)n and TNFe(GA)n). Some
associations of TNFA alleles or haplotypes were found either with or without the f°39 mutation, suggesting a

complex link originally between TNF-a and resistance or susceptibility to infection.
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Malaria is the most common parasitic disease in tropical
and subtropical regions and is on the increase [1, 2].
Every year, there are 300 to 500 million clinical cases
of malaria and it causes more than one million deaths
[3]. Disease occurrence and severity depend on both par-
asite and host genetic factors. Candidate genes studies are
performed in order to find those human genes involved in
the disease and susceptibility to infection.

In the Corsican and Sardinian populations, the incidence
of the B-thalassemia trait is reported to be respectively
3% and 12% [4], and P-thalassaemias are known to
give a protective effect with respect to Plasmodium [5].
Despite the sporadic incidence of the disease today, the
presence of endemic malaria over millenia has led to a
prevalence of the $°39 heterozygous thalassemia muta-
tion, a mutation associated with the B-globin haplotype
II, amongst the inhabitants of the two islands of Corsica
and Sardinia [4, 6]. The aim of this study was to investi-
gate B°39 heterozygous carriers and controls, genetic
polymorphisms in tumor necrosis factor A (TNFA) and
nitric oxide synthase 2A (NOS2A) genes. Two microsa-
tellites in TNFA, TNFd(GA)n and TNFe(GA)n located in
3’UTR and two polymorphisms in NOS2A promoter,
NOS2(AAAT) I/D and NOS2(CCTTT)n, were selected.
TNF has been widely studied because genetic variants of
immunity-related genes have been postulated to influence
susceptibility to malaria [7]. Indeed, TNF-o is a pro-
inflammatory cytokine essential in the protection against
many infectious diseases[8, 9]. TNF-a is involved in the

killing of Plasmodium falciparum mediated by neutro-
phils and monocytes [10, 11]. High serum levels of
TNF-a and polymorphisms in the TNFA promoter have
been associated with increased susceptibility to severe
malaria [12-21]. TNF-a is a critical mediator of malaria
fever [22, 23], and Knight et al. [9] have shown that
polymorphisms in the TNF-o promoter change the
binding of some nuclear factors, up- or down- regulating
transcription.

NOS were investigated because, on the one hand, nitric
oxide (NO) is a major component of the defensive
response against protozoan infections [24, 25], and on
the other hand, TNF-a generally increases NOS2-
derived NO synthesis [26]. Indeed, during a malarial
infection, NO synthesis is regulated by a balance of
pro- and anti-inflammatory cytokines and reciprocally,
NO can influence cytokine secretion [27-30]. Polymorph-
isms in the NOS2A gene have been linked to malaria, but
the consequences of genotype linking are still debated.
Indeed, the NOS2A -954 (G/C) polymorphism has
been associated with protection against malaria in
Gabon [31, 32] and in Ghana [33]. Some alleles of the
(CCTTT)n polymorphism appeared to be linked to pro-
tection against malaria in Ghana (181pb associated with —
954C [32]), in Gambia (n > 196pb [34]) and generally in
the African continent (186pb [35]), but other alleles
seemed to be associated with disease severity in Ghana
(206pb associated with —1173T [33]), in Thailand
(n>216pb [36]) and in Gambia (n < 196pb [34]]).
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DONORS AND METHODS

Patients and controls

The sample was composed of 160 unrelated adults
(72 males and 88 females, mean age 47 + 0.04 years):
42 Sardinians heterozygous for B°39 and 42 healthy
Sardinians, 38 Corsicans heterozygous for (°39 and
38 healthy Corsicans (experiments carried out with 101
Corsican controls and 90 Sardinian controls, showed the
same results). B-thalassemia carriers were selected on the
basis of the following hematological parameters:
MCV <84 fL., MCH <27 pg, HbA,>3.5% and were
genotyped for the B°39 mutation in previous studies
[4, 6]. All the subjects were born and reside respectively
on the two islands, as did their ancestors for at least three
generations. The study received ethics committee
approval and each blood donor provided informed con-
sent to participate in this research study.

DNA extraction and genotyping

DNA was extracted from blood samples using the
QIAmp DNA blood mini kit (Qiagen SA, France). Fluo-
rescent oligonucleotide source (Applied Biosystem SA,
France), Genbank accession number and PCR programs
are listed in table 1.

PCR reactions were conducted in a solution of 20 pL
containing 250 ng of DNA, 10 puL (1 U) of Taq Polymer-
ase Master Mix (with 400 uM of each dNTP and 3 mM
of MgCl,, Qiagen®™) and 10 pmoles of each primer. PCR
products were analyzed by an ABI 3730 DNA Analyzer
(Applied Biosystems, SA France). Genotypes were iden-
tified using GENESCAN®™ and GENOTYPER®™ soft-
wares (Applied Biosystems).

Statistical analysis

Allelic frequencies were determined using Genetix 4.05
software [37], haplotypic frequencies via E.M. algorithm
[38-41] and the Hardy-Weinberg equilibrium using Arle-
quin 3.01 software [42].

Fisher’s exact test was performed using Graphpad Instat
3.01 [43] (Graphpad software Inc., San Diego, CA,
USA).

RESULTS

Allelic frequencies

For NOS2(AAAT)I/D, no significant difference was
found between B°39 carriers and controls, either in Cor-
sica or in Sardinia (p > 0.05; results are not shown).

For NOS2(CCTTT)n, 191pb and 206pb alleles showed
significant differences between (°39 carriers and con-
trols, but not in the same way (table 2). Indeed, in Cor-
sica, 191pb was more frequent in f°39 carriers with an
individual ratio n/n of 5/1 (13.64% versus 3.57%, p =
0.0238) and 206pb in controls with a ratio of 12/6
(30.95% versus 15.15%, p=0.0112). We noted for this
allele an odds ratio (OR) of 2.067, which indicates a
probability of presence in the healthy status 2-fold higher
than in the B°39 heterozygote population (95% confi-
dence interval (CI) = 1.1910-3.5850). An converse situa-
tion was found in Sardinia (respectively for °39 carriers
and controls, for 191pb allele: 2/13, 5.17% versus
30.49%, OR =6, 95% CI =2.4260-14.8390, p <0.0001
and for 206pb allele: 8/2, 18.97% versus 4.88%, p =
0.0390). In addition, the 211pb allele was more repre-
sented in Sardinian B°39 carriers than in controls, with
an individual ratio of 4/0 (8.62% versus 1.22%, p =
0.0185).

No significant difference was found between groups for
TNFe(GA)n, either in Corsican and Sardinian °39 car-
riers or in controls (p > 0.05; results are not shown).
Three TNFd(GA)n alleles showed significant differences
in allelic frequencies between groups, but only in one of
the two islands (zable 3). In Corsica, 132pb was more
prevalent in controls than in $°39 carriers, with an indi-
vidual ratio of 6/2 (14.77% versus 4.29%, OR =3.75,
95% CI=1.289-10.909, p = 0.0140). In Sardinia, 134pb
was more frequent in 3°39 heterozygotes than in controls,
with a ratio of 10/2 (25% versus 4.88%, p =0.0001) and
138pb was more prevalent in controls, with a ratio of
18/8 (41.46% versus 18.33%, OR =2.278, 95% Cl=
1.409-3.681, p=0.0006). The 136pb and 140pb alleles
had the same frequency pattern in the two islands
(table 3) with a prevalence of 136pb in B°39 carriers
(Corsica: 22/15, 57.14% versus 38.64%, p = 0.0159; Sar-
dinia: 24/15, 56.67% versus 35.37%, p = 0.0028) and of

Table 1
Genotyping information (oligonucleotide sequences, source, Genbank accession number and PCR programs)
Polymorphism Primers Source  Genbank accession PCR program
number
NOS2(AAAT) /D  5’tggtgcatgcctgtagtee3’ [52] AF017634 95°C 15 min,
5’gaggcctetgagatgttggte3’ 30 cycles (94°C 1 min ; 62°C | min; 72°C 1 min),
72°C 15 min
NOS2(CCTTT)n 5’acccctggaagcectacaactgeat3’ [53] AF017634 95°C 15 min,
5’gccactgcaccctagectgtetcal3’ 10 cycles (95°C 1 min ; 60°C 1 min ; 72°C 1 min),
10 cycles (95°C 1 min ; 58°C 1 min ; 72°C 1 min),
10 cycles (95°C 1 min ; 56°C 1 min ; 72°C 1 min),
72°C 5 min
TNFd(GA)n S’agatccttcectgtgaggttetget3’ [54] Y14768 95°C 15 min,
5’catagtgggactctgtctccaaal3’ 30 cycles (94°C 1 min ; 60°C 1 min ; 72°C 1 min),
72°C 5 min
TNFe(GA)n 5’gtgectggttetggagectete3’ [54] Y 14768 95°C 15 min,
5’tgagacagaggataggagagacag3’ 30 cycles (94°C 1 min ; 60°C 1 min ; 72°C 1 min),
72°C 5 min




Table 2

NOS2(CCTTT)n allele frequencies for the 76 Corsicans (38 $°39 carriers and 38 healthy individuals) and 84 Sardinians (42 °39 carriers and 42 healthy individuals) studied

Corsica Sardinia
Controls B°39 carriers P OR 95% CI1 Controls B°39 carriers P OR 95% CI1
Fish Fish
Frequency n % Frequency n % (Fisher) Frequency n % Frequency n % (Fisher)

181 0.0000 0 0 0.0000 0 0 0.0366 1 3.66 0.0000 0 0

186 0.0238 1 2.38 0.0303 1 3.03 0.0976 4 9.76 0.0517 2 5.17

191 0.0357 1 3.57 0.1364 5 13.64 0.0238 0.2857 0.0974-0.8383 0.3049 13 30.49 0.0517 2 5.17 < 0.0001 6 2.4260-14.8390
196 0.1429 5 14.29 0.1515 6 15.15 0.2317 10 23.17 0.2069 9 20.69

201 0.1905 7 19.05 0.3030 12 30.30 0.2073 9 20.73 0.2759 11 27.59

206 0.3095 12 3095 0.1515 6 15.15 0.0112 2.067 1.1910-3.5850 0.0488 2 4.88 0.1897 8 18.97 0.0390 0.2632 0.1022-0.6774
211 0.1786 7 17.86 0.1364 5 13.64 0.0122 0 1.22 0.0862 4 8.62 0.0185 0.1111 0.0143-0.8612
216 0.1190 5 11.90 0.0909 3 9.09 0.0488 2 4.88 0.0862 4 8.62

221 0.0000 0 0 0.0000 0 0 0.0122 0 1.22 0.0517 2 5.17

=

: number of individuals; OR: odds ratio; CI: confidence interval.

Table 3
TNFd(GA)n allele frequencies for the 76 Corsicans (38 $°39 carriers and 38 healthy individuals) and 84 Sardinians (42 $°39 carriers and 42 healthy individuals) studied

Corsica Sardinia
Controls B°39 carriers P OR 95% CI1 Controls B°39 carriers P OR 95% CI1
Fish Fish
Frequency n % Frequency n % (Fisher) Frequency n % Frequency n % (Fisher)

130 0.0227 1 2.27 0.0143 0 1.43 0.0000 0 0 0.0000 0 0

132 0.1477 6 14.77 0.0429 2 4.29 0.0140 3.7500 1.2890-10.9090 0.0000 0 0 0.0000 0 0

134 0.0114 0 1.14 0.0571 2 5.71 0.0488 2 4.88 0.2500 10 25 0.0001 0.2000 0.0797-0.5016
136 0.3864 15 38.64 0.5714 22 57.14 0.0159 0.6842 0.5076-0.9222 0.3537 15 35.37 0.5667 24 56.67 0.0028 0.6140 0.4473-0.8429
138 0.2045 8 20.45 0.2714 10 27.14 0.4146 18 41.46 0.1833 8 18.33 0.0006 2.2780 1.4090-3.6810
140 0.2159 8 21.59 0.0429 2 4.29 0.0004 5.2500 1.869-14.7490 0.1463 6 14.63 0.0000 0 0 <0.0001 Infinite

142 0.0114 0 1.14 0.0000 0 0 0.0244 1 2.44 0.0000 0 0

144 0.0000 0 0 0.0000 0 0 0.0122 0 0 0.0000 0 0

n: number of individuals; OR: odds ratio; CI: confidence interval.
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140pb in controls (Corsica: 8/2, 21.59% versus 4.29%,
OR =5.25, 95% CI=1.869-14.749, p =0.0004; Sardi-
nia: 6/0, 14.63% versus 0%, infinite OR, p <0.0001).

Haplotype frequencies

Considering the NOS2A gene, three haplotypes showed
significant differences in haplotype frequencies, but not
in the same way for the two islands (table 44 and B).
Haplotype 318pb-206pb (NOS2(AAAT)I/D-
NOS2(CCTTT)n) was more frequent in Corsican controls
than in °39 carriers, with an individual ratio of 9 + 2/4
+ 1.5 (24.56% versus 10.02%, p =0.0136) and an OR of
2.4 (95% CI = 1.211-4.755), but more frequent in Sardin-
ian $°39 carriers than in controls (8 £ 2.1/0, 18.96% ver-
sus 1.57%, p <0.0001). Haplotype 318pb-191pb showed
a significant difference between B°39 carriers and con-
trols in Corsica, with a ratio of 5+ 1.6/1 £0.8 (respec-
tively 13.63% versus 3.57%, p =0.0237) and between
controls and °39 carriers in Sardinia with a ratio of 9 =
2.1/2+£1.2 (respectively 5.17% versus 34.28%, OR =
6.8, 95% CI1=2.773-16.677, p<0.0001). Haplotype
322pb-216pb showed a significant difference between

controls and B°39 carriers only in Corsica, with a ratio
of 2+ 1.1/0 (respectively 0% versus 6.41%, infinite OR,
p=0.0289).

The TNFA gene was also characterised by significant
differences in five haplotype frequencies between groups
with various patterns in the two islands (fable 54 and B).
In Corsica, haplotypes 132pb-108pb and 136pb-104pb
(TNFd(GA)n-TNFe(GA)n) were more frequent in con-
trols than in B°39 carriers (respectively 6 +1.4/2+0.9,
14.%77 versus 4.28%, OR=3.75, 95% CI=
1.289-10.909, p=10.0140; 3 £1.3/0, 7.51% versus 0%,
infinite OR, p=0.0140). In Sardinia, haplotype 134pb-
108pb was prevalent in $°39 heterozygotes with a ratio
of 8 £2.2/0 (20% versus 2.56%, p <0.0001), and haplo-
type 138pb-108pb in controls with a ratio of 13 +2.2/5+
1.8 (30% wversus 11.67%, OR=2.5, 95% Cl=
1.359-4.599, p = 0.0029).

Two TNFA haplotypes had a peculiar distribution for
°39 carriers and controls in the two islands (fable 54
and B), (figure 1). 136pb-108pb was prevalent in 3°39
carriers (Corsica: 22+2.2/12+2, 57.14% versus
31.12%, p=0.0003; Sardinia: 23 +2.7/13£2.4, 55%
versus 31.53%, p =0.0010) and 140pb-108pb in controls

Table 4
NOS2A haplotype frequencies for Corsican (A) and (B) Sardinian populations

Controls B°39 carriers P OR 95% CI
Frequency s.d. n % Frequency s.d. n % (Fisher)
A)
318 181 0.0000 0.0000 0 0 0.0000 0.0000 0 0
318 186 0.0119 0.0123 0 1.19 0.0303 0.0217 1+£0.8 3.03
318 191 0.0357 0.0207 1+0.8 3.57 0.1363 0.0416 5+1.6 13.63 0.0237  0.2857  0.0974-0.8383
318 196 0.1428 0.0399 5+1.5 14.28 0.1096 0.0403 4+£15 10.96
318 201 0.1904 0.0437  7+1.7 19.04 0.3030 0.0581 11+£22 30.30
318 206 0.2456 0.0530 9+2 24.56 0.1002 0.0406 4+1.5 10.02 0.0136  2.4000  1.2110-4.7550
318 211 0.1279 0.0414 5+1.6 12.79 0.0780 0.0358 3+1.4 7.80
318 216 0.0549 0.0275 2+1 5.49 0.0909 0.0363 3+1.4 9.09
318 221 0.0000 0.0000 0 0 0.0000 0.0000 0 0
322 186 0.0119 0.0123 0 1.19 0.0419 0.0278 2+1 4.19
322 196 0.0000 0.0000 0 0 0.0000 0.0000 0 0
322 201 0.0000 0.0000 0 0 0.0000 0.0000 0 0
322 206 0.0638 0.0324 2+12 6.38 0.0512 0.0290 2+1.1 5.12
322 211 0.0506 0.0280 2=+1 5.06 0.0583 0.0327 2+1.2 5.83
322 216 0.0640 0.0289 2=+1.1 6.40 0.0000 0.0000 0 0 0.0289 Infinite
B)
318 181 0.0428 0.0247 2+1 4.28 0.0000 0.0000 0 0
318 186 0.1142 0.0378 5+1.6 11.42 0.0517 0.0288 2+1.2 5.17
318 191 0.3428 0.0567 14+24 3428 0.0517 0.0285 2+1.2 5.17 <0.0001 6.8 2.7730-16.6770
318 196 0.2091 0.0513 9+2.1 20.91 0.2068 0.0543 9+23 20.68
318 201 0.1465 0.0461 6+1.9 14.65 0.2568 0.0587 11£25 25.68
318 206 0.0157 0.0161 0 1.57 0.1896 0.0506 8+2.1 18.96  <0.0001 0.0526  0.0072-0.3859
318 211 0.0000 0.0000 0 0 0.0344 0.0268 1+1 3.44
318 216 0.0428 0.0246 2=+1 4.28 0.0362 0.0250 1+1 3.62
318 221 0.0142 0.0137 0 0 0.0517 0.0287 2+1.2 5.17
322 186 0.0000 0.0000 0 0 0.0000 0.0000 0 0
322 196 0.0194 0.0190 1+0.8 1.94 0.0000 0.0000 0 0
322 201 0.0391 0.0258 2=+1.1 391 0.0189 0.0179 0 1.89
322 206 0.0128 0.0134 0 1.28 0.0000 0.0000 0 0
322 211 0.0000 0.0000 0 0 0.0517 0.0301 2+1.3 5.17
322 216 0.0000 0.0000 0 0 0.0499 0.0303 2+1.3 4.99

s.d.: sdandard deviation; n: number of individuals; OR: odds ratio; CI: confidence interval.
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Table 5
TNFA haplotype frequencies for Corsican (A) and (B) Sardinian populations
Controls B°39 carriers P OR 95% CI
Frequency  s.d. n % Frequency  s.d. n % (Fisher)
A)
130 104 0.0000 0.0000 0 0 0.0143 0.0137 0 1.43
130 108 0.0227 0.0159 1+£0.6 2.27 0.0000 0.0000 0 0
132 108 0.1477 0.0376 6+1.4 14.77 0.0429 0.0243 2+0.9 4.29 0.0140 3.7500  1.2890-10.9090
134 104 0.0000 0.0000 0 0 0.0000 0.0000 0 0
134 108 0.0114 0.0113 0 1.14 0.0571 0.0276 2+1 5.71
136 102 0.0000 0.0000 0 0 0.0000 0.0000 0 0
136 104 0.0751 0.0333 3+£1.3 7.51 0.0000 0.0000 0 0 0.0140 Infinite
136 106 0.0000 0.0000 0 0 0.0000 0.0000 0 0
136 108 03113 0.0527 12+2 31.13 0.5714 0.0572 22422 57.14 0.0003 0.5439  0.3877-0.7629
138 102 0.0000 0.0000 0 0 0.0000 0.0000 0 0
138 104 0.0726 0.0299 3+1.1 7.26 0.0714 0.0313 3+1.2 7.14
138 106 0.0000 0.0000 0 0 0.0143 0.0131 0 1.43
138 108 0.1319 0.0384 5+1.4 13.19 0.1857 0.0482 7+1.8 18.57
140 106 0.0114 0.0118 0 1.14 0.0000 0.0000 0 0
140 108 0.2045 0.0464 8+1.8 20.45 0.0429 0.0249 2+0.9 4.29 0.0008 5.0000 1.7720-14.1090
142 104 0.0114 0.0115 0 1.14 0.0000 0.0000 0 0
144 104 0.0000 0.0000 0 0 0.0000 0.0000 0 0
B)
130 104 0.0000 0.0000 0 0 0.0000 0.0000 0 0
130 108 0.0000 0.0000 0 0 0.0000 0.0000 0 0
132 108 0.0000 0.0000 0 0 0.0000 0.0000 0 0
134 104 0.0128 0.0140 0 1.28 0.0500 0.0306 2+1.3 5.00
134 108 0.0256 0.0189 1+0.8 2.56 0.2000 0.0534 8+22 20.00 < 0.0001 0.1000 0.02400-0.4167
136 102 0.0000 0.0000 0 0 0.0167 0.0171 0 1.67
136 104 0.0180 0.0195 0 1.80 0.0000 0.0000 0 0
136 106 0.0128 0.0151 0 1.28 0.0000 0.0000 0 0
136 108 0.3153 0.0575 13+24 31.53 0.5500 0.0635 23+2.7 55.00 0.0010 0.5636  0.4004-0.7935
138 102 0.0000 0.0000 0 0 0.0167 0.0174 0 1.67
138 104 0.1102 0.0381 5+1.6 11.02 0.0500 0.0294 2+1.2 5.00
138 106 0.0256 0.0209 1+09 2.56 0.0000 0.0000 0 0
138 108 0.3000 0.0532 13422 30.00 0.1167 0.0440 5+1.8 11.67 0.0029 2.5000  1.3590-4.5990
140 106 0.0000 0.0000 0 0 0.0000 0.0000 0 0
140 108 0.1410 0.0398 6+1.7 14.10 0.0000 0.0000 0 0 < 0.0001 Infinite
142 104 0.0256 0.0179 1+£0.7 2.56 0.0000 0.0000 0 0
144 104 0.0128 0.0125 0 1.28 0.0000 0.0000 0 0

s.d.: sdandard deviation; n: number of individuals; OR: odds ratio; CI: confidence interval.

(Corsica: 8 £ 1.8/2 £ 0.9, 20.45% versus 4.28%, OR =5,
95% CI=1.772-14.109, p = 0.0008; Sardinia: 6 £+ 1.7/0,
14,10% versus 0%, infinite OR, p <0.0001).

o Corsican controls
O Sardinian controls
0 Corsican B°39 carriers
O Sardinian 3°39 carriers

Haplotypes

Figure 1
TNFA 136pb-108pb and 140pb-108pb haplotype frequencies.

Hardy-Weinberg equilibrium

Most parts of the loci studied were in Hardy-Weinberg
equilibrium for the four populations. Only three excep-
tions emerged: NOS2(CCTTT)n in Corsican controls
(P <0.001), TNFd(GA)n and TNFe(GA)n in Sardinian
B°39 carriers (respectively p<0.001 and p<0.05)
(table 6).

DISCUSSION

Population structure and history have influenced genetic
diversity, and natural selection may have played an impor-
tant role. Indeed, infectious diseases, such as malaria, have
exerted a big selective pressure in mediterranean popula-
tions over millenia. Genetic traces have already been
highlighted, such as the prevalence of the $°39 mutation
in the islands of Corsica and Sardinia [4, 6, 44]. Against
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Table 6
Observed heterozygosity (Hobs), expected heterozygosity (Hexp), Hardy-Weinberg P value (P)

Sardinian $°39 carriers

Hexp P value s.d.

Hobs

0.00005
0.00054
0.00000
0.00074

**%0.00029
*0.03684
1.00000
0.09839

0.59266
0.27119

0.86667
0.20000
0.24138

0.24622
0.83666

0.86207

Sardinians

P value s.d.
0.19781

Hexp

Hobs

0.00117

0.68765

0.56410

0.00126

0.79047
1.00000
0.41328

0.37929
0.13458
0.78923

0.35897

0.00000
0.00122

0.14286
0.68571

Corsican B°39 carriers

s.d.

P value
0.13292

Hexp
0.09325

Hobs

0.00118

0.60207

0.68571

0.00095

0.21077
0.28671

0.17143
0.30303

0.00000
0.00065

1.00000
0.95886

0.84522

0.78788

Corsicans

s.d.

P value
0.17476
1.00000
0.14231

Hexp

Hobs

0.00081

0.74817

0.70455

0.00000

0.28971

0.29545

0.00104

0.33133

0.23810

0.00006

**%0.00034

0.80924

0.80952

Locus

TNFd(GA)n
TNFe(GA)n

NOS2(AAATt)nl/D

NOS2(CCTTT)n
s.d.: standard deviation; * p <0.05; ** p <0.01; *** p <0.001; **** p <0.0001; ***** p <0,00001.

this background, we focused our research on genetic poly-
morphisms which may have been influenced by selective
pressure. Results for four polymorphisms located in the
TNFA and NOS2A genes in Corsican and Sardinian
°39 carriers and controls are presented here. These two
islands were chosen because of the long-term presence of
infectious disease pressure, and for their genetic similarity,
also highlighted by studies on neutral loci [45-49]. The
principal limitation of our study is the number of indivi-
duals included (160 individuals in four groups of 42; 42;
38 and 38), but the significance of results reported here is
attested by and related to similarity and homogeneity of
the Corsican and Sardinian populations [45-49].

We found only three deviations from Hardy-Weinberg
equilibrium, (NOS2(CCTTT)n in Corsican controls, and
TNFd(GA)n and TNFe(GA)n in Sardinian 3°39 carriers),
due to excess or loss of heterozygotes, probably corre-
lated respectively with balanced and directional selection
of loci.

For the NOS2A gene, at allelic or haplotype level, the
significant differences between $°39 carriers and controls
are not the same for Sardinia and Corsica. We can
hypothetise that this variability between islands depends
on local phenomena. In spite of the similarities between
Corsica and Sardinia, some genetic differences do exist,
probably due to genetic drift or other local adaptation
phenomena. Some studies have shown various patterns
in the two islands, such as a peculiar Y haplotype in
Sardinia [47]. The same phenomena have probably led
to analogous differences observed for some alleles or
haplotypes at TNFA /oci locally between groups.

Some genetic selections were found in the two islands.
Loci showing significantly different allelic or haplotype
distribution between °39 carriers and controls in the two
islands could reflect the impact of infectious pressure.
Two TNFA haplotypes have apparently been impacted:
136pb-108pb (1) and 140pb-108pb (2): 1 was mainly
found in B°39 carriers and 2 in controls, in Corsica and
in Sardinia. So 1 has probably been selected because it
confers some advantage or resistance in the case of
malaria infection, such as the B°39 mutation. Indeed,
TNFa is a cytokine which can directly modulate NOS2
activity and consequently, NO concentration, acting on
oxidative stress and resistance to the parasite. So °39
and haplotype 1 could participate in the resistance to
parasites, both at the allelic (3°39 and 136pb) and haplo-
type level. Haplotype 2 was more frequent in controls,
suggesting that allele 140pb could be linked to suscepti-
bility to infection.

So, in these subjects, selective pressures have not
impacted the first level of constitutive NO production,
but they have impacted the regulation of TNF levels.
The two microsatellites studied in TNFA gene are located
in 3’°UTR. Some microsatellite variants in the 3’UTR
region of other genes are linked with regulation of
expression. Indeed, variants of a 3’'UTR microsatellite
in the CD154 gene are associated with regulation of
mRNA and protein expression [50]. The 3°'UTR micro-
satellite of the FGF9 gene is a functional polymorphism
that plays roles in FGF9 expression (strongest promoter
activity and longest mRNA activity) [51]. So, TNFd and
TNFe polymorphisms could be linked to regulation of
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TNF-a production, with implications for susceptibility or
resistance to malaria.

To conclude, this work highlights, for the first time,
selection of two TNFA haplotypes, 136pb-108pb and
140-108pb, correlated respectively with the presence or
absence of the f°39 mutation, in Corsican and Sardinian
populations. These patterns could be as consequence of
infectious pressure and could have implications in TNF-a
production. This protein appears to be implicated in a
complex mechanism of resistance or susceptibility for
pathogens such as.
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