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ABSTRACT. The aim of this article is to recapitulate the key features of leukaemia inhibitory factor cytokine
(LIF), to review its numerous physiological effects and to comment on the most recent data. We will also pres-
ent results of transcriptome analyses, which have highlighted different categories of LIF targets, identified in
murine embryonic stem (ES) cells and early derivatives. We hope to stimulate new research fields on this puz-
zling cytokine, which, forty years after its discovery, has still not disclosed all its secrets.
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LIF discovery was performed independently by several
research groups in the 1970-80’s, and was based on the
different biological effects characterized in distinct cellu-
lar models, and was hence given different names. The
name LIF has remained the most commonly used despite
it being the least appropriate [1, 2]. Pleiotropy is the
property of a protein to display various and sometimes
opposing effects. In this regard, LIF could sustain prolif-
eration or differentiation depending upon cell maturity or
type [1-3]. While the physiological, non-redundant func-
tion of LIF stands in its effect during blastocyst implan-
tation, an essential role of LIF has also been reported for
mammary gland involution after the lactation [4, 5].
Unregulated LIF secretion is also associated with patho-
logical conditions such as cancer [6-9].

LIF turns out to be at the heart of many physiological
processes throughout life, starting from embryo implan-
tation. It is involved in uterine maintenance of the foetus
by providing an immune-tolerant environment in the
decidua. The recent finding that it directly regulates the
function of T regulatory (Treg) cells, conferring immune
tolerance during transplantation, has added a new twist,
and suggests a potential, specific function in immunity
[10-12]. The mechanism of action of LIF will be better
understood by elucidation of the signal transduction path-
ways it modulates, and by identification of the gene tar-
gets it transcriptionally regulates. In addition, the recent
discovery that LIF is a direct cytokine effector of the p53-
dependent signaling pathway [13] should allow re-
evaluation of results involving LIF and p53, in the light
of potential links between these two proteins, which are
co-expressed in many cell systems [14].

A BRIEF HISTORY OF LIF

LIF activity was first reported in 1969 by Ichikawa, who
described a biological activity associated with embryo-
conditioned medium, which was able to inhibit prolifera-
tion and to induce macrophage differentiation of the M1
leukemic myeloid cell line [15]. This biological activity,
then called D-factor (for differentiation factor), was par-
tially purified from embryos and Krebs ascites cell-
conditioned medium [16], followed by purification to
homogeneity of the active protein. At the same time,
this protein was characterized from cell line-conditioned
media: fibroblasts [17-19], heart cells [20], human allor-
eactive T-cells stimulated by alloantigens [21] and
mitogen-triggered spleen cells [17]. These studies led to
the molecular cloning of LIF in many species including
human [19, 22-25].

THE LIF LIGAND

Main features

Human LIF is a 180-amino acid glycoprotein and
belongs to the IL-6 sub-family of the larger “four-helix
superfamily” of cytokines, comprising the following six
members: ciliary neurotrophic factor (CNTF), interleukin
11 (IL-11), oncostatin M (OSM), cardiotrophin-1 (CT-1),
CLC/CLF (cardiotrophin-like cytokine-cytokine-like fac-
tor (CNTF II ligand [26]), and IL-27 [27-30]. Purified
human LIF has a MW of 37 to 62 kDa depending on
its degree of glycosylation [31, 32]. The glycosylation
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sites of LIF can hold mannose-6 phosphate residues, cre-
ating a ligand site for the mannose-6 phosphate receptor
(CIMPR, calcium-independent mannose-6 phosphate
receptor), which participates in the cellular recycling of
the LIF ligand [33, 34].

LIF exists in at least three isoforms, i.e. a soluble form
called LIF-D, an intracellular form found in the nucleus,
called LIF-i or LIF-T, and a third form localized in the
extracellular matrix, termed LIF-M [35-37]. LIF-M and
LIF-D are translated from alternative transcripts differing
in the first exon, which encodes partially for different
signal peptides, which target the mature protein to differ-
ent locations. The LIF-T isoform is a truncated protein
because of the absence of the ATG codon in the first
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exon, leading to the initiation of translation at the first
ATG codon of exon 2. This isoform has pro-apoptotic
activity in the COS and 293T cell lines [37], but the func-
tion of this internal form of LIF has not been investigated
in other cell systems or tissues. Expression of these three
isoforms is regulated in an independent way during
embryogenesis and adult life, whereas other isoforms
have also been identified in liver [38, 39], but their func-
tions await further clarification.

LIF is secreted by many cell types such as fibroblasts,
activated T-cells, spleen or macrophage cells, chondro-
cytes, bone marrow stromal cells, mesenchymal stem
cells, endothelial cells, astrocytes and also tumor cells
[17, 40, 41]. In vivo, LIF production is associated with
inflammation and autoimmune diseases [42-44]. It also
promotes N-cadherin-mediated cell adhesion via the
STAT3/ Wnt5 pathway in cardiomyocytes [45]. LIF is
also naturally produced by the uterine decidua under the
control of the estradiol peak, before implantation [14, 46-
48] and thereafter is sustained by progesterone, presum-
ably to induce a tolerant environment for the foetus dur-
ing gestation [49]. Indeed, in endometrium, LIF directly
induces the production of the class I non-classical HLA-
G protein, whose function is essential for immune toler-
ance at the maternal-foetal interface during the establish-
ment of gestation [50]. A high level of active LIF is also
associated with transplantation tolerance, with direct reg-
ulation of Treg cell function in which the expression of
the Foxp3 gene seems to be controlled, at least in part, by
LIF [11, 51]. Recent studies, conducted with KO model
mice, have also revealed that LIF is a direct transcrip-
tional target of the Fos-related protein Fra2, involved in
the regulation of osteoclast functions [52]. A deleterious
immunosuppressive function of LIF, which allows tumor
cells to escape the immune system, has also been
described in a model of ovarian cancer. Indeed, it was
shown that LIF was a tumor-secreted factor that induces
differentiation of monocytes to highly immunosuppres-
sive TAM cells (tumor associated macrophages), [9].

Excess of LIF

The effect of an excess of LIF has been investigated in
mice injected with the FDCP1 hematopoetic stem cells
engineered to constitutively produce biologically active,
murine LIF. These cells were engrafted normally into
bone marrow, spleen and lymph nodes. After two to
three months, engrafted animals lost weight, became
hyperactive, developed osteopetrosis of long bones, cal-
cifications in liver, heart, pancreas and skeletal muscles
as well as abnormalities in the adrenal cortex and ovarian
corpora lutea [53]. Studies of excess of LIF in the thymus
of transgenic mice have led to the conclusion that LIF is
important for maintaining a functional thymic epithelium
that will support proper T cell maturation, a property also
shared by oncostatin M [54, 55]. In embryos, excess of
LIF-M blocks gastrulation by inhibiting the inner-cell
mass differentiation into primitive ectoderm, a result
also observed in vitro with embryoid bodies whose dif-
ferentiation was blocked in the presence of an excess of
LIF [56, 57]. These pioneering experiments, along with
those showing that LIF maintains the pluripotency of
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mouse embryonic stem (ES) cells in vitro [23, 58-61],
have led to numerous studies aimed at elucidating the
mechanisms of action of LIF in stemness.

LIF and pluripotency

Knowledge of LIF signaling in the mouse ES cell system,
along with years of expertise in manipulating mouse
embryos, have led to the understanding of the species-
dependent requirement of LIF for the maintenance of
ES cell pluripotency. At first glance, it was puzzling to
find that while mouse ES cells (mES) required LIF for
maintenance of pluripotency, human ES cells (hES) did
not need LIF, but rather have to be grown under the influ-
ence of activin and FGF factors in order to maintain their
undifferentiated state [62-65]. A pioneering study, con-
ducted using the mouse ES cell system, has already
depicted a LIF-independent paracrine activity (named
ESRF), secreted by differentiated cells, which allows
the maintenance of mES cells pluripotency [66]. How-
ever, this activity has not been characterized further and
its potential activity on human ES cells has not been
evaluated. Since these first observations, transcriptome
studies have led to the characterization of similarities
and differences in expression profiles of genes in mES
and hES cells, suggesting that these cells are probably
not derived from equivalent parts of the early embryo
[67, 68]. More recently, key results from two independent
laboratories have been obtained which demonstrated that
hES cells were probably not LIF-dependent because of
their derivation from late rather than early epiblast [69-
71]. These studies point to the fact that there is a short
time frame for LIF dependency, and for maintenance of
pluripotency in early embryos, which can be different
between species and which deserves careful exploration
(see also paragraph “LIF signaling: oldies and novel-
ties”). However, the potential requirement of LIF for
hES cell derivation and maintenance, which could
depend on the maturity states of the embryos used to
derive hES, might explain why some laboratories have
used LIF in their culture medium, for growing hES
cells [72].

LIF knock-out models

If homozygous LIF”" mice are viable, they nevertheless
present many defects, including a decrease in the survival
of hematopoetic stem cells and of their primordial germ
cell pools [73], a profound loss of motor neurons [74]
and of glial cells, along with an alteration in oligodendro-
cyte function [75]. In addition, maturation of olfactory
neurons is impaired [76]. Recent studies have also
shown that LIF represses hypoxia-induced VEGF expres-
sion, resulting in regulated capillary network formation
[77]. Of major importance, LIF”~ females are fertile, but
their blastocysts cannot implant, leading to the definition
of LIF as being the “nidation hormone” [73]. This
implantation defect is due to the absence of LIF produc-
tion by the uterus. LIF production is normally induced by
estradiol via the TP53 loop. Indeed, there are functional
TP53 binding sites in the LIF promoter [13, 78-80]. Of
note, p53 " mice display the same implantation defect
phenotype as LIF”" mice [13]. Interestingly, LIF”" or
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p537 blastocysts develop normally if implanted in a
wild-type female or upon direct injection of LIF into
the vagina of TP53” or LIF”" mutated mice. None of
the other IL6-related ligands has this specific effect on
implantation, as deduced from the knock-out phenotypes
reported for these ligands (table 1).

THE LIF RECEPTOR

Members of the IL-6 subfamily activate preformed, het-
eromeric receptors, which do not have any intrinsic cata-
lytic activity and which all share the gp130 subunit [27,
28, 81-83]. The association of the ubiquitous gp130 (also
called “subunit o) with subunits specific for one or a few
sub-family members (the so-called “B subunit” (e.g.
gpl190/ LIFRB; CNTFRP; gp8O0/IL-6RB; OSMRSB;
IL-11RB), and whose expression is more or less
restrained, is responsible for both the diversity and the
redundancy of the cell responses in this sub-family [84].
The functional LIF receptor is an heteromer comprising
LIF low affinity binder gpl190 together with the high
affinity-converter gp130, both being transmembrane sub-
units with signalling ability. Preformed, inactive receptors
are most probably present at the cell surface in the
absence of ligand, as shown by co-precipitation of the
heterodimeric complex without ligand, with anti-gp130
or anti-gp190 antibodies. However LIF binding increases
interaction between subunits, and is essential for cellular
responses [85-87]. The stoichiometry of the functional
ligand/receptor complex is not known, but recently crys-
tallographic analysis has demonstrated that this complex
is a tetramer consisting of two LIF/gp190 molecules, [88,
89]. The intracellular part of both gpl130 and gp190
associates with kinases of the JAK family, recruiting tran-
scription factors of the STAT family, especially STAT3,
as well as attenuators of LIF signaling such as the SHP2
tyrosine phosphatase and SOCS3 [90-92].

Mice knocked-out for the gp190 subunit, which also has
low affinity binding for CT-1, display reduction of bone
volume, severe osteopenia, metabolic liver disorder and
reduction in astrocyte and motor neuron numbers in cere-
bral trunk and spinal chord [93-95]. They die perinatally,
in part due to feeding difficulties because of their lack of
development of sucking muscles. The placenta is also
profoundly affected.

Gp130™" mice have also been generated in several labo-
ratories, but the phenotypes reported are discrepant.
Mutant mice produced by Yoshida et al. die between
days 12 to 16 of embryogenesis with cardiac, hematopoe-
tic and neuronal disorders [96], whereas those generated
by Nichols et al. showed a critical function of gp130 in
the completion of embryogenesis, only after diapause
induction. This phenotype suggests a specialized function
of gp130 as a response to environmental stress [97]. The
reasons for these discrepancies have not been further
investigated. Conditional gp130 deficient mouse mutants
have also been derived in which gp130 was deleted in
specific tissues or organs such as liver, lung or heart.
These studies revealed a key role for gpl130 signals in
counterbalancing stress-dependent apoptotic signals [98].
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HUMAN PATHOLOGY ASSOCIATED
WITH LIF DEFICIENCY

LIF and fertility

In humans, as demonstrated in mice, LIF is expressed by
the decidua following the estradiol peak and seems to be
involved in blastocyst implantation. Gp190 is expressed in
the luminal epithelium during the proliferative and secre-
tory phases of the uterine cycle [99]. In addition, signifi-
cant differences in the level of the soluble form of the
gp190 protein (sgp190) have been founded in the serum
of pregnant versus non-pregnant women, suggesting a role
for this cytokine system throughout pregnancy, and more
specifically in the functioning of the placenta [100]. LIF
deficiency may be associated with a subset of female infer-
tility due to an implantation defect. However, the direct
effect of LIF is still a matter of debate since sterility has
been associated with a decrease in LIF expression [101,
102] or to mutations in the LIF gene [103, 104], while
other studies have shown that a low LIF level was a
good implantation predictor [105]. However, in sterile
women with endometriosis, LIF is not detected in the
endometrium at the implantation stage [106].

The Stiive-Wiedemann syndrome

The Stiive-Wiedemann syndrome (SWS) or type 2
Schwartz-Jampel syndrome is a severe, autosomal reces-
sive condition characterized by bowing of the long bones,
respiratory distress, feeding difficulties, and hyperthermic
episodes responsible for early lethality [107]. The molecu-
lar defect has been identified as null mutations in the gene
encoding for the gp190 subunit of the LIF receptor. Func-
tional studies have indicated that these mutations alter the
stability of gp190 transcripts, resulting in the absence of
this LIF receptor protein subunit and in the impairment of
the JAK/STAT3 signaling pathway in patient cells. Of
note, the phenotype of the gpl190”" mice mimicked the
complex phenotype of SWS patients, especially regarding
the bone and nerve defects and early death [94].
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REDUNDANCY AND PLEIOTROPY

LIF induces differentiation of the M1 cell line and apo-
ptosis of normal mammary gland cells, after the lactating
period. LIF is a pro-differentiative cytokine for adipo-
cytes, [108], for cardiac muscle cells in a dose-
dependent way and in synergy with BMP2 [109], and it
induces differentiation of cardiac stem cells into endothe-
lial cells [110]. Conversely, LIF maintains self-renewal of
murine ES cells in synergy with serum or BMP4 or Wnt
family members (Wnt3A and Wnt5) [111-113]. In addi-
tion, LIF regulates the differentiation process of stromal
cells from bone marrow. Indeed, LIF secretion by human
mesenchymal cells decreases when cells differentiate
towards the adipogenic or osteoblast lineages. The LIF
level, which is controlled by specific miRNA, is an
essential, regulated parameter for proper differentiation
of these cells [114]. LIF also favors the proliferation
and survival of germ cells, hematopoietic progenitors,
megakaryocytes, myoblasts and neural cells [1-3]. Some
of these effects have been reported with other IL-6 family
members [84]. Indeed, OSM, CNTF, CT1 and IL6 (in the
presence of its o receptor subunit soluble gp80, which is
not expressed by ES cells) are all endowed with the abil-
ity to maintain murine ES cell pluripotency [115, 116].
Additionally, OSM, CT1 and IL-6 induce macrophage
differentiation of the M1 cell line [117, 118]. Gene abla-
tion of LIF, CT-1 or CNTF or of their receptors (tables 1,
2), demonstrate their involvement in motor neuron sur-
vival [93, 119-121]. Double Lif”/Cntf” and triple
Lif"/Cntf"/Ct-1"" knock-outs prove that these three cyto-
kines have distinct functions for motor neuron survival
and that LIF has an important role in post-natal mainte-
nance of distal axons and motor neuron junctions [74].

LIF signaling: oldies and novelties

First identified as an EGF, IL-6 and LIF-dependent phos-
phorylated protein, STAT3 is present and active in all
cells where LIF has an effect, whatever it may be [122-
128]. Other factors that are always involved in LIF sig-

Table 1
Physiological effects of IL-6 cytokine family members revealed by KO mice models
Cytokines Physiological effects References
LIF Survival of /if”* adult mouse, but decreased numbers of stem cells in spleen and bone marrow [73]
No implantation of blastocysts in mouse lacking LIF gene. Implantation and development to term of the [46, 78]
blastocysts when transferred to wild-type pseudopregnant recipients or by injection of LIF
Role in survival and differentiation of glial cells and oligodendrocytes of the hippocampus. Alteration of [75, 190]
olfactory receptor neuron maturation
IL-6 Normal development of IL-6-deficient mice. Impairment of the T-cell-dependent antibody response against [191, 192]
vesicular stomatitis virus and the inflammatory acute-phase response after tissue damage or infection
Hematopoietic stem cell regulation
OSM Role in survival of neurons in the adult trigeminal and dorsal root ganglia and in the development of a subtype [193]
of nociceptive neurons
CNTF Implicated in survival of motor neurons in adult mice [120, 194]
CT-1 Implicated in survival of motor neurons in spinal cord and brainstem nuclei of mice during a period between  [121]
embryonic day 14 and the first postnatal week
LIF/CNTF Important implication of LIF and CNTF in survival, and in the function of motor neurons in the postnatal [120]
period. Co-operation of the two cytokines in the maintenance of motor neurons after lesion in deficient mice of
four weeks
LIF/CNTF/CT-1 Different functions of CNTF, LIF and CT-1 for the survival and the function of motor neurons. A more [74]
important role of LIF for postnatal maintenance of distal axons and motor endplates
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Table 2
Physiological effects of IL-6 subunit receptor members revealed by KO mice models
Cytokines Physiological effects References
Gpl130 Death of embryos homozygous for the gp130 mutation between 12.5 days postcoitum and term. Crucial role in [96]
myocardial development and hematopoiesis during embryogenesis
Importance of gp130 signalling for the prolonged maintenance of epiblast in vivo during diapause period [97]
induced by ovariectomy
LIFRB/gp190 Disruption of normal placental development in mutant mice leading to poor intrauterine nutrition, but foetuses [93, 94]
reach term. Alterations in fetal liver metabolism and formation of bone. Role in the survival of astrocytes and
motor neurons in the spinal cord and brain stem
IL-11RB Infertility in female mice due to a defective decidualization [195, 196]
OSMRS Role in regulation of hematopoiesis. Key role in liver regeneration [197, 198]
CNTFRB Mutant death perinatally. Role of CNTFR in motor neuron survival. Critical effects of CNTFR on the [119]
developing nervous system

naling are the activated JAK tyrosine kinases [129, 130].
JAK1 is essential for LIF signaling in mES cells [131,
132] and in trophoblast differentiation [133], and JAK2
seems to play a critical role in LIF-dependent muscle
satellite cell proliferation [134]. The third obligatory
component of LIF signaling is the feedback control regu-
lator, which includes members of the Socs gene family
[135-141]. SOCS3, a STAT3-dependent repressor that
attenuates LIF signaling, is critical in many cell types
and tissues in which LIF has an effect. Indeed, SOCS3
is essential for maintenance of murine ES cell pluripo-
tency [142-144], for trophoblast differentiation [133,
145, 146] and for the involution of the mammary gland
at the end of the lactation period [147, 148]. SOCS3 is
also essential for regulation of the immuno-tolerant func-
tion of LIF recently described in Treg cells [149].

Other genes are induced by cytokine response, in general.
This is the case for the primary response genes junB,
c-jun and egrl that are all induced upon LIF treatment
in M1 or ES cells, see fables 3 and 4 [142, 150, 151].
However, so far, the mechanism of LIF pleiotropy has not
been elucidated and both transcriptomic and proteomic/
phosphoproteomic approaches should help to resolve this
complex issue. Several cell-type specific targets of LIF
such as hepatocyte growth factor (Hgf) induced in
SEK1 cells or the insulin growth factor binding protein
3 (Igfbp3), amphiregulin and the immune response gene

1 (Irgl), identified in endometrium cells, also indicate
that different end point transcriptional targets might
explain pleiotropy [152, 153].

In mouse ES cells, LIF also induces the PI3Kinase path-
way, which maintains cell pluripotency [154-156] while
activating the ERK/ RSK/ CREB pathways which, along
with the FGF pathway induce pro-differentiative pro-
grams [157-159]. Thus, several LIF induced pathways
are concomitantly required to maintain ES cell plasticity,
a peculiar property of stem cells.

Recent transcriptomic analyses performed in mouse ES
cells and early derivatives, treated for short period
(30 min) with LIF, have allowed identification of com-
mon and cell-specific LIF-regulated genes (summary in
table 3). Primary response genes (c-fos, JunB, Egrl and
2, ler2), the Socs3 inhibitor and regulators of mRNA sta-
bility (such as Zfp36 and its direct target /er3, [160]), are
among the common LIF-induced (Lifind) genes found in
ES cells and early derivatives [161]. Indeed, these genes
are induced by LIF after a 24 or a 48 h period of LIF
withdrawal, which respectively correspond to a LIF-
dependent reversible (24 h) or irreversible (48 h) state
of committed cells [158, 162-164]. These genes are also
expressed in differentiated cells which re-express LIF and
its receptor, after 10 days of LIF withdrawal [161]. This
study has led to the characterization of different time-
frames of LIF activity in the ES cell model. It will be a

Table 3
LIF transcriptional targets in different cell contexts

Neural progenitors Socs2; Socs3

Cell types Transcriptional targets References
ES cells Pluripotent cells (+LIF) JunB; c-fos; Socs3; Zfp36; Stat3Loc; c-Myc; Cd9; [116, 142, 161, 186, 199]
Ypel2; Plscrl; Dappl
ES-derived, reversible committed state ~ JunB; c-fos; Socs3; Zfp36; stat3Loc,; Egrl; Egr2; [161]
(-LIF 24h, induced 30 min. with LIF) ler2; ler3; Kif4; KIf5; Rasdl; Nfkbiz;, Dappl; Ypel2;
Dystonin; Pabpcl; Etv6; Sbno2; Plscrl
ES-derived, irreversible committed state JunB, c-fos; Socs3; Zfp36, stat3Loc; Egrl; Egr2;
(-LIF 48 h, induced 30 min. with LIF)  ler2; ler3; Kif4
ES-derived, differentiated cells JunB; c-fos; Socs3;Zfp36, Egrl; Egr2; ler3; Nfkbiz;
(10 days without LIF) Expression of endogenous LIF and of LIFR subunits
Tumor cells M1 myeloid cell line JunB; c-jun; JunD, Cis; Gp49B1; Socsl; Egrl [151, 152, 172, 200, 201]
SEK1 (human melanoma) Hgf [202]
Normal tissues Endometrium Igfbp-3; Amphiregulin; Irg-1 [203]
Cardiomyocytes Zfp36; Socsl; Socs2; Socs3 [153, 204]
Fibroblasts Egr-1; c-fos; Socs3 [205]
[
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Table 4
Potential actors of the pleiotropic effects of LIF
LIF i i LIF Dj iati
ES Prol.lferatlon M1 plfferentlatlon
Pluripotency in macrophages
—LIF +LIF —LIF +LIF
c-jun - T+t — i
JunB - ++ - -+
JunD o + - +
Socsl + + - ++ T.
Socs2 + + - -
Socs3 - ++ - -
Egrl - ++ - +
Egr2 - 4+ N.D. N.D.
STAT3 + + + + ‘POSt-
P-STAT3 - ++ - T ‘ T.

The expression profiles of Jun, Socs and Egr family members (detected by north-
ern blots or RT-PCR) and of STAT3 and Phospho-STAT3 (detected by western
blots) in mouse ES and M1 cell lines, in which LIF has opposite effects. While
STAT3 activation is transient in ES cells, it is sustained in M1 cells.

T: Transcriptional regulation; Post-T: post-translational regulation. - : not expressed
or not phosphorylated; + : expressed; ++ : highly expressed or highly phosphor-
ylated.

Compilation of results are from these references: 135, 136, 137, 138, 142, 143,
158, 170, 171, 172, 200.

future goal to unravel the functions of these LIF targets in
pluripotent ES cells and at various stages of ES-derived
cell maturation. STAT3 was also re-expressed in differen-
tiated cells, and characterization of its interaction net-
works in stem cells versus differentiated cells remains a
challenging issue for the further understanding of LIF
pleiotropy. Novel Lifind genes, whose induction is
restricted to ES-derived committed cells (24h of LIF
withdrawal), have also been identified. This is the case of
Yippee-like2, Strawberry Notch2 (Drosophila orthologs),
Dystonin, Phospholipid scramblasel and Dappl (a regu-
lator of PI3K), whose functions in mouse are still poorly
understood and which deserve further attention.

Mechanisms underlying LIF pleiotropy

STAT3/SOCS3 are the common, obligatory, LIF-
dependent effectors found in almost all LIF-sensitive
cell lines. Surprisingly, it has been shown, in at least
two mouse cell systems (ES cells and pituitary tumor
cells), that cell type-specific effectors of LIF and
STAT3 only partly overlap [161, 163, 165, 166]. Also,
depending upon the cell context, STAT3 could be associ-
ated with various partners such as NANOG, as recently
shown in certain cancer cells [167]. In addition, the pro-
teins encoded by the primary response genes, which are
activated in many LIF-sensitive cell types, are themselves
part of various transcriptional complexes (e.g. AP1 com-
plexes), whose associations with different partners could
lead to pleiotropic effects. Interestingly, different mem-
bers of the Socs and Jun families are induced by LIF in
M1 or ES cells (table 4). Egrl is induced in both cell
systems and is critical for the macrophage differentiation
of M1 cells, but its effect in ES cells has not yet been
investigated [168, 169].
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Another parameter, potentially involved in the pleiotropic
effects of LIF, is the duration of the LIF signal. Indeed,
while STAT3 activation is transient in ES cells (it starts
decreasing after 1h of LIF stimulation), it is sustained in
M1 cells where it lasts up to 36h [170-172].

Also and not yet tested in various LIF-sensitive cell types,
epigenetic regulations could account for pleiotropic LIF
effects. For example, in the ES cell system, a high level
of phosphoacetylation of histone H3 has been reported as
being a feature of ES-derived differentiated cells [173,
174]. In addition, repression of HDAC (histone deacety-
lase) activities by chemicals such as TSA (trichostatin A),
in mouse ES cells grown with LIF, induces the expression
of differentiation markers along with morphological
changes similar to those observed upon LIF withdrawal
[175, 176]. Furthermore, a specific epigenetic hallmark
has been characterized, that is absent in differentiated
cells: by mapping the histone methylation pattern in 2.5
% of mouse genome, it has been shown that a bivalent,
tri-methylation mark at the histone H3 (H3K4 triMe /
H3K27 triMe) was enriched in pluripotent cells only at
differentiation gene loci, leading to silencing of these
genes in undifferentiated cells. Upon cell differentiation,
these bivalent modifications disappear and differentiation
genes are expressed according to the remaining level of
single H3K4 triMe (correlated with gene activation) or
H3K27 triMe (correlated with gene repression). These cru-
cial data led to the hypothesis that bivalent domains
silence developmental genes in ES cells while keeping
them poised for activation [177, 178]. It has also been
demonstrated that Eed, the core component of the repres-
sive polycomb complex, is a LIF-dependent STAT3 target
in ES cells that is associated with high levels of H3K27
triMe. Eed could be the critical effector in silencing differ-
entiation genes in pluripotent ES cells [179]. We would
therefore propose the hypothesis that the absence of Eed
or of a related repressive protein in M1 cells leads to a pro-
differentiative effect of LIF, despite the presence of acti-
vated STAT3. It will be of great interest to determine the
status of phosphorylation, acetylation and methylation at
the histone H3 protein in ES and M1 cell lines treated with
LIF for various periods of time and to determine whether
pleiotropy could also rely on differential epigenetic regu-
lation [176, 180, 181]. We propose a model in which LIF
signalling would lead to opposing effects depending on
whether it occurs in a context of opened or closed chroma-
tin. Accordingly, some genes would always be activated in
the presence of LIF (such as Stat3, JunB or Socs3),
because of an unregulated chromatin status at these gene
loci, an assumption that remains to be demonstrated. In
this regard, the fact that LIF is a direct transcriptional tar-
get of the p53 protein, a known chromatin regulator [182,
183], opens also new avenues for understanding the
mechanisms underlying LIF pleiotropy.

CONCLUSION
LIF orthologs have been characterized in many species,

even in kangaroo in which gestation does not proceed
through classical internal implantation [184]. Also intrigu-
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ing, LIF ortholog has been cloned in chicken [185], but the
function of LIF in these species remains to be studied. The
evolution of this particular cytokine to become the
“nidation hormone” in eutherian mammals is a challenging
research area, which deserves particular attention as
regards EVO-DEVO concerns, as well as for its potential
relevance in the treatment of human infertility.

Let us hope that with accumulating understanding of LIF,
and with technical advances in protein function analyses,
it will not take another 40 years to unveil LIF’s secrets
and to understand how some LIF targets (such as c-MYC
[186, 187] and KLF4 [143], both shown to be essential
for self-renewal of mouse ES cells) can reprogram mouse
and human somatic cells to become iPS cells (induced
pluripotent stem cells), along with pluripotent factor com-
panions such as OCT4 and SOX2 [61, 188, 189].
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