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Roles of pleiotrophin in tumor growth and angiogenesis
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ABSTRACT. Pleiotrophin (PTN) is a heparin-binding growth factor with diverse biological activities, the most
studied of these being those related to the nervous system, tumor growth and angiogenesis. Although interest in
the involvement of PTN in tumor growth is increasing, many questions remain unanswered, particularly con-
cerning the receptors and the signaling pathways involved. In this review, we briefly introduce PTN, and sum-
marize data on its involvement in tumor growth and angiogenesis, and on what is known to date concerning

the receptors and pathways involved.
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Pleiotrophin (PTN) is a secreted heparin-binding growth
factor that takes part in many different processes, such as
cell growth and survival, cell migration, angiogenesis and
neurite outgrowth. It is also known as heparin-binding
growth-associated molecule [1, 2], heparin affin regula-
tory peptide [3], heparin-binding growth factor-8 [4],
protein 18 kDa [5], heparin-binding neurotrophic factor
[6, 7] and osteoblast-specific factor [8]. PTN is highly
homologous to midkine (MK), with which it shares 45-
50% sequence identity, forming a family of growth fac-
tors [6, 9]. It is highly conserved across different species:
more than 90% identity has been observed among the
sequences of chicken, rat, mouse, bovine and human
[10], while homologues have been also reported in fish,
frogs and insects [11].

HUMAN PTN PROTEIN AND GENE/PROMOTER
STRUCTURE

PTN consists of 168 amino acids, the mature peptide
having 136 amino acids as a result of cleavage of the
signal peptide [12, 13]. The calculated mass of the mature
protein was determined by plasma desorption time-
of-flight mass spectrometry as 15,291 kDa, but in SDS-
PAGE it appears as 18 kDa [2], due to the fact that the
molecule is rich in cationic amino acids, mainly lysines,
that form random coils at both N- and C-terminal ends
[12, 14]. The peptide also contains 10 conserved
cysteines that participate in the formation of five disulfide
bonds [2, 15, 16], and three potential nuclear targeting
sequences K-R/K-X-R /K [2]. PTN does not contain

any potential sites for N-glycosylation or other post-
translational modifications [1, 2] and its binding to hepa-
rin is mediated by the two central regions that are homol-
ogous to the thrombospondin type I repeat (TSR-1) [14].
More recent data suggest that the carboxyl terminal TSR-
1 domain is the main heparin-binding site of PTN [17].
The human pfn gene has been identified as being on
chromosome 7 band q33a, having a minimum size of
42 kDa, and containing at least seven exons. The open
reading frame is located on four exons and the bound-
aries between introns and extrons seem to be conserved
among species in the PTN/MK family [18]. The signal
peptide and the first five amino acids of the mature pro-
tein are located in exon 2, while the core region is split
into exons 2 and 3, containing six and four cysteine resi-
dues respectively. Exon 4 comprises the C-terminus of
PTN that contains a putative nuclear translocation signal
based on its homology with histone HI [19]. The 5’
untranslated region is unique in the human pn gene com-
pared with other species [20], while there may be multi-
ple 5’ untranslated regions derived from alternative splic-
ing [21] that may contribute to cell or tissue-specific
regulation of PTN expression [19]. From what is known
to date, the promoter of the human ptn gene contains
sequences for the binding of several transcription factors,
as shown in figure 1.

REGULATION OF PTN EXPRESSION

Although PTN seems to have significant biological func-
tions, little is still known on the regulation of its expres-
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Schematic representation of the transcription factor binding sites of the ptn promoter. The human ptn promoter contains a CAAT box, four
binding sites for myogenic differentiation 1(MyoD), one for nuclear factors called GT (GT1), two for activator protein 1 (AP1), one for
homeobox A5 (HOXAS) and a serum response element (SRE) [19, 29, 32, 33, 36], all marked with filled squares. Putative binding sites
for nuclear factor kappa B (NFxB), cAMP response element binding protein (CBP), serum response factor (CArG box) and retinoic acid
receptor (RARE/TRE/VDE) are marked with filled circles [19] and need further investigation. There is also a binding site of Sox10 at the
proximal site of the promoter; however, its exact location has not been identified [22]. Potential binding sites have been also suggested for
early growth response factor-1 and specificity protein-1 transcription factors [23].

sion. It is known that ptn gene expression is regulated in
a cell type- and time-dependent manner [5, 13, 19]. It is
also known that it is up-regulated during specific dis-
eases, such as rheumatoid arthritis [24], osteoarthritis
[25], after injury [26, 27] or in cancer (see below).
Up-regulation of PTN expression has been mentioned
for tumor necrosis factor a and epidermal growth factor
[24], ciliary neurotrophic factor [28], members of the
fibroblast growth factor (FGF) family, such as FGF2 and
FGF10 [29, 30], platelet-derived growth factor [31, 32],
cAMP [33] hypoxia [32], serum [34], hydrogen peroxide
[35] and endothelial nitric oxide synthase [36]. Contra-
dictory results have been published on retinoic acid,
which induces PTN expression in some cells [9, 37] or
tissues [30], but has no effect on other types of cells [31].
Concerning transcription factors, ptn gene expression is
directly affected by HOXAS [38] and AP-1 [35], after
direct binding to the corresponding response elements
on the ptn promoter. Finally, loss of the tumor suppressor
gene PTEN leads to up-regulation of PTN expression,
mediated by the PTEN-PI3K-AKT pathway [39].

BIOLOGICAL ACTIVITIES OF PTN

The initial reference involving PTN suggested that it
plays a role in the maturation and growth of brain [5].
Since then, the importance of PTN in the nervous system
has been well described [13, 27, 28, 33, 40-51]. PTN is
over-expressed in neurodegenerative diseases [52] and
exhibits a protective or/and trophic effect on dopaminer-
gic neurons in vitro and in vivo [45, 46, 48, 53].

Regarding the muscular system, PTN is expressed in
developing muscle in vivo [1, 13, 54], is up-regulated
during in vitro myogenesis and soleus muscle regenera-

tion, and can be found in newly formed myotubes and
perfused activated myoblasts [55]. Moreover, PTN
mRNA is present in smooth muscle [56] and cardiac
muscle cells [57, 58], is down-regulated during postnatal
differentiation of the myocardium [58], up-regulated in
heart failure [59], and potentiates cardiomyocyte cell
death by apoptosis [60].

PTN is expressed in the fetus liver but its expression
gradually decreases [61], although it seems to be
involved in liver regeneration [32, 61]. PTN is expressed
in the developing kidney mesenchyme [57] and induces
formation of branching tubules in an immortalized ure-
teric bud cell line cultured three-dimensionally in an
extracellular matrix gel [62]. PTN is detected during
lung development and in embryonic bronchial epithelial
cells [57], and regulates lung epithelial cell proliferation
and differentiation during fetal lung development [63]. It
is also normally expressed in the epithelial ridge of
cochlea, suggesting a role in auditory function [64].

In females, PTN is expressed in the uterus, and its
expression is dependent on the estrous cycle [56, 65],
which it seems to affect [65]. In human mammary
gland, PTN is detected in alveolar myoepithelial, epithe-
lial, endothelial and vascular smooth muscle cells [66],
and its expression is increased in both terminal end bud
and mature ducts in the process of mammary branching
morphogenesis [67]. PTN is involved in ectopic endome-
triosis [68], and female mice deficient in both PTN and
MK have shown abnormalities of reproduction [65]. In
males, PTN plays a role in normal spermatogenesis. It
is expressed in Leydig cells of the testis and is up-
regulated in both human Peyronie’s and Dupuytren’s dis-
ease [69, 70]. Dominant negative PTN mutant male mice
show sterility, atrophic testes and strikingly apoptotic
spermatocytes [71].
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PTN promotes proliferation, differentiation and proper
attachment of osteoblasts [72, 73], and induces chemo-
taxis, proliferation and differentiation of human osteopro-
genitor cells, as well as both bone and cartilage formation
in athymic mice [74]. It is also involved in angiogenesis
in the growth plate of mice [75], and regulates the ectopic
bone-inducing activity of thBMP-2 [76]. Furthermore,
PTN is a vital signaling molecule in regulating periosteal
bone formation and resorption in response to four-point
bending of right tibias in C57BL/6J mice [77]. Interest-
ingly, mice that over-express PTN tend to have increased
bone growth [78], and although PTN-deficient mice seem
to have normal bone formation [79], they show growth
retardation in the weight-bearing bones by two months of
age, and osteopenia during adulthood [80]. PTN is found in
developing [81] and adult [82] nasal cartilage, and partici-
pates in the proteoglycan synthesis in the developing
matrix of fetal cartilage [83]. It is an autocrine growth fac-
tor in cartilage [25], is increasingly expressed in the early
stages of osteoarthritis [25, 84] and an increase at its
mRNA levels is provoked by sclerotic, subchondrial osteo-
blasts in osteoarthritic cartilage [85]. Whether PTN
improves or deteriorates osteoarthritis is not known to date.

BIOLOGICAL ACTIVITIES RELATED
TO CANCERS

Cancer cells in vitro

A role for PTN in human cancers was suggested after its
detection in conditioned media of the highly malignant
breast cancer cell line MDA-MB231 [86]. Since then,
screening of various human cell lines and tumor speci-
mens revealed that PTN is expressed as an autocrine or/
and paracrine growth factor by various cancer cells,
including human breast [87-89], prostate [29, 87, 90,
91], ovarian [87] and lung [92] cancer, choriocarcinoma
[93], melanoma [87, 94], glioblastoma [95-98] and pan-
creatic carcinoma cells [99]. Multiple myeloma (MM)
cell lines and malignant cells from MM patients’ bone
marrow produced and secreted PTN into the cell culture
supernatants and pfn gene expression correlated with the
patients’ disease status. Inhibition of PTN with a poly-
clonal anti-PTN antibody reduced growth and enhanced
apoptosis of MM cell lines and freshly isolated bone mar-
row tumor cells from MM patients in vitro [100]. PTN
mRNA is also selectively detected in the meningothelial
cells of meningiomas [101], and PTN expression is up-
regulated after loss of the tumor suppressor gene PTEN
[39]. Interestingly, it has recently been suggested that
decrease of PTN expression in U87MG cells induces tet-
raploidy and aneuploidy, and arrests cells in the G1 phase
of the cell cycle, suggesting that PTN signaling may have
a critical role in chromosomal segregation and cell cycle
progression [102]. Moreover, PTN disrupts cytoskeletal
protein complexes, ablates calcium-dependent homophi-
lic cell-cell adhesion, stimulates ubiquitination and deg-
radation of N-cadherin, reorganizes the actin cytoskeleton
and induces a morphological epithelial-mesenchymal
transition in PTN-stimulated U373 cells [103]. PTN is
also involved in hepatocarcinogenesis and has an anti-
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apoptotic activity against TGFB1 in hepatoma cell lines
[104]. Finally, in line with the notion that PTN may sig-
nificantly stimulate tumor progression, independently of
its effect on the cancer cells themselves, PTN secretion
from MCF-7 breast cancer cells stimulates epithelial
island formation, activation of stromal fibroblasts, exten-
sive remodeling of the microenvironment and activation
of markers of aggressive breast cancer in co-cultures of
PTN-expressing MCF-7 and NIH 3T3 cells [105]. It also
affects tumor angiogenesis, as discussed more exten-
sively below.

Conversely, there are cases where PTN has been shown
to negatively regulate tumor cell growth. For example,
PTN mRNA levels are decreased in colorectal cancers
compared with those in normal adjacent mucosa [106].
It has been detected in lysates and conditioned medium
from contact-arrested NIH 3T3 fibroblasts, but not in
cells transformed by the ras oncogene [107], and its
expression is up-regulated in confluent compared with
actively proliferating cells [108, 109]. Its expression is
low or absent in neuroblastomas with a poor prognosis
[110], and negatively affects growth and migration of
several glioma cells lines [111, 112].

Tumor angiogenesis in vitro

Besides a significant role in the biology of tumor cells
themselves, PTN seems also to affect the angiogenic
potential of tumor cells. Firstly, PTN stimulates angio-
genic functions of endothelial cells in vitro [113-117]
and induces embryoid body angiogenesis [118] and trans-
differentiation of monocytes into functional endothelial
cells [119-121]. In the same line, it increases the in
vitro angiogenic potential of several tumor cells, such
as multiple myeloma [120], breast [122] and prostate
[91] cancer cells.

In contrast to a positive regulation of in vitro angiogene-
sis by PTN, there are also data that support a negative
regulation. First of all, PTN directly binds and inhibits
the effect of vascular endothelial growth factor (VEGF)
on endothelial cell proliferation, migration and tube for-
mation [123, 124]. It also decreases the expression of the
VEGF receptor KDR, another mechanism through which
it potentially inhibits VEGF angiogenic activities in vitro
[125]. Finally, decrease in the expression of endogenous
PTN in C6 glioma cells significantly increased the angio-
genic potential of these cells in vitro, partially due to
increased availability and activity of VEGF [111].

Tumor growth and angiogenesis in vivo

Much in vivo data suggest that PTN plays a role in angio-
genesis of tumors that grow in nude mice. This was ini-
tially shown in NIH-3T3 cells that constitutively over-
expressed PTN. When these cells were implanted into
the flanks of nude mice, they tended to form tumors
with significant neovascularization compared with the
mock-transfected cells [126]. In the same line, over-
expression of PTN in a human adrenal carcinoma cell
line SW13 promotes not only in vivo tumor growth, but
also tumor-induced angiogenesis, suggesting that consti-
tutive PTN signaling fully regulates the angiogenic
switch [127]. Expression of PTN in breast cancer MCF-
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7 cells stimulates tumor growth, remodeling of the micro-
environment and tumor-induced angiogenesis in vivo
[105, 122].

Ribozyme-mediated depletion of HERV-PTN mRNA in
human choriocarcinoma suggests that PTN is an essential
and rate-limiting factor for choriocarcinoma growth,
invasion, and angiogenesis in vivo [93]. Moreover, RNA
interference-mediated gene silencing of PTN suppresses
glioblastoma growth and angiogenesis in vivo [128].
Finally, PTN antisense expression in human prostate can-
cer LNCaP cells inhibits LNCaP cell-induced angiogene-
sis in vivo in the chicken embryo chorioallantoic mem-
brane [91].

On the other hand, there is also evidence that PTN can
act as an angiostatic factor. For example, vascularization
was significantly decreased in neuroblastoma xenografts
that over-express PTN and that are resistant to the DNA-
topoisomerase [ inhibitor irinotecan [110]. Similarly,
PTN antisense expression in rat glioma C6 cells,
increased C6 glioma cell-induced angiogenesis in vivo
in the chicken embryo chorioallantoic membrane [111].
In both cases, direct binding of PTN to VEGF has been
discussed as the possible reason, although other mechan-
isms may be also involved.

STRUCTURE-FUNCTION DATA

Many studies have been undertaken in order to determine
which regions of PTN are responsible for its diverse
functions, in an effort to identify the molecular mechan-
isms involved and to identify possible therapeutic targets
or/and agents. Kilpelainen et al. suggested that the two
TSR-1 motifs are responsible for the interaction of PTN
with heparin, an interaction associated with many of the
biological activities of PTN [14]. More recent data sug-
gest the involvement of only the carboxyl terminal TSR-
1 motif in heparin binding [17, 129], and the mitogenic,
transforming and angiogenic activities of PTN in vitro
and in vivo in nude mice [129].

It has been shown that PTN exists in two naturally occur-
ring forms, PTN15 and PTN18, with differential interac-
tions with its receptors anaplastic lymphoma kinase
(ALK) and receptor protein tyrosine phosphatase [/
(RPTPB/C), and different activities. PTNI18 interacts
with RPTPB/C and induces glioma cell migration, while
PTN15 interacts with ALK and induces glioma cell pro-
liferation [97]. The two forms of PTN differ in their car-
boxyl terminus, which is being investigated for its role in
tumor growth and angiogenesis. It has long been shown
that the C-terminal lysine-rich domain of PTN (amino
acids 111-136) is not involved in neurite outgrowth activ-
ity, but it seems to play a key role in the mitogenic and
tumor formation activities of PTN [130]. A truncated
PTN lacking the C-terminal 111-136 portion inhibits
tumor development by inhibition of both endothelial
and breast cancer cells [131]. The exact mechanism of
action of the C-terminal lysine-rich domain of PTN is
not known. It has been suggested that it acts through
binding to ALK [132], or RPTPP/{ [133] and antagonizes
PTN binding and activity [132, 133]. Since this domain
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of PTN seems to play an important role in its biological
activities related to tumor growth and angiogenesis, more
work is needed to identify the molecule(s) with which it
interacts, the result(s) of such interactions, as well as its
possible therapeutic potential.

RECEPTORS, MOLECULAR MECHANISMS
AND INTERACTIONS WITH OTHER
MOLECULES INVOLVED IN PTN ACTIONS
RELATED TO ANGIOGENESIS AND CANCER

Syndecans

The first identified receptor for PTN has been N-
syndecan [134]. The interaction of PTN with N-
syndecan takes place via its heparan sulfate side chains
[134, 135] and is mediated by both TSR-1 domains of
PTN [136, 137]. Binding of PTN to N-syndecan pro-
motes several PTN-induced actions in the nervous system
[135, 138-140].

Besides the nervous system, possible involvement of N-
syndecan in PTN activities has been mentioned in osteo-
blasts [73, 78], and in parenchymal cells in adult and
embryonic liver [61]. No involvement of N-syndecan in
PTN-induced activities related to angiogenesis and can-
cer has been mentioned, nor is it known whether other
syndecans interact and mediate PTN-induced actions.

Anaplastic lymphoma kinase (ALK)

ALK is a 220-kDa receptor tyrosine kinase (RTK)
encoded by the alk gene on chromosome 2p23. ALK
was first identified as part of the NPM-ALK oncogenic
fusion protein, resulting from the (2;5)(p23;q35) translo-
cation that is frequently associated with anaplastic large-
cell lymphoma [141]. Full-length ALK has the typical
structure of an RTK, with a large extracellular domain,
a lipophilic transmembrane segment, a cytoplasmic tyro-
sine kinase domain, and belongs to the insulin receptor
superfamily. It was initially described as an orphan RTK
that shows restricted tissue distribution and is regulated
during organ development [142, 143]. PTN was initially
identified as a potential ligand of ALK, based on a
genetic screen by peptide ‘phage display [144]. Different
groups have since suggested ALK to be a functional PTN
receptor [144-147]. In support of this, the expression pat-
tern of PTN partially overlaps with that of ALK in the
rodent developing nervous system [144].

Beyond ALK expression in the nervous system, cultured
fibroblasts and endothelial cells, it has also been detected
in osteoblastic cells [148] and chondrocytes [25], in pan-
creatic and breast carcinoma [144, 149], melanoma [150],
neuroblastoma [151] glioblastoma [145, 146] and non-
Hodgkin’s lymphoma [152].

On the other hand, ALK expression is low in a wide
variety of soft tumors [153], and is characterized by lim-
ited tissue distribution [142]. Moreover, recent studies
performed by different groups argue against PTN as a
specific ALK ligand, since binding or activation of
ALK by PTN cannot be detected [150, 154-158]. A pos-
sible explanation to the confusion in the literature may be
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the differential activation of ALK by the two naturally
occurring forms of PTN [97], or the indirect PTN-
induced ALK activation through PTN-dependent inacti-
vation of the RPTPB/C [159].

Receptor protein tyrosine phosphatase f/ (RPTPB/)

RPTPP/C was initially isolated from neural tissue as a
transmembrane  protein-tyrosine-phosphatase  (PTPase)
that consists of a putative signal peptide, a very large
extracellular domain containing an N-terminal sequence
homologous to carbonic anhydrase, a transmembrane
region and a cytoplasmic portion that contains two
repeated PTPase-like domains [160]. A shorter transmem-
brane and two secreted isoforms corresponding to the
extracellular portions of the long and short transmembrane
isoforms have been described, all considered splice var-
iants of RPTPP/C [161-163]. The short transmembrane iso-
form lacks 859 amino acids from the extracellular domain
[161] and also interacts with PTN. Phosphacan, the
secreted isoform that corresponds to the extracellular por-
tion of the long RPTPP/(; is also able to bind PTN [162],
and is considered to modulate cell interactions and devel-
opmental processes in the nervous system [164]. Changes
in chondroitin sulfate on phosphacan are developmentally
regulated and regulate phosphacan’s affinity for PTN
[165]. Phosphacan short isoform that corresponds to the
extracellular portion of the short RPTPP/C, is not a proteo-
glycan [163] and has not been shown to interact with PTN.
Apart from the RPTPB/C splicing variants that are normally
expressed, under physiological conditions, RPTPB/C is
cleaved by matrix metalloproteinase 9, tumor necrosis
factor-a converting enzyme, presenilin/y-secretase [166]
and plasmin [167], leading to secreted, transmembrane,
or cytoplasmic forms of, not yet, fully identified biological
significance.

It has been suggested that PTN binding to RPTPB/C leads
to dimerization of the receptor and inhibition of the
PTPase activity. The PTN-dependent RPTP/C inactiva-
tion was shown to lead to increased phosphorylation of
B-catenin [168], B-adducin [169] and Fyn [170], thus
regulating cytoskeletal stability, cell plasticity and cell-
cell adhesion mechanisms [169]. In U373 cells, PTN
induced increased tyrosine phosphorylation of different
RPTPB/C substrates required for epithelial-mesenchymal
transition [103]. On the other hand, PTN binding to
RPTPB/C in endothelial cells leads to dephosphorylation
and thus activation of c-src, focal adhesion kinase,
phosphatidylinositol-3-kinase and mitogen-activated pro-
tein kinases, all participating in PTN-induced endothelial
cell migration and tube formation on matrigel [116]. We
have more recently shown that in order for RPTPB/C to
induce cell migration, the presence of a,B; integrin is
required. RPTPB/C and «,fB5 form a functional complex
on the surface of endothelial and glioma cell lines, and
RPTPB/C seems to be responsible for B3 tyrosine phos-
phorylation through the activation of c-src [112]. PTN
inhibits migration of cells that do not express a,fs,
even if these cells express RPTPB/C [112], however, the
exact mechanism(s) involved are not known.
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Other possible (co-)receptors

It has long been shown that PTN interacts with several
proteoglycans (PGs) with different affinities [171], inter-
actions that seem to contribute to PTN dimerization [172]
or storage into the extracellular matrix [113]. Among PGs,
many reports have implicated a role for chondroitin sul-
fate (CS) PGs in the PTN-mediated signaling pathway. It
has been shown by several studies that PTN interacts
especially with over-sulfated CSs [162, 165, 173-175],
an interaction important for the development of the ner-
vous system [173, 176, 177] and for growth and/or pro-
gression of tumors [178]. Versican, a CS-PG with a high
content of the E disaccharide units, was found to bind
strongly PTN, an interaction abolished by chondroitinase
ABC digestion [179]. Similarly, the appican CS chain
from rat C6 glioma cells, but not that from SH-SY5Y
neuroblastoma cells that contained no E disaccharide,
was found to bind specifically PTN [180]. These findings
indicate that the E motif is essential for the interaction of
the CS chains with PTN. Analysis of the oligosaccharides
isolated from embryonic CS/dermatan sulfate (DS) chains
revealed that octasaccharide is the minimal size capable of
interacting with PTN at a physiological salt concentration,
and that PTN binds to multiple sequences in embryonic
CS/DS chains with distinct affinity [181].

PTN also binds o,f3;, but not asp; integrin, an interaction
that is responsible for PTN-induced cell migration in both
endothelial and glioma cell lines [112]. Integrin o, 35 forms
a functional complex with RPTPB/C on the cell surface,
both components of which are required for the stimulatory
effect of PTN on cell migration. Activation of 3 through
phosphorylation of its cytoplasmic tyrosine 773, is
required, but is not sufficient to transduce the stimulatory
effect of PTN [112]. Further studies are being conducted to
elucidate the signaling pathway involved. Interestingly,
o,B5 is not a receptor for MK [112], in contrast to all
other PTN receptors discussed to date.

Finally, PTN binds nucleolin [182], a 100 kDa multifunc-
tional protein present in the nucleus, cytoplasm, and on
the surface of some types of cells, including endothelial
[183] and cancer [184, 185] cells. HB-19 pseudopeptide,
a specific antagonist that binds the C-terminal tail of
nucleolin, has been shown to suppress the growth of
tumor cells and angiogenesis in various in vitro and in
vivo experimental models [184]. Nucleolin is considered
to be a low affinity receptor for PTN, and has been sug-
gested to possibly import PTN into the nucleus [182].
PTN binds nucleolin through its C-TSR-1 domain with
a Kd value of 1.3-1.4 x 10-6 M [186] in the absence of
heparin. This binding is strongly inhibited by heparin
even though it has not been clarified whether the inhibi-
tion was caused by the binding of heparin to PTN or
nucleolin [182]. Following its binding to cell surface
nucleolin, PTN is internalized in a temperature-sensitive
manner, which is independent of heparin and CS PGs
[186]. What is the role of the interaction of PTN with
nucleolin and of the subsequent PTN internalization
remains unknown, but is under further investigation for
its possible implication in the effects of PTN on tumor
growth and angiogenesis.
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CONCLUSION

Although many aspects remain obscure, PTN seems to be
significant for tumor growth and angiogenesis, possibly
through diverse mechanisms. Clarification of the recep-

tors,

as well as the signaling pathways involved, is of

great importance, both for increasing our knowledge con-
cerning cancer growth, and for developing new therapeu-
tic strategies.
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