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ABSTRACT. As tumors grow, their original vasculature can be insufficient to supply the growing tissue mass,
and consequently local hypoxia develops. Thus neovascularisation is a key feature determining growth and
metastasis of malignant tumors. This is, at least in part, mediated by humoral factors known to stimulate angio-
genesis, such as vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2). Among the
multiple angiogenic modulators released by tumor and stromal cells, a key role is played by nitric oxide (NO).
Beside its capacity to regulate permeability and blood flow, NO has been reported to exert angiogenic properties
in various tumor models. The focus of this review will be the proangiogenic role of NO in the tumor microenvi-
ronment and its multiple mechanism of action on vascular endothelium. Particular attention will be devoted
to the role of NO in regulating metalloproteinase activity on cultured microvascular endothelium and in the
in vivo rabbit cornea assay. Finally, the potential clinical outcomes and expectations related to this topic will be

discussed.

Keywords: angiogenesis, endothelial cell, metalloproteinases, nitric oxide, tumor

FEATURES OF TUMOR VASCULARISATION

Angiogenesis is the main process mediating the expan-
sion of the blood vessel network during development,
tissue regeneration and in pathological conditions such
as cancer.

The growth of new blood vessels is regulated by a sequen-
tial cascade of cellular events which involves:

— the directional sprouting of outgrowing endothelial
cells to form a solid cord

— their attractive and repulsive positioning with subse-
quent network formation and establishment of flow

— the maturation of the resulting vasculature with recruit-
ment of periendothelial mural cells and acquisition of the
quiescent vascular phenotype. This series of events is
associated with distinct endothelial phenotypes and cor-
responding molecular signatures designed as tip cells
(invading lamellipodia- and filopodia-rich cells), stalk
cells (following remodelling and lumen-forming cells)
and phalanx cells (quiescent endothelial cells).

In tumors, the expanded vasculature provides nutrients
required for tumor growth, but the newly formed and
remodelled blood vessels have multiple abnormalities
that distinguish them from normal vessels, and limit their
efficiency. Tumor blood vessels are highly irregular, tortu-
ous, have arterio-venous shunts, blind ends, lack smooth
muscle and innervation, and have incomplete endothelial
linings and basement membranes. All components of the

vessel wall, including endothelial cells, pericytes and
basement membrane are indeed abnormal. Structural
defects results in impaired endothelial barrier function,
vessel leakiness, poor blood flow, hypoperfusion and
increased interstitial pressure, thus limiting the diffusion
and efficacy of anticancer drugs.

Typical tumor angiogenic factors such as vascular
endothelial growth factor (VEGF), and fibroblast growth
factors (FGFs) are able to drive the early stages of angio-
genesis and induce the abnormal vessel phenotype. The
process is nonetheless controlled by the balance of multi-
ple and complex angiogenic factors and inhibitors. Among
them, nitric oxide (NO) has been reported to contribute to
tumor biology and vascularization with multiple cellular
and molecular effects and sometimes with divergent prop-
erties. Examining the role of NO in angiogenesis and
tumor cell development can help the design of novel
drugs potentially aimed at producing vessel normalization
thus improving drug delivery and anticancer treatments.

NO AND CANCER

After the initial discovery of NO, several actions in both
physiology and pathological conditions have been attrib-
uted to this gaseous mediator. Most of them are diver-
gent, depending on the concentration, the duration of its
release, the cell type and the presence of scavengers or
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other reactive molecules in the microenvironment, which
may impair or otherwise amplify the effects of NO.

In the last three decades, the role of NO in tumor cell
biology and tumor angiogenesis has been firmly estab-
lished. However, many articles have been published sug-
gesting contradicting results (see [1-4] as recent reviews).
A solid tumor consists of cancer cells and host-derived
cells, including tumor-infiltrating leucocytes and cells of
the tumor vasculature, especially endothelial cells. One
or more of these cellular constituents may be responsible
for the production of NO in the tumor microenvironment
[5] (figure 1). Functional roles for tumor-derived NO in
cancer progression and spreading represent a complex
combination of NO-mediated effects on tumor cell prolif-
eration and invasiveness and the functions of immune/stro-
mal cells infiltrating tumors. It has been proposed that NO
also promotes tumor growth by regulating tumor blood
flow and maintaining the vasodilated tone of tumor micro-
vasculature. In addition to angiogenesis stimulation, NO
can promote metastasis by increasing vascular permeabil-
ity, and up-regulating matrix metalloproteases (MMPs).
Recently, it has been reported that NO released by meta-
static tumor cells may impair the immune system, which
facilitates their escape from immunosurveillance and
metastasis of tumor cells [2, 6]. Moreover, an association
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between NO production, resistance to chemotherapeutic
drugs and angiogenesis has been demonstrated [7].

In this intricate scenario, the present review will be
particularly focused on the proangiogenic role of NO in
tumor angiogenesis, providing experimental data in
support of it.

NO AND NO SYNTHASES (NOS) INVOLVED
IN TUMOR ANGIOGENESIS

NO is a short-lived, gaseous, free radical that is produced
by the activity of specific NOS isoforms starting from the
precursor L-arginine [8]. NO is a highly diffusive, hydro-
phobic molecule and it is therefore a key signalling
molecule in inflammation-driven diseases including
cancer [9].

For a comprehensive description of NO biosynthesis and
NOS isoform regulation and expression we refer to perti-
nent literature [10]. In this review, particular attention
will be paid to the endothelial constitutive (eNOS) and
inducible (iNOS) isoforms. The first is mainly present on
vascular endothelium and produces nanomolar amounts
of NO in a calcium-dependent manner. The inducible
isoform is overexpressed in most of the solid tumors
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Figure 1
Interplay between angiogenic factors, prostanoids and nitric oxide produced and released by stromal/inflammatory and tumor cells in pro-
moting angiogenesis. The tumor microenvironment is particularly rich in these factors (as VEGF, FGF-2, NO, PGE,), and many of these
mediators cooperate and synergize in stimulating endothelial cells toward an angiogenic phenotype.
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analyzed so far, and produces micromolar concentrations
of NO in a calcium-independent manner. The distinction,
however, is not so clear since there is evidence that INOS
can be induced in the endothelium by for example
inflammatory cytokines, while many tumor cells express
eNOS [11]. This finding highlights the problem of lack of
efficacy by NOS inhibitors designed to be specific for the
various synthases and proposed as antitumor strategies.

NO CONTRIBUTION TO VASCULAR BIOLOGY

NO contributes to cardiovascular regulation by multiple
mechanisms, such as vascular tone (vasodilation), vas-
cular remodelling (inhibition of smooth muscle cell
proliferation), and cell-cell interactions in blood vessels
(inhibition of platelet adhesion and aggregation; inhibition
of monocyte adhesion) [12]. NO is involved in the regu-
lation of basal systemic, coronary, and pulmonary vas-
cular tone through the production of cyclic guanosine
3’,5'-monophosphate (¢cGMP) in smooth muscle cells,
inhibition of the vasoconstrictor peptide endothelin-1,
and inhibition of norepinephrine release from sympathetic
nerve terminals [12].

eNOS-dependent NO production has been also shown to
contribute significantly to the endothelium-protective
effect of vasodilating peptides (as substance P and brady-
kinin) [13-15], drugs such as angiotensin-converting
enzyme inhibitors [16] and growth/vasopermeabilizing
factors such as VEGF [17].

MULTIPLE ROLES OF NO IN
TUMOR ANGIOGENESIS

Early experimental studies have shown that induction of
iNOS in tumor cells promotes angiogenesis (by upregu-
lating VEGF expression), which increases microvascular
density and tumor progression [18-22]. Inhibition of
NOS, genetically or with pharmacological agents, has
been shown to reduce VEGF levels and inhibit tumour
angiogenesis [23-26].

The strongest data supporting a fundamental role for NO in
tumor angiogenesis come, however, from the histological
examination of tumor specimens, revealing a significant
relationship between high angiogeneic activity (i.e. micro-
vessel density or VEGF expression) and iNOS expression
in human brain, head and neck, lung, breast, stomach,
colon tumors, etc. (see [27-36] among others). Together
these findings definitely indicate that cancer-derived NO
mediates tumor angiogenesis, invasion and growth.

The contribution of NO to tumor angiogenesis is multi-
faceted. NO has been shown to mediate angiogenesis by
direct and indirect mechanisms. Beside its direct, stimu-
lating effects on endothelial cells, NO has been demon-
strated to be a mediator of angiogenic factor activity and
to control transcriptionally angiogenic stimuli expres-
sion in endothelial, tumor and stromal cells. Conversely,
it has been reported that antiangiogenic molecules and
drugs lead to NOS inhibition and that NO downregu-
lates angiogenesis-inhibitor expression. The permissive
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action of exogenous or endogenously-produced NO on
angiogenesis will be particularly examined.

Firstly, NO exposure increases DNA synthesis, cell
proliferation and migration of endothelial cells through
the soluble guanylate cyclase-cGMP pathway, as well as
through S-nitrosylation or nitration of specific target proteins
[13, 37-40]. Recently, a role for NO in the mobilization of
stem and progenitor cells has also been described [41].
Secondly, NO has been shown to mediate the function of
many angiogenic factors. VEGF, sphingosine-1-phosphate,
angiopoietins, oestrogen, shear stress and metabolic stress
activate eNOS through phospholipase-C/Ca*"-calmodulin
binding and phosphoinositide 3-kinase (PI3K)-Akt-induced
and adenylate-cyclase-protein-kinase-A-induced phosphor-
ylation [42-49]. VEGF can also activate eNOS by the
recruitment of heat shock protein 90 [41, 50, 51] and
upregulation of eNOS mRNA and protein [52, 53]. Further,
VEGF increases angiogenesis in both iNOS™* and iNOS™~
mice, but not in eNOS '~ mice, supporting a predominant
role for eNOS in VEGF-induced angiogenesis and vascular
permeability [41].

Additionally, NO or reactive nitroderivative species inter-
fere with the synthesis and activation of the pro-metastatic
and pro-angiogenic family of matrix metalloproteinases
(MMP), enzymes involved in the degradation of the
basal membrane of blood vessels [38, 54, 55]. The role
of NO in the balance between MMPs and their tissue
inhibitors (TIMPs) has been studied in vitro in microvas-
cular endothelial cells and in vivo in the avascular rabbit
cornea model. Data reported in figure 2 indicate that
endogenously-produced NO is able to promote MMP-2
activity in endothelium stimulated by VEGF, by promoting
MMP-2 gene up-regulation and down-regulating TIMP-1
and 2 expression (figure 24-C). These VEGF-promoted
effects are eNOS- and cGMP-dependent, since they can
be blocked by preincubation with selective inhibitors of
NOS (L-NMMA) or soluble guanylate cyclase (ODQ),
and reproduced by a stable analogue of the intracellular
mediator of NO (8-Br-cGMP) or exogenous NO (the NO
donor S-nitroso-N-acetyl-1,I-penicillamine, SNAP). The
relevance of the NO pathway and the MMP/TIMP balance
in VEGF-induced neovascularization (figure 3) was sub-
stantiated in the rabbit cornea, where the neovascular
growth induced by VEGF was impaired by pre-treating
the animals with a NOS inhibitor (L-NAME) in the drink-
ing water, or enriching the corneal microenvironment with
TIMP-2 microinjection (figure 2D).

According to the altered balance between MMPs and
TIMPs by exogenous and endogenous NO in the micro-
vascular endothelium, the regulation of both endothelial
MMP-13 and TIMP-4 by direct amino acid nitration has
been recently reported [56, 57].

These findings, taken together, reinforce the concept of
abnormal vessel morphology and function in tumors, accom-
panied by increased basement membrane degradation.

In cell culture models, eNOS is a central mediator of
several other endothelium growth stimulators, such as
prostaglandin E, (PGE,; 58). Also, PGE, activates the
phosphatidylinositol 3-kinase (PI3K)/Akt pathway and
promotes endothelial cell sprouting (the first step in neoan-
giogenesis) through the NO/cGMP pathway [58].
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Figure 2
Role of the MMP/TIMP balance in the angiogeneic activity elicited by VEGF through the NOS/cGMP pathway.
A) Effect of the NO-cGMP pathway inhibition on MMP-2 release and activity in media of coronary venular endothelial cells (CVEC, [74])
treated with VEGF. Serum-starved CVEC were pre-incubated for 1 h with a NOS inhibitor (L-NMMA; 1 mM) or soluble guanylate
gyclase inhibitor (ODQ; 10 M) and then stimulated for 24 h with VEGF (20 ng/mL) or 8-Br-cGMP (100 pM). MMP-2 activity was mea-
sured in the supernatant by gelatine zymography [75]. Open bars represent the 72 kDa form, solid bars the 64 kDa form of MMP-2.
Results are expressed as optical density (OD) of the zymograms. The OD of each band was normalized for the corresponding cell number.
n=3.* p<0.01 versus control condition and * p < 0.01 versus VEGF alone.
B) Role of NO in MMP-2 mRNA expression. Serum-starved CVEC were stimulated for 24 h with VEGF (20 ng/mL), with or without the
NOS inhibitor L-NMMA (1 mM), with the NO donor drug SNAP (100 uM) or 8-Br-cGMP (100 uM). MMP-2 mRNA expression was
measured by RT-PCR [76]. Amplification products were quantified by den31tometry of the gels. Data are expressed as means £ SEM of
MMP-2/GAPDH optical density (OD); n=3. * p < 0.05 versus control condition, " p <0.05 versus VEGF alone.
C) Western blotting for TIMP-1 and TIMP-2 expression in CVEC pretreated for 1 h with L-NMMA (ImM) and then stimulated for 8 and
16 h with VEGF (20 ng/mL) or SNAP (100 uM). Results were normalised with beta actin. One representative gel out of three is shown.
D) Effect of NOS inhibition and hrTIMP-2 on VEGF-induced angiogenesis in vivo. Animals were treated either with 0.5 g/L L-NAME in
the drinking water for 1 week before and for 10 days after the implant of VEGF (100 ng/pellet), or the corneal stroma was enriched by
microinjection of hrTIMP-2 (25 ng/cornea) one day before VEGF-implant [13]. The vehicle as well as Elvax empty pellets did not affect

the neovascular growth. Data are reported as angiogenic score at day seven. n = 4.

Thirdly, NO is an important modulator of the expression of
endogenous angiogenic factors. An NO donor induces VEGF
expression [19] and microvascular endothelial cell prolifera-
tion through the upregulation of FGF-2 [13] (figure 3).

NO activates the transcription factor hypoxia-inducible factor
1 a (HIF1 o), which, in turn, upregulates VEGF, thereby pro-
moting angiogenesis [59, 60]. NO induces HIF1 a synthesis
through MAPK and PI3K under normoxic conditions [61]. It
also impairs normoxic degradation of HIF1a by inhibiting the
action of prolyl hydroxylases [62]. A recent study found
expression of iNOS and/or eNOS in all cases of HIFla-
positive oral squamous-cell carcinomas, which suggests that
there is an NO-induced HIF1a accumulation and subsequent
tumour-promoting effects in cancer [63].

At low levels, endogenous or exogenous NO can also
serve as an intracellular second messenger for the induc-
tion of expression of the IL-8 gene in tumor cells, which
represents an indirect angiogenesis factor [64, 65].
Moreover, in tumor and stromal cells NO can regulate
the expression of inflammatory molecules as nuclear
factor-KB (NF-kB) and cycloxygenase-2 [66].

" p <0.05 versus VEGF alone.

The commonly held concept regarding cooperation among
inflammatory mediators is indeed generally accepted both in
inflammatory-based diseases and in cancer. Overexpression,
elevated secretion, or abnormal activation of proinflammatory
mediators, such as cytokines, chemokines, prostaglandins,
and nitric oxide, and an intricate network of intracellular sig-
nalling molecules including upstream kinases and transcrip-
tion factors facilitate tumor promotion and progression [67].
In the case of colorectal cancer for example, the interaction of
NO with cyclooxygenase (COX)-2 seems to mediate a coop-
erative effect, culminating in the increased production of
VEGEF [68].

CONCLUSION AND PERSPECTIVES

Many points on the role of NO in vessel biology and in
particular in tumor angiogenesis remain to be elucidated.
First of all, the controversial proposal that vasodilator
nitric oxide donors be used as therapeutic adjuvant to
increase tumor blood flow and oxygenation in order to
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Figure 3

Schematic representation of the molecular cascades involved in NO-mediated angiogenesis. The invaginations of the microvascular endo-
thelial cell membrane where receptors (tyrosine kinase or G-coupled receptors for angiogenic factors or vasoactive peptides) and key sig-
nalling enzymes are concentrated are the caveolae. The activation of NO-dependent MAPK pathway is then responsible for increased
FGF-2 and MMPs transcription, with concomitant TIMP-1 and 2 downregulation. These events are ultimately responsible for endothelial
cell migration, increased basement membrane degradation and proliferation, thus leading to neovascular growth [13-15, 44, 46].

increase the response to radiotherapy or p53-dependent
anticancer drugs [69]. However, NO combination therapy
for solid tumors does not have approval at this time.
Among the open questions we want to stress i) the unsuc-
cessful effort to develop selective and safe strategies to
inhibit NOS isoforms present at tumor level, ii) the pau-
city of clinical trials involving NO, and iii) the genetic
variations present in genes encoding for NOS isoforms or
NO pathway-related proteins in relation to tumor risk.

A phase I clinical trial designed to use the NOS inhibitor
N-nitro-L-arginine (L-NNA) in different solid tumors
documented a correlation between the L-NNA plasma
area under the curve and the reduction in tumor blood
volume [70].

Genetic comparison studies on healthy people and cancer
patients have shown that gene polymorphisms in NOS
are associated with the development of multiple cancers
[71-73]. Although the functional effect of NOS SNPs has
yet to be determined in large studies, these data support
the hypothesis that abnormal NOS genes might drive
tumorigenesis in humans.
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