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Human glioma tumors express high levels
of the chemokine receptor CX3CR1

Marco Locatelli1, Leonardo Boiocchi1,2, Stefano Ferrero2, Filippo Martinelli Boneschi3,
Mario Zavanone1,4, Samantha Pesce5, Paola Allavena5, Sergio Maria Gaini1,4,
Lorenzo Bello1,4, Alberto Mantovani5,6

1 Neurosurgery, Fondazione IRCCS, Ca’Granda Ospedale Maggiore Policlinico Mangiagalli e Regina Elena, Milan
2 II Cattedra di Anatomia Patologica, Dipartimento di Medicina, Chirurgia e Odontoiatria, University of Milan, A.O. San Paolo Milan
3 Institute of Experimental Neurology (INSPE), Scientific Institute San Raffaele, Milan
4 Department of Neurological Sciences, University of Milan
5 Istituto Clinico Humanitas IRCCS, Rozzano, Milan
6 Department of Translational Medicine, University of Milan, Italy

Correspondence: Prof. A. Mantovani, Istituto Clinico Humanitas IRCCS, Via Manzoni 56, 20089 Rozzano, Milan, Italy
<Alberto.mantovani@humanitas.it>

Accepted for publication December 8, 2009

ABSTRACT. The chemokine receptor CX3CR1 and its cognate ligand CX3CL1 (also known as fractalkine), are
involved in central nervous system pathophysiology, in particular, in the cross-talk between neurons and micro-
glia. It was therefore important to investigate the expression of CX3CR1 in gliomas, the most frequently occur-
ring, malignant brain tumors. In a consecutive series of 70 patients with primary, central nervous glial tumors,
CX3CR1 was highly expressed in tumor cells as assessed by RT-PCR mRNA and protein levels, and by immu-
nohistochemistry, while the corresponding normal cells were negative. Receptor immuno-positivity did not
correlate with histology, grade, chromosomal (1p,19q) deletion, or with methylation of the DNA repair gene
promoter MGMT (O6-methylguanine-DNA methyltransferase). Thus, CX3CR1 expression is a frequent event
in gliomas, irrespective of tumor classification and clinical severity. The molecular basis underlying CX3CR1
up-regulation and its functional biological significance remain to be determined.
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Diffuse gliomas are the most common malignant tumors
of the brain. They include heterogeneous tumors that are
classified, according to their pathological characteristics,
as astrocytomas, oligodendrogliomas, and glioblastomas.
The World Health Organization (WHO) has defined a
malignancy scale: usually astrocytomas and oligodendro-
gliomas are grade II (or III in the anaplastic form), while
glioblastomas are grade IV and are considered highly
malignant [1-3]. In spite of optimal treatment, patients
with glioblastomas survive less than one year and prog-
nosis has not changed in the last two decades. These
tumors have a rapidly expanding nature and invade the
normal brain by active cell migration. The migratory abil-
ity of glioma cells has been investigated by electron
microscopy, and it was shown that neoplastic cells easily
adjust their shape and size to slip through the narrow
extracellular brain spaces, a process that requires Cl-

Channels [4].
It is now established that migrating malignant cells may
exploit chemokine receptors to invade surrounding tis-
sues and leading to distant metastasis [5, 6]. Chemokines
are a large family of chemotactic factors inducing cell
motility in several cell types [7, 8]. Chemokines have

been mostly studied for their potent effect on the recruit-
ment of leukocytes at sites of inflammation; however, it
has become increasingly clear that tumors also express
functional chemokine receptors [5, 6, 9, 10]. In addition
to cell mobilization and metastatic ability, other important
roles - relevant to tumor biology - have been attributed
to the chemokine system, e.g. enhanced tumor cell
proliferation, resistance to apoptosis and regulation of
angiogenesis [5].
A number of studies investigated the expression of
chemokine receptors in tumors, including gliomas.
mRNA for receptors of the CXC subfamily have been
reported, with CXCR4 being the most frequently
expressed [5, 11-13]. Furthermore, the presence of
CXCR4 has been associated with the most aggressive
forms of gliomas and with poor patient survival [14, 15].
Cancer stem cells isolated from glioblastoma are positive
for CXCR4 and treatment with the specific ligand
CXCL12 stimulates their proliferation [15].
In this study, we have explored the expression of the
chemokine receptor CX3CR1 in human gliomas. Physio-
logically, CX3CR1 is predominantly expressed by leuko-
cytes such as monocytes, NK and Th1 lymphocytes, and
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mediates adhesion and migration through the endo-
thelium, the latter expressing the specific ligand
CX3CL1 as a trans-membrane protein [16-19]. In the
brain, CX3CR1 is expressed by the microglia, while
neurons produce the ligand CX3CL1 (originally identi-
fied as neurotactin or fractalkine) [20-22]. A few studies
have documented an exception to this rule: in different
species and conditions, neurons may also express the
receptor [23, 24], while positivity for CX3CR1 in glial
cells was more controversial [23-26].
The ligand CX3CL1 is one of the most expressed che-
mokines in the brain [21, 22, 25]. Experimental evidence
has established that the CX3CR1/CX3CL1 axis plays a
major role in the neuron/microglia cross-talk, and in
neuro-protection under conditions of inflammation/injury
[22, 27-33].
We show in this study, involving a large case list of
human gliomas, that neoplastic cells strongly express
the CX3CR1. Receptor expression already occurs in
low-grade tumors, suggesting that its up-regulation is an
early event during malignant transformation.

METHODS AND MATERIALS

Patients

Seventy consecutive patients with primary CNS tumors,
who attended the Neurosurgery Division of IRCCS Ospe-
dale Maggiore Policlinico, Mangiagalli and Regina
Elena, Milan, Italy, between 2005 and 2007 were
enrolled in this study. Tumor specimens were diagnosed
according to the last 2000 WHO classification: olidoden-
drogliomas (n = 23); low-grade astrocytomas (n = 9),
high-grade astrocytomas or anaplastic astrocytomas
(n = 10), glioblastomas (n = 23), and oligoastrocytomas
(n = 5). Informed consent was obtained from all patients.

Immunohistochemistry of glioblastoma
samples for CX3CR1

All specimens were reviewed independently by two
pathologists (SF and LB) blinded to the diagnosis and
clinical data. From each block, three sections were
selected, and deparaffinized in xylene. Antigen retrieval
was performed using sodium citrate buffer (pH 6.0) in a
microwave oven, three times for five minutes and sam-
ples were stained (Genomix i-6000, BioGenex, San
Ramon CA, USA) with rabbit polyclonal anti-human
CX3CR1 antibody (Abcam, Cambridge, UK; 1:350 dilu-
tion, overnight at 4°C). Reactions were revealed using
NovoLink Polymer Detection System (Novocastra),
according to the manufacturer’s instructions. After a dia-
minobenzidine reaction (DAB; Liquid DAB + Substrate
Chromogen System, DakoCytomation), sections were
counterstained with hematoxylin (Mayer, DIAPATH).
We evaluated the percentage of positive tumor cells
and the intensity of the staining. A semiquantitative
four-grades scoring system was used for the evaluation
of the percentage of positive neoplastic cells. Score 0:
no immunoreactivity; score 1: < 10% of neoplastic cells
were immunoreactive; score 2: immunoreactivity

between > 10% and < 50%; score 3: immunoreactiv-
ity > 50%. Staining intensity was scored: 0: for no staining,
1: faint staining, 2: moderate and 3: strong. We multiplied
these two scores (positive cells % × intensity) to obtain a
final score with a continuous distribution.

RNA extraction and quantitative real-time RT-PCR
(Q-PCR) for CX3CR1 mRNA

Total RNA was isolated from the following frozen tissue
specimens: oligodendroglioma (n = 4); astrocytoma
(n = 2); glioblastoma (n = 3). RNA was exctracted using
TRI Reagent (Ambion), as previously described [34], and
quantified using a Nanodrop Spectrophotometer ND-
1000. Ten μg of RNA were treated with Turbo DNA-
free (Ambion) to eliminate genomic DNA contamination.
Two μg of total RNA were reverse-transcribed using the
High Capacity cDNA Archive Kit (Applied Biosystems)
according to the manufacturer’s instruction. CX3XR1
mRNA expression was analyzed using SYBR green-
based quantitative real time RT-PCR (Q-PCR) as previ-
ously described [34]. 18S was used as an internal control
to normalize samples. Specific primers were computer-
designed:
18S:
Forward: 5′ CGC CGC TAG AGG TGA AAT TC 3′
Reverse: 5′ CTT TCG CTC TGG TCC GTC TT 3′
CX3CR1 :
Forward: 5′ GGG ACT GTG TTC CTG TCC AT 3′
Reverse: 5′ GAC ACT CTT GGG CTT CTT GC 3′
The amount of CX3CR1 mRNA relative to the house-
keeping gene 18S was calculated as 2-ΔCt, where
ΔCt = CtCX3CR1 - Ct18S. The threshold cycle Ct was auto-
matically given by the SDS2.2 software package (Applied
Biosystems).

Loss of heterozygosity at chromosomes 1p and 19q

Tumor DNA was extracted from paraffin-embedded
tissues using the DNeasy Tissue Kit (QIAGEN, Inc.
Milano, Italy) according to the manufacturer’s protocol.
Following DNA extraction, all tumor samples were sub-
jected to control gene (PGK) amplification to assess
DNA integrity. Constitutional DNA from peripheral
blood leukocytes was isolated using the standard
phenol/chloroform extraction method with ethanol pre-
cipitation. Constitutional DNA/ tumor DNA pairs were
evaluated by standard PCR-based LOH assays, as
described. [35]

Methylation of the MGMT (O 6-methylguanine-DNA
methyltransferase) promoter

The methylation status of the MGMT promoter gene was
determined using methylation-specific PCR. Tumor DNA
from paraffin embedded tissues (10 μm sections) was
modified by sodium bisulfite, which converts unmethy-
lated, but not methylated, cytosine to uracil, as described.
[36, 37] Modified DNA was submitted to methylation-

specific polymerase chain reaction (MSP) after a nested-
polymerase chain reaction protocol. The following primers
were used:
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MGMT
Forward: 5′ GGATATGTTG GGATAGTT 3′; Reverse: 5′
CCAAAAACCCCAAACCC 3′.
The PCR products were separated on 4% agarose gels.

Statistical analysis

Statistical analysis was performed using the following
non-parametric test: 1) the Kruskall-Wallis test and the
Wilcoxon rank sum test for the comparison of the
CX3CR1 scores respectively, in four categories of brain
tumor severity (low-grade, low-grade recurrent, high-
grade and high-grade recurrent), and in two categories
based on the histopathological diagnosis (WHO grade II
versus grade III); 2) The Wilcoxon rank sum test was
used to compare the CX3CR1 score in brain biopsies
with or without loss of heterozygosity (LOH) at chromo-
somes 1p and 19q, and with or without MGMT methyla-
tion. Moreover, a multivariate logistic regression model
was built to assess the potential effect of demographic
variables (age and sex), and brain biopsy-related variable
(CX3CR1 score; presence of LOH; presence of MGMT
methylation), on the risk of having a high-grade tumor.
The coefficient of determination (Nagelkerke Pseudo R2)
was used as a measure of the percentage of the total vari-
ance explained by the different models. The strength of
the association between predictors and the dependent
variables was assessed by means of odds ratio (OR) and
relative 95% confidence intervals (CI).

RESULTS

Seventy patients affected by cerebral tumors, including
low-grade or type II WHO severity (oligodendroglioma;
astrocytoma) and high grade or type III-IV WHO severity
(glioblastoma and anaplastic oligodendroglioma) were
involved in this study. Patients (40 males and 30 females)
had a mean age of 42.9 years (SD 12.8 years). Thirty-
nine out of the 70 (55.7%) were affected by low-grade
tumors, and the remaining (44.3%) had high-grade
tumors. Comparison of clinical characteristics between
high- and low-grade tumors revealed that the male:female
ratio was similar in the two groups (1.60 versus 1.56;
Chi-square analysis: p = 0.95), while age was greater in
high-grade tumors (49.5 versus 40.2; p = 0.003).
Immunohistochemical evaluation of CX3CR1 was per-
formed with a specific anti-CX3CR1 antibody on tumor
sections obtained at surgery. The results are shown in
figure 1 and are summarized for all cases studied in
figure 2. We found that immunoreactivity for CX3CR1 in
normal brain was faint in scattered cells (figure 1A),
while tumor cells of each histological type showed a
strong immunopositivity: figure 1B depicts a case of
low-grade astrocytoma, while panels C-F show four
cases of glioblastoma. Only a few samples of oligoden-
drogliomas showed a weak expression, although this was
seen in more than 50% of cells. When the CX3CR1 score
was compared in categories of tumor severity defined as
low-grade, low-grade recurrent, high-grade and high-
grade recurrent, no statistically significant difference

was found (p = 0.72). Similar results were obtained when
low-grade tumors were stratified into oligodendroglioma
(n = 32) and astrocytoma (n = 7) (p = 0.42). Overall, the
marked expression of CX3CR1 was similar across low- and
high-grade tumors based on the histopathological diagnosis
(median value: 9.0; p = 0.30). Although no statistically
significant difference was found, weak CX3CR1 scores
were observed only in low-grade oligodendroglioma.
Multivariate models, including age and gender as covari-
ates, did not substantially changed the results.
To confirm receptor expression, CX3CR1 mRNA was
studied in selected tumor tissues. Figure 3 shows the
levels of mRNA CX3CR1 in four cases of oligodendro-
glioma, two astrocytoma and three glioblastoma.
Ongoing efforts are aimed to identify biological and
genetic alterations in brain tumors that may provide addi-
tional prognostic information, as well as guidance for
making decisions about optimal therapy. We therefore
considered other pathological variables reported to
occur in malignant gliomas. Epigenetic silencing of the
MGMT gene by promoter methylation has been asso-
ciated with longer survival in glioblastoma patients
receiving both radiotherapy and chemotherapy. Methyla-
tion of the MGMT promoter was detected in 77.6% of
patients tested (45/62), and was less frequent in high-
grade tumors (66.7% versus 85.3%; p = 0.09 Fisher’s
exact test).
Another biological variable currently analyzed in malig-
nant gliomas is the loss of heterozygosity (LOH), at
chromosomes 1p and 19q because of its correlation with
histology and chemotherapy response, especially in oligo-
dendrogliomas. [38, 39] LOH at either 1p or 19q was
present in 53.3% of patients tested (32/60), and again
was less frequent in high-grade than in low-grade tumors
(34.8% versus 64.9%); p = 0.03 Fisher’s exact test.
When all the variables were tested in a multivariate logis-
tic regression model, the presence of chromosomal dele-
tion at 1p or 19q was associated with a lower risk of
high-grade tumor (OR: 0.2; 95% CI: 0.1-0.8; p = 0.02;
table 1), while there was no apparent influence of
either MGMT gene methylation or CX3CR1 expression
(table 1). The statistical model was able to explain 27.6%
of the total variance of the dependent variable.

DISCUSSION

We show in this study that human gliomas have mRNA and
immunopositivity for the chemokine receptor CX3CR1.
Expression was evident even in low-grade tumors and
was highest in glioblastomas. Expression of CX3CR1 by
cancer cells has been poorly investigated: prostate tumors
express the receptor, which is involved in metastasis to
bone marrow [40, 41]. We have reported that human
pancreatic tumors upregulate CX3CR1, while the normal
pancreatic tissue is negative [34]. Recently, the involvement
of the CX3CR1 receptor in the transmigration of neuro-
blastoma cells through bone-marrow endothelial cells has
been reported [42]. Glial tumors have been investigated
for the expression of several chemokine receptors, mainly
CXCR4 [14, 15], but poorly studied for CX3CR1. Using a
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murine model of glioma obtained by intracranial injection
of 3-methylcholantrene, Liu et al. showed a positive, in situ
hybridization for CX3CR1 that corresponded however, to
the localization of CD11b-positive microglia [43]. In
human gliobastoma, Rodero et al. report a diffuse expres-
sion of CX3CR1, but mainly concentrate on the functional
defects of polymorphic CX3CR1 receptor associated with
infiltrating immune cells [44].

Increased expression of both CX3CR1 and its ligand
occurs in different neuro-inflammatory conditions (e.g.
infections, toxic insults and nerve injuries). Higher
production and shedding from the membrane of
CX3CL1 results in a higher density of CX3CR1+ inflam-
matory microglia recruited in the brain [30, 32, 45-47]. In
experimental conditions, cytokines such as TNF and
TGFβ, were responsible for the upregulation of both
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Figure 1
Glial tumors express the chemokine receptor CX3CR1. Immunohistochemistry of surgical samples of glial tumors stained with an anti-
CXC3R1 antibody. A) Section of normal brain adjacent to a tumor tissue (magnification: 10 x). B) Low-grade astrocytoma (20 x).
C-F) Glioblastomas (magnification: C, D: 10 x; E: 20 x; F: 40 x).
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ligand and receptor in neurons and microglia, respec-
tively [48]. These mediators are frequently present in
tumors, including gliomas [9, 49-51], and may well be
involved in the modulation of the CX3CL1/CX3CR1 axis
in neoplastic conditions.
The biological significance of the up-regulation of
CX3CR1 by glioma cells remains unclear. The consti-
tutive expression, in the brain, of CX3CL1 and
CX3CR1 has been the subject of intense investigation.
Experimental evidence indicates a role for CX3CL1 in
promoting neuronal survival in glutamate-mediated exci-
toxicity [32]. Enhanced neuron loss occurs in CX3CR1-

deficient mice after systemic lipopolysaccharide injection,
in toxin-induced Parkinsonism, and in the SOD1G93A

transgenic mouse model of motor neuron disease [22].
In addition, CX3CL1 regulates microglia functions,
inducing mobilization of intracellular Ca2+, chemotaxis,
inhibition of Fas-mediated apoptosis and of LPS-induced
activation [28, 29, 31].
As CX3CL1 is a membrane-bound chemokine, the
ligand/receptor axis can function as an adhesion mole-
cule. CX3CR1 positive tumor cells may have enhanced
adhesion to neurons expressing the ligand. In pancreatic
cancer, we demonstrated that tumor samples with high
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Figure 2
Distribution of final scores for CX3CR1 (positive cells % x intensity) in the different tumor types. Every case is represented.
OD: oligodendrocytomas; LG-ASTRO: low-grade astrocytomas; HG-ASTRO: high-grade astrocytomas; GB: glioblastomas; OA:
oligoastrocytomas.
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Figure 3
CX3CR1 mRNA analysis of tumor tissues in surgical samples of oligodendrocytomas (1-4), astrocytomas (5, 6), glioblastomas (7-9).
The relative amount of CX3CR1 mRNA was calculated with reference to the expression of the housekeeping gene 18S.
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receptor scores have higher percentage of local nerve
terminations infiltrated by cancer cells [34]. Tumor peri-
neural tropism and dissemination along cerebral fibre
tracts also occur in malignant glioblastoma [1-3].
In conclusion, the results reported here show that expres-
sion of the chemokine receptor CX3CR1 is a frequent
event in human gliomas, irrespective of histology and
grading. The molecular basis underlying CX3CR1 up-
regulation and its functional biological significance
remain to be determined.
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