

HOT TOPICS

IL-17 and HIV pathogenesis

Laure Campillo-Gimenez¹, Carole Elbim^{1,2}, Mireille Laforge¹, Maria C. Leite-de-Moraes³, John Zaunders⁴, Jérôme Estaquier^{1,5}

¹ Inserm, U955, Faculté de Médecine de Créteil, Créteil, France

² Unité UMR S872, Paris, France

³ Unité UMR 8147, Faculté de Médecine René-Descartes, Paris, France

⁴ Centre for Immunology, St Vincent's Hospital, Darlinghurst, Australia

⁵ Assistance publique-Hôpitaux de Paris, Hôpital Henri-Mondor, Créteil, France

Correspondence: J. Estaquier, Inserm U955, Faculté Créteil Henri-Mondor, 8 rue du Général Sarrail, 94010 Créteil, France
<estaquier@yahoo.fr>

Accepted for publication June 22, 2010

There is an increasing body of evidence showing that T_{H17} cells constitute a novel T_H cell lineage [1, 2]. In 2005, T_{H17} cells were shown to arise from a lineage separate from that of T_{H1} and T_{H2} cells [1, 3], and to be associated with autoimmunity [4]. They produce IL-17 (also called CTLA-8), that shares homology with an open reading frame in *Herpesvirus saimiri* [5]. T_{H17} cells are also characterized by the production of IL-21, IL-22 and IL-26 and express chemokine receptors such as CCR4 and CCR6 [6]. CCR6, in particular, is the homing receptor important for T_{H17} cell migration to certain tissue microenvironments of the intestine such as Peyer's patches, where its ligand, CC-chemokine ligand 20 (CCL20, also known Mip-3 α), is expressed [7, 8]. TGF- β , an immunosuppressive cytokine that has a major role in T_{reg} differentiation [9], combined with the pro-inflammatory cytokine IL-6 are required for naive T cell differentiation into IL-17-producing T cells in mice [10-12]. TGF- β expression in Peyer's patches has already been recognized for its role in directing B cell switching to IgA [13]. Additionally, cytokines such as IL-23 and IL-21 promote the generation or proliferation of T_{H17} cells, whereas others, such as IFN- γ , IL-4, and IL-27, suppress their generation [14, 15]. The role of IL-21 in the differentiation of T_{H17} is an important factor for up-regulating IL-23R expression, which is not expressed by naive cells. Thus, IL-21 promotes the expansion of T_{H17} cells by increasing their responsiveness to IL-23. IL-23 is required to expand and stabilize the cell population. Although it was initially proposed that human T_{H17} cells were different from mouse T_{H17} cells in that TGF- β and IL-6 are not required for the generation of T_{H17} cells [6, 16], other reports have shown that TGF- β and inflammatory cytokines such as IL-1 β , IL-6, and IL-23 are the most effective cytokines for enhancing the generation or expansion of human T_{H17} cells [17]. Among the transcription factors, it has been shown that the transcription factor retinoic-acid-related orphan receptor- γ t (ROR- γ t; also known as RORC) is important for the generation of T_{H17} cells *in vitro* and *in vivo* [18]. In addition to ROR- γ t, T_{H17} cell differentiation is regu-

lated by the transcription factor signal transducer and activator of transcription 3 (STAT3), and aryl hydrocarbon receptor [19, 20]. Recently, it was shown that a dominant, negative form of STAT3, found in hyper-IgE syndrome patients, caused a primary immunodeficiency of T_{H17} cells, associated with an inability to control *Candida* and *S.aureus* infections of skin and mucosal surfaces [21, 22].

IL-17 comprises a family of cytokines composed of IL-17A through F [23]. Receptors belonging to the IL-17R family have a unique structural feature that mediates a signaling pathway through NF- κ B activator 1 (ACT1, also known CIKS for its connection to IKK and SAPK/JNK) [24, 25], which is clearly distinct from the signatures involved in the T_{H1} and T_{H2} response, particularly Janus kinase (JAK)-STAT pathways. Thus, IL-17 culminates in the activation of pro-inflammatory mediators and is usually associated with innate immune signaling. Thus, IL-17 promotes neutrophil mobilization and the expression of antimicrobial factors. Interestingly, IL-17 family homologues have been found in various species including sea lamprey, rainbow trout and *Caenorhabditis elegans*, highlighting the potential role of this cytokine.

T_{H17} cells are widely found in non-lymphoid tissues (e.g. intestine) and secondary lymphoid tissues (mesenteric lymph nodes, peripheral lymph nodes, spleen, and Peyer's patches). T_{H17} cell differentiation in the lamina propria of the small intestine requires specific, commensal microbiota, and is inhibited by antibiotics. Differentiation of T_{H17} cells correlates with the presence of *Cytophaga-Flavobacterium-Bacteroides* bacteria in the intestine and is dependent on TGF- β activation. Thus, it has been proposed that the composition of intestinal microbiota regulates the T_{H17} /Treg balance in the lamina propria, and may thus influence intestinal immunity, tolerance, and susceptibility to inflammatory bowel diseases [26, 27]. Interestingly, Pigtail macaques (PTMs), which are highly sensitive to Simian-immunodeficiency Virus (SIV) infection, had high frequencies of interleukin-17-producing T cells associated with high levels of

microbial translocation that correlated with significant damage to the structural barrier of the gastrointestinal tract [28]. Finally, IL-17 and T_{H17} cells have been reported to be involved in the induction of autoimmune inflammation in several animal models, such as allergic encephalomyelitis [3, 4, 29], collagen induced arthritis [30], and colitis [31]. Consistently, T_{H17} cells are also increased in the inflamed tissue sites of patients with multiple sclerosis, rheumatoid arthritis, and inflammatory bowel diseases [32]. There is also considerable evidence, in mice, that IL-17 is important in host responses to infection by Gram-negative bacteria, specifically *Klebsiella*, *Pseudomonas*, *Escherichia coli*, *Salmonella*, and *Bordetella* species [33].

The central role of TGF- β in the differentiation of T_{H17} suggests that pathologies associated with an over-production of TGF- β might promote the differentiation of T_{H17} cells. In the 1990s, several reports showed increase expression of TGF- β in the context of HIV-infected individuals [34-36], although other reports did not find this [37]. A possible over-production of TGF- β may be associated with increased collagen deposition in lymph nodes of HIV-infected patients, and alterations in lymph node architecture [38, 39]. More recently, using non-human primate models of lentiviral infection, we and other groups have reported higher levels of TGF- β [39-41] in SIV-infected rhesus macaques (RM). Moreover, it has been reported that the increased inflammation in HIV patients is associated with the presence of lipopolysaccharide (LPS), a potent inflammatory product, in the plasma of HIV-infected individuals and in SIV-infected RM [42]. Thus, the elevation of TGF- β , plus an inflammatory environment, support the possible induction of IL-17 populations during AIDS. However, several groups have shown a decline in T_{H17} CD4 $^{+}$ T cells during HIV and SIV infections [43-46]. Conversely, no depletion in T_{H17} cells was reported in SIV-infected African green monkey, a model of lentiviral infection that does not progress to disease [45, 47]. This result was consistent with the results from another group who found unchanged numbers of IL-17 cells in the peripheral blood of the Sooty mangabey, a non-pathogenic model of SIV infection [43]. Thus, despite a favorable environment for T_{H17} cell expansion, a decline of this subset was observed in AIDS, which was restored under HAART [48]. It has been proposed that a reduction in this subset may lead to the disruption of mucosal barrier integrity, loss of control of commensal bacteria, and a subsequent wasting syndrome. During the acute phase, despite a drastic decline both in CD4 $^{+}$ T cells and T_{H17} cells in the peripheral blood and the intestine, animals did not develop this wasting syndrome and were devoid of bacterial translocation [42]. Our recent results demonstrated the early expansion of IL-17-expressing cells in SIV-infected RM that correlated with TGF- β expression [47], suggesting the existence of IL-17-producing cells compensating for the defect in T_{H17} cells that is essential for controlling bacterial translocation.

In addition to T_{H17} , it has been shown that CD8 T cells [49], $\gamma\delta$ T cells [50, 51], CD4 $^{+}$ CD8 $^{+}$ TCR $^{+}$ T cells [52], and NKT cells [53, 54] are also able to produce IL-17. In early HIV-1 infection, V δ 1 T lymphocytes are

increased in peripheral blood and display concurrent IFN- γ and IL-17 expression [55]. We found an innate IL-17 production by NKT cells that is rapid, and precedes the adaptive T_{H17} response. Thus, the emergence of this IL-17 $^{+}$ NKT $^{+}$ population in SIV-infected RM as well as of IL-17 $^{+}$ V δ 1 T cells, therefore, could compensate for the defect in T_{H17} CD4 $^{+}$ T cells, preventing microbial translocation (no LPS was detected during the acute phase) [42], and the occurrence of a wasting syndrome early after infection. Thus, microbial translocation might be a symptom of the defect in IL-17 populations, and not a direct cause of HIV-1 disease.

The mechanism by which T_{H17} may be depleted remains unclear, since they exhibit a CCR4 $^{+}$ CCR6 $^{+}$ phenotype [56], whereas the HIV co-receptor is not expressed on CCR4 $^{+}$ CD4 $^{+}$ T cells (Zaunders *et al.*, unpublished data). Nevertheless, it has been reported that there is a selective infection of T_{H17} CD4 $^{+}$ T cells [57, 58], although not in all reports [43]. Most importantly, in non-pathogenic primate models of lentiviral infection, despite intense viral replication, there is no depletion of T_{H17} CD4 $^{+}$ T cells. Therefore, indirect mechanisms to explain this defect are probably more plausible. In this sense, it has been shown that iNKT cells, during T-cell priming, impede the commitment of naïve T cells to the T_{H17} lineage [59]. Moreover, cytokines such as type I IFN, are critical in negatively regulating T_{H17} CD4 $^{+}$ T cells through IL-27 [60, 61]. This should be particularly relevant for HIV and SIV-infection in which higher levels of type I IFN early after infection is associated with poor prognosis [62-65].

All these data demonstrate the critical balance between pro- and anti-inflammatory cytokines occurring during HIV infection that may have a major impact on the differentiation of T cell subsets as well as on the expansion of cells such as NKT cells, that bridge innate and adaptive immunity.

Financial support. ML was supported by grant from ANRS. LCG was supported by grant from MRET of PARIS XI University. Funding from the ANRS to JE supported this work.

Disclosure. None of the authors has any conflict of interest or financial support to disclose.

REFERENCES

1. Harrington LE, Hatton RD, Mangan PR, *et al.* Interleukin 17-producing CD4 $^{+}$ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. *Nat Immunol* 2005; 6: 1123.
2. Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. *Annu Rev Immunol* 2007; 25: 821.
3. Park H, Li Z, Yang XO, *et al.* A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. *Nat Immunol* 2005; 6: 1133.
4. Langrish CL, Chen Y, Blumenschein WM, *et al.* IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. *J Exp Med* 2005; 201: 233.

5. Rouvier E, Luciani MF, Mattei MG, Denizot F, Golstein P. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. *J Immunol* 1993; 150: 5445.
6. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. *Nat Immunol* 2007; 8: 942.
7. Hirota K, Yoshitomi H, Hashimoto M, et al. Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. *J Exp Med* 2007; 204: 2803.
8. Wang C, Kang SG, Lee J, Sun Z, Kim CH. The roles of CCR6 in migration of Th17 cells and regulation of effector T-cell balance in the gut. *Mucosal Immunol* 2009; 2: 173.
9. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. *Cell* 2008; 133: 775.
10. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. *Nature* 2006; 441: 235.
11. Mangan PR, Harrington LE, O'Quinn DB, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. *Nature* 2006; 441: 231.
12. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. *Immunity* 2006; 24: 179.
13. Fagarasan S, Honjo T. Intestinal IgA synthesis: regulation of front-line body defences. *Nat Rev Immunol* 2003; 3: 63.
14. Nurieva R, Yang XO, Martinez G, et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. *Nature* 2007; 448: 480.
15. Zhou L, Ivanov II, Spolski R, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. *Nat Immunol* 2007; 8: 967.
16. Wilson NJ, Boniface K, Chan JR, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. *Nat Immunol* 2007; 8: 950.
17. Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. *Nat Immunol* 2008; 9: 641.
18. Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. *Cell* 2006; 126: 1121.
19. Kimura A, Naka T, Nohara K, Fujii-Kuriyama Y, Kishimoto T. Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. *Proc Natl Acad Sci USA* 2008; 105: 9721.
20. Veldhoen M, Hirota K, Westendorf AM, et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. *Nature* 2008; 453: 106.
21. Milner JD, Brenchley JM, Laurence A, et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. *Nature* 2008; 452: 773.
22. Ma CS, Chew GY, Simpson N, et al. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. *J Exp Med* 2008; 205: 1551.
23. Gaffen SL. Structure and signalling in the IL-17 receptor family. *Nat Rev Immunol* 2009; 9: 556.
24. Leonardi A, Chariot A, Claudio E, Cunningham K, Siebenlist U. CIKS, a connection to Ikappa B kinase and stress-activated protein kinase. *Proc Natl Acad Sci USA* 2000; 97: 10494.
25. Qian Y, Liu C, Hartupe J, et al. The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. *Nat Immunol* 2007; 8: 247.
26. Hall JA, Bouladoux N, Sun CM, et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. *Immunity* 2008; 29: 637.
27. Ivanov II, Frutos Rde L, Manel N, et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. *Cell Host Microbe* 2008; 4: 337.
28. Klatt NR, Harris LD, Vinton CL, et al. Compromised gastrointestinal integrity in pigtail macaques is associated with increased microbial translocation, immune activation, and IL-17 production in the absence of SIV infection. *Mucosal Immunol* 2010; 3: 387.
29. Komiyama Y, Nakae S, Matsuki T, et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. *J Immunol* 2006; 177: 566.
30. Nakae S, Nambu A, Sudo K, Iwakura Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. *J Immunol* 2003; 171: 6173.
31. Zhang Z, Zheng M, Bindas J, Schwarzenberger P, Kolls JK. Critical role of IL-17 receptor signaling in acute TNBS-induced colitis. *Inflamm Bowel Dis* 2006; 12: 382.
32. Weaver CT, Hatton RD. Interplay between the TH17 and TReg cell lineages: a (co-)evolutionary perspective. *Nat Rev Immunol* 2009; 9: 883.
33. O'Quinn DB, Palmer MT, Lee YK, Weaver CT. Emergence of the Th17 pathway and its role in host defense. *Adv Immunol* 2008; 99: 115.
34. Kekow J, Wachsman W, McCutchan JA, Cronin M, Carson DA, Lotz M. Transforming growth factor beta and noncytopathic mechanisms of immunodeficiency in human immunodeficiency virus infection. *Proc Natl Acad Sci USA* 1990; 87: 8321.
35. Kekow J, Wachsman W, McCutchan JA, et al. Transforming growth factor-beta and suppression of humoral immune responses in HIV infection. *J Clin Invest* 1991; 87: 1010.
36. Lotz M, Seth P. TGF beta and HIV infection. *Ann N Y Acad Sci* 1993; 685: 501.
37. Chopra RK, Raj NB, Scally JP, et al. Lack of role of TGF-beta 1 in decreased lymphoproliferative response in HIV-1 infection. *Clin Immunol Immunopathol* 1993; 69: 77.
38. Estes J, Baker JV, Brenchley JM, et al. Collagen deposition limits immune reconstitution in the gut. *J Infect Dis* 2008; 198: 456.
39. Estes JD, Wietgrefe S, Schacker T, et al. Simian immunodeficiency virus-induced lymphatic tissue fibrosis is mediated by transforming growth factor beta 1-positive regulatory T cells and begins in early infection. *J Infect Dis* 2007; 195: 551.
40. Cumont MC, Monceaux V, Viollet L, et al. TGF-beta in intestinal lymphoid organs contributes to the death of armed effector CD8 T cells and is associated with the absence of virus containment in rhesus macaques infected with the simian immunodeficiency virus. *Cell Death Differ* 2007; 14: 1747.
41. Hryniwicz A, Boasso A, Edghill-Smith Y, et al. CTLA-4 blockade decreases TGF-beta, IDO, and viral RNA expression in tissues of SIVmac251-infected macaques. *Blood* 2006; 108: 3834.
42. Brenchley JM, Price DA, Schacker TW, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. *Nat Med* 2006; 12: 1365.

43. Brenchley JM, Paiardini M, Knox KS, *et al.* Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. *Blood* 2008; 112: 2826.

44. Cecchinato V, Trindade CJ, Laurence A, *et al.* Altered balance between Th17 and Th1 cells at mucosal sites predicts AIDS progression in simian immunodeficiency virus-infected macaques. *Mucosal Immunol* 2008; 1: 279.

45. Favre D, Lederer S, Kanwar B, *et al.* Critical loss of the balance between Th17 and T regulatory cell populations in pathogenic SIV infection. *PLoS Pathog* 2009; 5: e1000295.

46. Raffatellu M, Santos RL, Verhoeven DE, *et al.* Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes *Salmonella* dissemination from the gut. *Nat Med* 2008; 14: 421.

47. Campillo-Gimenez L, Cumont MC, Fay M, *et al.* AIDS progression is associated with the emergence of IL-17-producing cells early after simian immunodeficiency virus infection. *J Immunol* 2010; 184: 984.

48. Macal M, Sankaran S, Chun TW, *et al.* Effective CD4+ T-cell restoration in gut-associated lymphoid tissue of HIV-infected patients is associated with enhanced Th17 cells and polyfunctional HIV-specific T-cell responses. *Mucosal Immunol* 2008; 1: 475.

49. He D, Wu L, Kim HK, Li H, Elmets CA, Xu H. CD8+ IL-17-producing T cells are important in effector functions for the elicitation of contact hypersensitivity responses. *J Immunol* 2006; 177: 6852.

50. O'Mara LA, Norian LA, Kreamalmeyer D, White JM, Allen PM. T cell-mediated delay of spontaneous mammary tumor onset: increased efficacy with *in vivo* versus *in vitro* activation. *J Immunol* 2005; 174: 4662.

51. Shibata K, Yamada H, Hara H, Kishihara K, Yoshikai Y. Resident V δ 1+ gamma δ T cells control early infiltration of neutrophils after *Escherichia coli* infection via IL-17 production. *J Immunol* 2007; 178: 4466.

52. Kennedy J, Rossi DL, Zurawski SM, *et al.* Mouse IL-17: a cytokine preferentially expressed by alpha beta TCR + CD4- CD8-T cells. *J Interferon Cytokine Res* 1996; 16: 611.

53. Michel ML, Keller AC, Paget C, *et al.* Identification of an IL-17-producing NK1.1(neg) iNKT cell population involved in airway neutrophilia. *J Exp Med* 2007; 204: 995.

54. Pichavant M, Goya S, Meyer EH, *et al.* Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. *J Exp Med* 2008; 205: 385.

55. Fenoglio D, Poggi A, Catellani S, *et al.* V δ 1 T lymphocytes producing IFN-gamma and IL-17 are expanded in HIV-1-infected patients and respond to *Candida albicans*. *Blood* 2009; 113: 6611.

56. Acosta-Rodriguez EV, Rivino L, Geginat J, *et al.* Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. *Nat Immunol* 2007; 8: 639.

57. El Hed A, Khatan A, Kozhaya L, *et al.* Susceptibility of human Th17 cells to human immunodeficiency virus and their perturbation during infection. *J Infect Dis* 2010; 201: 843.

58. Gosselin A, Monteiro P, Chomont N, *et al.* Peripheral blood CCR4+CCR6+ and CXCR3+CCR6+CD4+ T cells are highly permissive to HIV-1 infection. *J Immunol* 2009; 184: 1604.

59. Mars LT, Araujo L, Kerschen P, *et al.* Invariant NKT cells inhibit development of the Th17 lineage. *Proc Natl Acad Sci USA* 2009; 106: 6238.

60. Guo B, Chang EY, Cheng G. The type I IFN induction pathway constrains Th17-mediated autoimmune inflammation in mice. *J Clin Invest* 2008; 118: 1680.

61. Shinohara ML, Kim JH, Garcia VA, Cantor H. Engagement of the type I interferon receptor on dendritic cells inhibits T helper 17 cell development: role of intracellular osteopontin. *Immunity* 2008; 29: 68.

62. Bosinger SE, Li Q, Gordon SN, *et al.* Global genomic analysis reveals rapid control of a robust innate response in SIV-infected sooty mangabeys. *J Clin Invest* 2009; 119: 3556.

63. Campillo-Gimenez L, Laforge M, Fay M, *et al.* Nonpathogenesis of simian immunodeficiency virus infection is associated with reduced inflammation and recruitment of plasmacytoid dendritic cells to lymph nodes, not to lack of an interferon type I response, during the acute phase. *J Virol* 2008; 83: 84.

64. Durudas A, Milush JM, Chen HL, Engram JC, Silvestri G, Sodora DL. Elevated levels of innate immune modulators in lymph nodes and blood are associated with more-rapid disease progression in simian immunodeficiency virus-infected monkeys. *J Virol* 2009; 83: 12229.

65. Jacquelin B, Mayau V, Targat B, *et al.* Nonpathogenic SIV infection of African green monkeys induces a strong but rapidly controlled type I IFN response. *J Clin Invest* 2009; 119: 3544.