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IL-17 and HIV pathogenesis
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There is an increasing body of evidence showing that
TH17 cells constitute a novel TH cell lineage [1, 2].
In 2005, TH17 cells were shown to arise from a lineage
separate from that of TH1 and TH2 cells [1, 3], and to be
associated with autoimmunity [4]. They produce IL-17
(also called CTLA-8), that shares homology with an
open reading frame in Herpesvirus saimiri [5]. TH17
cells are also characterized by the production of IL-21,
IL-22 and IL-26 and express chemokine receptors such as
CCR4 and CCR6 [6]. CCR6, in particular, is the homing
receptor important for TH17 cell migration to certain tis-
sue microenvironments of the intestine such as Peyer’s
patches, where its ligand, CC-chemokine ligand
20 (CCL20, also known Mip-3α), is expressed [7, 8].
TGF-β, an immunosuppressive cytokine that has a
major role in Treg differentiation [9], combined with the
pro-inflammatory cytokine IL-6 are required for naive
T cell differentiation into IL-17-producing T cells in mice
[10-12]. TGF-β expression in Peyer’s patches has already
been recognized for its role in directing B cell switching
to IgA [13]. Additionally, cytokines such as IL-23 and
IL-21 promote the generation or proliferation of TH17
cells, whereas others, such as IFN-γ, IL-4, and IL-27,
suppress their generation [14, 15]. The role of IL-21 in
the differentiation of TH17 is an important factor for up-
regulating IL-23R expression, which is not expressed by
naive cells. Thus, IL-21 promotes the expansion of TH17
cells by increasing their responsiveness to IL-23. IL-23 is
required to expand and stabilize the cell population.
Although it was initially proposed that human TH17
cells were different from mouse TH17 cells in that
TGF-β and IL-6 are not required for the generation of
TH17 cells [6, 16], other reports have shown that TGF-
β and inflammatory cytokines such as IL-1β, IL-6, and
IL-23 are the most effective cytokines for enhancing the
generation or expansion of human TH17 cells [17].
Among the transcription factors, it has been shown that
the transcription factor retinoic-acid-related orphan
receptor-γt (ROR-γt; also known as RORC) is important
for the generation of TH17 cells in vitro and in vivo [18].
In addition to ROR-γt, TH17 cell differentiation is regu-

lated by the transcription factor signal transducer and
activator of transcription 3 (STAT3), and aryl hydrocar-
bon receptor [19, 20]. Recently, it was shown that a
dominant, negative form of STAT3, found in hyper-IgE
syndrome patients, caused a primary immunodeficiency
of TH17 cells, associated with an inability to control Can-
dida and S.aureus infections of skin and mucosal sur-
faces [21, 22].
IL-17 comprises a family of cytokines composed of
IL-17A through F [23]. Receptors belonging to the
IL-17R family have a unique structural feature that
mediates a signaling pathway through NF-κB activator 1
(ACT1, also known CIKS for its connection to IKK
and SAPK/JNK) [24, 25], which is clearly distinct from
the signatures involved in the TH1 and TH2 response,
particularly Janus kinase (JAK)-STAT pathways. Thus,
IL-17 culminates in the activation of pro-inflammatory
mediators and is usually associated with innate immune
signaling. Thus, IL-17 promotes neutrophil mobilization
and the expression of antimicrobial factors. Interestingly,
IL-17 family homologues have been found in various
species including sea lamprey, rainbow trout and Caenor-
habditis elegans, highlighting the potential role of this
cytokine.
TH17 cells are widely found in non-lymphoid tissues
(e.g. intestine) and secondary lymphoid tissues (mesen-
teric lymph nodes, peripheral lymph nodes, spleen, and
Peyer’s patches). TH17 cell differentiation in the lamina
propria of the small intestine requires specific, commen-
sal microbiota, and is inhibited by antibiotics. Differenti-
ation of TH17 cells correlates with the presence of
Cytophaga-Flavobacterium-Bacteroides bacteria in the
intestine and is dependent on TGF-β activation. Thus, it
has been proposed that the composition of intestinal
microbiota regulates the TH17/Treg balance in the lamina
propria, and may thus influence intestinal immunity, tol-
erance, and susceptibility to inflammatory bowel diseases
[26, 27]. Interestingly, Pigtail macaques (PTMs), which
are highly sensitive to Simian-immunodeficiency Virus
(SIV) infection, had high frequencies of interleukin-
17-producing T cells associated with high levels of
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microbial translocation that correlated with significant
damage to the structural barrier of the gastrointestinal
tract [28]. Finally, IL-17 and TH17 cells have been
reported to be involved in the induction of autoimmune
inflammation in several animal models, such as allergic
encephalomyelitis [3, 4, 29], collagen induced arthritis
[30], and colitis [31]. Consistently, TH17 cells are also
increased in the inflamed tissue sites of patients with
multiple sclerosis, rheumatoid arthritis, and inflammatory
bowel diseases [32]. There is also considerable evidence,
in mice, that IL-17 is important in host responses to
infection by Gram-negative bacteria, specifically Kleb-
siella, Pseudomonas, Escherichia coli, Salmonella, and
Bordetella species [33].
The central role of TGF-β in the differentiation of TH17
suggests that pathologies associated with an over-
production of TGF-β might promote the differentiation of
TH17 cells. In the 1990s, several reports showed increase
expression of TGF-β in the context of HIV-infected indi-
viduals [34-36], although other reports did not find this
[37]. A possible over-production of TGF-β may be asso-
ciated with increased collagen deposition in lymph nodes
of HIV-infected patients, and alterations in lymph node
architecture [38, 39]. More recently, using non-human
primate models of lentiviral infection, we and other
groups have reported higher levels of TGF-β [39-41] in
SIV-infected rhesus macaques (RM). Moreover, it has
been reported that the increased inflammation in HIV
patients is associated with the presence of lipopolysac-
charide (LPS), a potent inflammatory product, in the
plasma of HIV-infected individuals and in SIV-infected
RM [42]. Thus, the elevation of TGF-β, plus an inflam-
matory environment, support the possible induction of
IL-17 populations during AIDS. However, several groups
have shown a decline in TH17 CD4+ T cells during HIV
and SIV infections [43-46]. Conversely, no depletion in
TH17 cells was reported in SIV-infected African green
monkey, a model of lentiviral infection that does not
progress to disease [45, 47]. This result was consistent
with the results from another group who found
unchanged numbers of IL-17 cells in the peripheral
blood of the Sooty mangabey, a non-pathogenic model
of SIV infection [43]. Thus, despite a favorable environ-
ment for TH17 cell expansion, a decline of this subset
was observed in AIDS, which was restored under
HAART [48]. It has been proposed that a reduction in
this subset may lead to the disruption of mucosal barrier
integrity, loss of control of commensal bacteria, and a
subsequent wasting syndrome. During the acute phase,
despite a drastic decline both in CD4+ T cells and TH17
cells in the peripheral blood and the intestine, animals did
not develop this wasting syndrome and were devoid of
bacterial translocation [42]. Our recent results demon-
strated the early expansion of IL-17-expressing cells in
SIV-infected RM that correlated with TGF-β expression
[47], suggesting the existence of IL-17-producing cells
compensating for the defect in TH17 cells that is essential
for controlling bacterial translocation.
In addition to TH17, it has been shown that CD8 T cells
[49], γδ T cells [50, 51], CD4-CD8-TCR+ T cells [52],
and NKT cells [53, 54] are also able to produce IL-17.
In early HIV-1 infection, Vδ1 T lymphocytes are

increased in peripheral blood and display concurrent
IFN-γ and IL-17 expression [55]. We found an innate
IL-17 production by NKT cells that is rapid, and precedes
the adaptive TH17 response. Thus, the emergence of this
IL-17+NKT+ population in SIV-infected RM as well as of
IL-17+Vδ1 T cells, therefore, could compensate for the
defect in TH17 CD4+ T cells, preventing microbial trans-
location (no LPS was detected during the acute phase)
[42], and the occurrence of a wasting syndrome early
after infection. Thus, microbial translocation might be a
symptom of the defect in IL-17 populations, and not a
direct cause of HIV-1 disease.
The mechanism by which TH17 may be depleted remains
unclear, since they exhibit a CCR4+CCR6+ phenotype
[56], whereas the HIV co-receptor is not expressed on
CCR4+CD4+ T cells (Zaunders et al., unpublished data).
Nevertheless, it has been reported that there is a selective
infection of TH17 CD4+ T cells [57, 58], although not in
all reports [43]. Most importantly, in non-pathogenic
primate models of lentiviral infection, despite intense
viral replication, there is no depletion of TH17 CD4+ T
cells. Therefore, indirect mechanisms to explain this
defect are probably more plausible. In this sense, it has
been shown that iNKT cells, during T-cell priming,
impede the commitment of naïve T cells to the TH17
lineage [59]. Moreover, cytokines such as type I IFN,
are critical in negatively regulating TH17 CD4+ T cells
through IL-27 [60, 61]. This should be particularly rele-
vant for HIV and SIV-infection in which higher levels of
type I IFN early after infection is associated with poor
prognosis [62-65].
All these data demonstrate the critical balance between
pro- and anti-inflammatory cytokines occurring during
HIV infection that may have a major impact on the dif-
ferentiation of T cell subsets as well as on the expansion
of cells such as NKT cells, that bridge innate and
adaptive immunity.
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