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ABSTRACT. Complications arise in chronic obstructive pulmonary diseases (COPD) with excessive mucus pro-
duction, especially during the exacerbation period, which contributes to airway blockage and bacterial infection.
Neutrophil elastase (NE) is detected at high levels in airway secretions, and is the primary inducer of mucin
production. Understanding the mechanism of NE-induced overproduction of mucin may lead to new therapies
for COPD. It is known that activation of epidermal growth factor receptor (EGFR) and its downstream signal-
ing cascade are involved in mucin production. However, the mechanism of NE-induced EGFR activation
remains unclear. Tumor necrosis factor-α-converting enzyme (TACE) cleaves pro-transforming growth factor
(TGF)-α in airway epithelial cells to release the mature, soluble TGF-α form, which subsequently binds to and
activates EGFR. In this investigation, we demonstrate that NE-induced mucin production requires reactive oxy-
gen species (ROS) production, which activates TACE, resulting in TGF-α shedding, and EGFR phosphorylation
in NCI-H292 epithelial cells.
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Mucus hypersecretion is a prominent manifestation in
patients with chronic inflammatory airway disease, con-
tributing to morbidity and mortality by blocking airways
and causing recurrent infections. Neutrophil elastase
(NE) is a serine protease secreted by neutrophils that is
expressed in high concentrations in the airway secretions
of these patients [1]. It is known that NE is a potent
inducer of mucin-5AC (MUC5AC) production [2].
Previous studies have shown that NE induces MUC5AC
production through epidermal growth factor receptor
(EGFR) activation cascades [3, 4]. Pechon et al. first
reported that the action of TNF-α-converting enzyme
(TACE) is required in the process. TACE cleaves pro-
transforming growth factor (TGF)-α into soluble TGF-α,
which then acts as the ligand for EGFR, activating the
downstream signaling cascade [5]. Shao and colleagues
then described the TACE/TGF-α/EGFR/MAPK signaling
pathway involved in MUC5AC gene expression in
human airway epithelial cells after stimulation with ciga-
rette smoke or neutrophil elastase [6]. Kohri also showed
that neutrophil elastase-induced mucin production is
EGFR ligand-dependent, but they did not investigate the
MMP-proligand shedding process [1]. It has been con-
firmed that NE can stimulate reactive oxygen species
(ROS) production in normal, human bronchial epithelial
cells. Additionally, there is increasing evidence suggest-
ing that ROS acts as an kinase extensively involved in
cell signaling. Therefore, we hypothesize that NE acti-

vates TACE via generation of ROS, resulting in cleavage
of pro-TGF-α, EGFR activation and, subsequently,
MUC5AC expression in airway epithelial cells.
To test this hypothesis, we investigated whether NE
induced ROS production, mature TGF-α shedding,
EGFR phosphorylation and MUC5AC production in
NCI-H292 airway epithelial cells. Next, we investigated
whether metalloproteinase activation was required for
ligand release and subsequent EGFR phosphorylation
by NE. The specific metalloproteinase involved in this
process was also investigated. Finally, we examined
whether ROS production was required for metalloprotei-
nase activation and MUC5AC production. These results
indicate that NE stimulates cells to produce ROS, which
activates TACE, which in turn, cleaves pro-TGF-α into
soluble TGF-α, resulting in EGFR activation and
MUC5AC expression in NCI-H292 cells.

METHODS AND MATERIALS

Materials

DMEM/Ham’s F12, HEPES, Trizol, and calf serum were
purchased from Sigma (USA). 1,3-dimethyl-2-thiourea
(DMTU), TGF-α, human neutrophil elastase, tumor
necrosis factor-α proteinase inhibitor-1 (TAPI-1),
EGFR neutralizing antibody, mouse anti-human EGFR
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monoclonal antibody, mouse anti-phosphorylated human
EGFR monoclonal antibody were purchased from
Calbiochem (USA). Mouse anti-human MUC5AC mono-
clonal antibody 45M1, and TACE rabbit polyclonal
antibody were purchased from Neomarkers (USA). The
TGF-α ELISA Kit was purchased from R&D (USA),
MUC5AC primers were generously provided by the
Medical Department, Gene Research Center, The
University of Hong Kong.

Cell lines and cell culture

NCI-H292 cells were plated in a six-well plate with
5 × 105 - 6 × 105 cells per well, cultured in 2 mL of
DMEM/Ham’s F12 medium containing 10% calf serum
at 37°C in 5% CO2. At 70% - 80% confluence, cells were
serum-starved in the presence or absence of additional
growth factors for 24 h in the following manner: (all
cells were grown under serum-free conditions) (1) the
control group: grown in DMEM/Ham’s medium in the
absence of serum. (2) the NE stimulation group: grown
in the presence of NE (25 nM); (3) the TAPI-1 group:
pretreated with 5, 10, 20 μM TAPI-1 for 30 min, treated
with EGFR neutralizing antibody (4 μg/mL) for 10 min
to block the ligand binding site, then NE (25 nM) was
added; (4) the DMTU group: pretreated with DMTU
(20 μM) for 30 min, treated with EGFR neutralizing
antibody (4 μg/mL) for 10 min, then NE (25 nM) was
added; (5) the exogenous TGF-α group: treated with
TGF-α (10 ng/mL). (6) DMTU, TGF-α treatment group:
pretreated with DMTU (20 μM) for 30 min, treated with
EGFR neutralizing antibody (4 μg/mL) for 10 min, then
TGF-α (10 ng/mL) was added. After a 24-h exposure, the
cell culture lysates and cell supernatants in each group
were collected and MUC5AC expression were analyzed.

Measurement of ROS generation

Cells were cultured in 24-well plates and incubated with
5, 10, or 25 nM NE for 24 h. At 70% confluence,
medium was removed and a ROS detection kit (Genmed,
USA) was used, in accordance with the manufacturer’s
instructions, to measure the amount of ROS generated
in each group Absorbance was measured at 650 nm.

RNA isolation and reverse transcription-PCR

Total RNA was extracted from NCI-H292 cells using
Trizol, and quality was verified by resolving samples
using 1% agarose gel electrophoresis. A260/280 was
within the range of 1.8-2.0. cDNA was generated from
RNA using Oligo (dT) primer and reverse transcribed
with the Moloney murine leukemia virus (MMLV)
reverse transcriptase kit (Shanghai Sangon Biological
Engineering Technology & Services Co., China).
Primers: MUC5AC, forward-5’-TGATCATCCAGCAG
CAGGGCT-3’, reverse- 5’-CCGAGCTCAGAGGACAT
ATGGG-3’. GAPDH, forward-5’-AGTGGATATTGTT
GCCATCA-3’, reverse-5’-GAAGATGGTGATGGGAT
TTC-3’. PCR conditions: denatured at 94°C for 10 min;
94°C for 30 s, 57°C for 45 s, 70°C for 45 s, for
30 cycles; 72°C for 7 min. PCR products were resolved
using 2% agarose gel electrophoresis and bands visual-
ized by ethidium bromide staining.

MUC5AC ELISA

MUC5AC protein expression levels were measured using
an ELISA. Cell lysates were prepared with phosphate-
buffered saline (PBS) at multiple dilutions. Fifty μL of
each sample were incubated with bicarbonate-carbonate
buffer (50 μL) at 40°C, in a 96-well plate until it dried.
Cells were washed three times with PBS and blocked
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Figure 1
Reactive oxygen species (ROS) production in treated NCI-H292 cells. Cells were untreated or treated with various concentrations of
neutrophil elastase (NE) (5, 10, 25 nM) for 24 h. Untreated cells was used as the control group. ROS production was measured. Data are
expressed as mean ± SD (n = 3). * p < 0.05; ** p < 0.01, compared with control group.
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with 2% bovine serum albumin (BSA) for 1 h at room
temperature. Then, cells were incubated with mouse
anti-human MUC5AC monoclonal antibody (45M1)
(10 μg/mL, Neomarkers, USA) in PBS containing
0.05% Tween-20. After 1 h, cells were incubated
with horseradish peroxidase (HRP) conjugated-goat
anti-mouse IgG (1 μg/mL) for 1 h. HRP was developed
with 3, 3′, 5, 5′-tetramethylbenzidine (TMB) peroxidase
solution, quenched with 1 M H2SO4, and color was
measured by absorbance at 450 nm.

Soluble TGF-α ELISA

Cell culture supernatants from each group were collected,
and TGF-α was measured using the TGF-α ELISA kit

(R&D,USA). Briefly, 100 μL of assay diluent and 50 μL
of sample were added to each well for a 2-h incubation at
room temperature. Then, 200 μL of conjugate were added
to each well for 2 h at room temperature, followed by
addition of 200 μL of substrate reaction solution for
30 min. Finally, 50 μL of stop solution were added to
quench the reaction. Absorbance was measured at 450 nm.

Western blot analysis for EGFR, phosphorylated EGFR
and TACE proteins

Cells were lysed in lysate buffer (RIPA buffer, 150 mM
sodium chloride, 50 mM Tris-HCl (pH 7.5), 1% triton
X-100, 1% sodium deoxycholate, 0.1% SDS, and
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Figure 2
Effects of TACE inhibitor TAPI-1 and ROS scavenger DMTU on neutrophil elastase (NE)-induced MUC5AC and TGF-α protein
expression. NCI-H292 cells were left untreated as the normal control group; experimental cells were treated with NE (25 nM) for 24 h
or pretreated with inhibitors and then treated with NE (25 nM) for 24 h. Cells were incubated with the indicated concentrations of
TAPI-1 (5, 10, 20 μM) or DMTU (20 μM).
A) Quantification of MUC5AC protein using ELISA.
B) Quantification of TGF-α protein. Data are expressed as mean ± SD (n = 3). ** p < 0.01; * p < 0.05, compared with control group.
* p < 0.01, compared with the NE-treated group.
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2 mM EDTA), disrupted on ice for 20 min, and then
centrifuged at 12,000 rpm for 15 min at 4°C to remove
nuclei and unbroken cells. Equal amounts of protein
were suspended in SDS sample buffer and boiled for
5 min. Proteins were resolved by 8% SDS/PAGE. The
resulting gels were equilibrated in the transfer buffer with
25 mM Tris-HCl, 192 mM glycine, and 20% methanol
(pH = 8.3). Protein was then transferred by electropho-
resis to polyvinylidene difluoride (PVDF) membrane.
Membranes were incubated in 5% milk/PBS, 0.05%
Tween-20 for 1 h at room temperature, and then incubated
with EGFR monoclonal antibody, anti-phosphotyrosine
EGFR monoclonal antibody (1 μg/mL), or TACE
polyclonal antibody overnight at 4°C. After washing
three times, membranes were incubated with HRP-goat
anti-mouse IgG or HRP-goat anti-rabbit IgG (1 mg/L)
for 2 h at room temperature. Enhanced chemilumines-
cence (ECL) and autoradiography were performed to
visualize EGFR, phosphorylated-EGFR, and TACE
protein. Photodensity area calculus was performed in
order to quantify protein. Western blot analysis of
β-actin protein was performed to ensure equal protein
loading.

Statistical methods

Statistical analysis was performed using SPSS 10.0 for
Windows, SPSS Inc. All data were presented as mean ±
SD (n = 3). ANOVA was used to determine statistically
significant differences. A P-value < 0.05 was considered
statistically significant.

RESULTS

Effects of NE on ROS generation

NCI-H292 cells were incubated with 5, 15, or 25 nM of
NE for 24 h, respectively. ROS production increased in a
dose-dependent manner in response to NE treatment,
compared to the untreated control cells, which is consis-
tent with previous data, The highest ROS content was
detected in 25nM NE-treated cells (figure 1).

Effects of TAPI-1 on NE-induced MUC5AC expression
in NCI-H292 cells

As it had previously been shown that NE induced cleav-
age of pro-TGF-α through induction of TACE, it was
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Figure 3
Effects of TAPI-1 and DMTU on NE-induced MUC5AC mRNA expression. NCI-H292 cells were left untreated and constituted the control
group, treated with NE (25 nM) for 24 h or pretreated with inhibitors and then treated with NE (25 nM) for 24 h. Cells were incubated
with the indicated concentrations of TAPI-1 (5, 10, 20 μM) or DMTU (20 μM). MUC5AC mRNA expression was determined using
reverse transcription-PCR analysis. Data are expressed as mean ± SD (n = 3). ** p < 0.01; * p < 0.05, compared with control group.
* p < 0.01, compared with the NE-treated group.
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determined whether this process was required for
increased MUC5AC expression. As shown in figures 2A
and 3, NE treatment of NCI-H292 cells increased
MUC5AC protein production and gene expression. Pre-
treatment of cells with an efficient TACE inhibitor,
TAPI-1, prevented NE-induced mucin response (figures 2A
and 3) in a dose-dependent manner. Pretreatment with
TAPI-1 (20 μM) reduced NE-induced MUC5AC mucin
protein (figure 2A) and MUC5AC mRNA (figure 3) levels
to that of the unstimulated control. It was then confirmed
that inhibition of TACE activation by pretreatment with
TAPI-1 prevented NE-induced, soluble TGF-α production
(figure 2B). These results suggest that NE-induced
MUC5AC requires activation of TACE; the release of
soluble TGF-α may also play an important part.

Effects of TAPI-1 of EGFR phosphorylation
in NCI-H292 cells

It has been demonstrated that soluble TGF-α acts as a
ligand for the EGFR. Therefore, we determined whether
EGFR was activated by NE treatment and whether
soluble TGF-α production was required. Treatment of

NCI-H292 cells with NE for 24 h induced the release
of soluble TGF-α, as well as phosphorylation of EGFR
(figure 5) (p < 0.01). In addition, pretreatment with
TAPI-1 (20 μM) decreased the levels of soluble TGF-α
(figure 2B) and phosphorylated-EGFR protein (figure 5)
induced by NE (p < 0.01). These results indicate that NE
treatment induces phosphorylation of EGFR in
NCI-H292 cells and requires soluble TGF-α production.

Effects of DMTU on NE-induced MUC5AC production
in NCI-H292 cells

NCI-H292 cells were pretreated with a ROS scavenger,
DMTU, followed by treatment with NE. In the normal
control group with no stimuli, TACE protein was present
mainly in its latent, inactive form, about 120 kDa, very
little cleaved, active protein (100 kDa) being observed.
Treatment with NE induced an increase in the 100 kDa
active form of TACE protein (figure 4). Pretreatment with
DMTU decreased NE-induced TACE protein activation,
p < 0.05, when compared with the NE-stimulated group.
In addition, pretreatment with DMTU also prevented the
NE-induced increase in MUC5AC protein released in
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Figure 4
Effects of TAPI-1 and DMTU on NE-induced TACE protein production. NCI-H292 cells were left untreated , treated with NE (25 nM)
for 24 h, or pretreated with inhibitors and then treated with NE (25 nM) for 24 h. Cells were incubated with the indicated concentrations
of TAPI-1 (5, 10, 20 μM) or DMTU (20 μM). TACE protein was detected by western blot analysis. Data are expressed as mean ± SD
(n = 3).The active form of TACE protein (100 kDa) increased noticeably, ** p < 0.01; * p < 0.05, compared with control group.
* p < 0.05, compared with the NE-treated group. However, the inactive form of TACE protein (120 kDa) showed no statistically significant
change.
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culture supernatants and mRNA expression in cells
(figures 2A and 3), soluble TGF-α protein production in
culture supernatants (figure 2B), and phosphorylation of
EGFR protein in cells (figure 5).

Effects of DMTU on exogenous TGF-α-induced
MUC5AC expression in NCI-H292 cells

Addition of exogenous, soluble TGF-α was also able to
increase MUC5AC mRNA and protein expression in
NCI-H292 cells, p < 0.05 (figure 6). However, in
contrast to the NE-induced increase in MUC5AC expres-
sion, pretreatment with DMTU had no significant
effect on exogenous, soluble TGF-α-induced mucin
synthesis. These data indicate that NE-induced ROS
production and TACE activation are upstream of TGF-α
production.

DISCUSSION

The EGFR signaling pathway has been shown to be a
convergent pathway activated by various stimuli that
induce mucin synthesis and mucin gene expression [7].
The activation of EGFR transfers the extracellular signal
to intracellular signaling molecules, such as the mitogen-
activated protein kinase (MAPK) family [8, 9]. These
signaling molecules activate transcription factors, such
as special protein-1, to initiate MUC5AC gene transcrip-
tion, promoting mucin synthesis and hypersecretion.
However, the mechanism of EGFR signaling cascade
activation has not been well-defined. Previous studies
have shown that metalloproteinase inhibition can prevent
the release of EGFR ligand in stimulated cells [10].
TACE cleaves the extracellular domain of pro-TGF-α,
releasing soluble, mature TGF-α, which results in
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compared with the NE-treated group.

182 L. Qi, et al.



phosphorylation of EGFR and induction of the down-
stream signaling cascade [11].
Airway epithelial cells produce EGFR and EGFR
ligands [12-14]. TGF-α plays a critical role in EGFR
phosphorylation [15, 16], leading to MUC5AC production

in airways. TGF-α is synthesized as transmembrane pro-
TGF-α [17], which is processed and released (ectodomain
shedding) from the cell surface by management of
metalloproteinases. TACE has been reported to cleave
pro-TGF-α into mature soluble TGF-α in diverse epithelial
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cells. TACE, also known as ADAM-17, is a member of
“a disintegrin and metalloproteinase” (ADAM) family, a
group of zinc-dependent, transmembrane metalloprotei-
nases [18, 19]. TACE plays a critical role in various
membrane binding growth factor activation, and their
receptor cleavage, including TNF-α, TGF-α and amphir-
egulin [20]. TACE is synthesized in a latent form that
remains in an inactive state, with the thiol group from a
cysteine residue in the N-terminal prodomain binding to
Zn2+ in the catalytic domain. Disruption of this cysteine-
zinc bond results in a conformational change and thereby
activating TACE. There are two well known, major
mechanisms of TACE activation [21]. One involves pro-
tein kinase C (PKC) activation by stimuli (e.g. phorbol
ester, neutrophil elastase), which induces serine phos-
phorylation in the cytoplasmic domain of TACE causing
a conformational change in the extracellular domain [22].
The conformation change breaks the cysteine-zinc bond
and unmasks the catalytic site, which binds and cleaves
substrates of TACE. The second mechanism is cysteine
oxidation in the prodomain, which unmasks the catalytic
site of TACE. It has been reported that ROS or nitric
oxide can attack the cysteine sulfhydryl moiety in the
prodomain of TACE, and release it from binding sites
with the catalytic zinc, thereby activating latent TACE
[23]. Indeed, the involvement of a PKC-signaling path-
way and the oxidation theory are not mutually exclusive
because PKC activation has been reported to generate
reactive oxygen species, and NE can generate ROS
through PKC activation [24]. TACE is activated by
ROS, resulting in substrate cleavage, and thus, cleavage
of the EGFR pro-ligand into mature, solubleligand.
Ligand then binds to and activates EGFR, resulting in
MAPK family activation, mucin gene expression and
protein production [25].
NE is one of the most common and potent agonists in
mucus hypersecretion diseases [26, 27]. It is known to
stimulate MUC5AC mucin production by means of the
EGFR signaling pathway, as well as oxidant- and retinoic
acid receptor-α-dependent mechanisms [28, 29]. Among
these pathways, the EGFR signal cascade is one of the
most important [30]. Our study was aimed at investigat-
ing the upstream signaling mechanisms involved in the
NE-induced EGFR signaling cascade in airway epithelial
cells. NE-treatment of NCI-H292 cells increased ROS
production, TACE activation, soluble TGF-α production,
EGFR phosphorylation and MUC5AC expression.
Pretreatment of cells with TAPI-1, a TACE inhibitor,
prevented cleavage of pro-TGF-α, EGFR phosphorylation
and expression of MUC5AC. In addition, pretreatment
with DMTU, a ROS scavenger, prevented TACE activa-
tion, as well as all the downstream signaling events;
NE-induced MUC5AC expression in cells was downre-
gulated by DMTU. However, treatment with DMTU did
not prevent the increased MUC5AC expression induced
by addition of exogenous TGF-α. These data indicate that
ROS do not cleave TGF-α directly, but through the acti-
vation of TACE. These results highlight the unique role
of ROS/TACE in mucus hypersecretion, and further
emphasize the importance of the EGFR signaling cascade
involved in this process.

Taken together, these results indicate that NE induces
MUC5AC mucin synthesis via ROS production, TACE
activation, pro-TGF-α cleavage, and EGFR activation in
NCI-H292 cells. It should be emphasized that, as impor-
tant signaling transducers, ROS/TACE should definitely
be taken into consideration in the study of signal trans-
duction mechanisms in mucus hypersecretion caused by
various stimuli, and this would deepen our understanding
of both the mechanisms of action and the regulation of
airway mucus hyperscretion.
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