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ABSTRACT. Interleukin (IL)-6 is a pleiotropic inflammatory cytokine with both pro- and anti-inflammatory capac-
ities, produced by different cells and tissues, such as leukocytes, adipocytes, and endothelium. From the viewpoint
of cardiologists, this cytokine is a reliable biomarker of cardiac dysfunction, occurrence of atrial fibrillation, car-
diac myxoma with recurrence, remote metastasis or embolization, and atherosclerotic processes. Although IL-6
levels were detected in patients undergoing cardiac operations and reported sporadically, the perioperative Kinet-
ics of IL-6 in cardiac surgical patients was insufficiently elaborated. The influencing factors, clinical implications,
and causative effects of IL-6 on clinical outcomes and potential treatment choices among cardiac surgical patients
remained to be clarified as well. The purpose of this article is to discuss these aspects of IL-6 in patients undergoing

a cardiac operation.
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IL-6 is a dual functional cytokine with both pro- and
anti-inflammatory capacities [1]. IL-6 exerts its biolog-
ical functions via two signaling pathways: the classic
signaling pathway via the membrane-bound IL-6 recep-
tor (IL-6R), which is responsible for anti-inflammatory
processes, and the trans-signaling pathway via the soluble
IL-6R (sIL-6R), which participates in pro-inflammatory
processes [2, 3]. IL-6 is ubiquitous and is secreted by
all types of cells, including fibroblasts, endothelial cells,
and cardiomyocytes [4]. The production of IL-6 may be
influenced by many factors, both positive (the epinephrine
and norepinephrine levels in the circulation and excita-
tion of the sympathetic nervous system) and negative (use
of B-blockers, angiotensin-converting enzyme inhibitor
and angiotensin II type 1 receptor antagonist) [5]. The
necrotic death of cells coincides with the upregulation of
IL-6, mediated by NF-kB and p38MAPK. IL-6 is also
involved in cellular apoptosis. Biffl et al. [6] reported the
inconsistent effects of IL-6 on polymorphonuclear leuko-
cytes, which was only effective prior to the concentration
of polymorphonuclear leukocytes in culture reaching 10-
20%10/mL. IL-6 and pertinent cytokines were found to
be involved in the left ventricular remodeling, via car-
diomyocyte hypertrophy and apoptosis, by upregulating
the anti-apoptotic protein B-cell lymphoma-extra large
(Bcl-xL) [5]. In a rat myocardial ischemia-reperfusion
injury model, exogeneus IL-6 possibly induced cardiomy-
ocyte apoptosis via inducible nitric oxide synthase (iNOS)
action [7]. An experimental study also revealed that apop-
totic cardiomyocytes in cardiac-specific gp130 knock out
mice [8]. IL-6 can inhibit myeloma cell apoptosis by acti-
vating gpl30 through IL-6R, whereas the IL-6/sIL-6R

complex can inhibit myocardial apoptosis and limit infarct
size in reperfused acute myocardial infarction [9].

Recent studies reported that IL-6 was elevated in the condi-
tion of acute and chronic infections [ 10], cardiac functional
impairment [11] and geometric alterations [12], pulmonary
artery hypertension [13], the occurrence of atrial fibrilla-
tion [14], and the presence, recurrence, and metastasis of
cardiac myxoma [15, 16]. Plasma IL-6 strongly correlated
with the six-minute walking distance and right atrial pres-
sure, independently associated with mortality [17]. IL-6
participated in the development of coronary artery disease
and was significantly expressed in unstable angina patients
with unfavorable outcomes [18]. IL-6 is expressed in the
infarcted left ventricle, especially in the bordering area
of infarction [12]. Activation of the JAK/STAT pathway
via IL-6 could mediate cytoprotective and antiapoptotic
effects in acute myocardial infarction [19]. Although, in
animal experiments, targeted deletion of the IL-6 gene did
not alter myocardial infarct size or left ventricular remod-
eling [12], with combined IL-6 and sIL-6R, effects of the
inhibition of cardiomyocyte apoptosis and the reduction of
myocardial infarct size could be attained, thus providing
a potential therapeutic alternative [20]. The mechanisms
could relate to the fact that IL-6 plays its pro-inflammatory
role by triggering the oxidant reactions resulting from
intracellular adhesion molecule-1 and subsequent neu-
trophil adhesions. The use of the selective IL-6R antagonist
MR16-1 may decrease inflammatory cell infiltrations, min-
imize the pro-inflammatory amplification and thus improve
cardiac geometric and functional status [21]. In addi-
tion, IL-6 genotype studies have revealed that genotype
CC patients presented the highest plasma IL-6 levels and
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highest cardiac death risks, followed by genotypes GC and
GG [22].

Although continuous reports demonstrate that IL-6 is asso-
ciated with postoperative adverse events [23], the kinetics
of IL-6 in terms of operation types and surgical techniques
have not been sufficiently described. Moreover, there have
been conflicting results for IL-6 levels in terms of compar-
isons between certain cardiac operations and techniques,
for instance, on-pump versus off-pump coronary artery
bypass grafting (CABG). The clinical implications of IL-6
expressions entail further discussions. In order to highlight
these aspects, a systematic review of IL-6 levels in cardiac
surgical patients was made.

CARDIOPULMONARY BYPASS (CPB)

CPB may trigger an inflammatory cascade and lead
to systemic inflammatory response syndrome (SIRS),
while the cytokines, including circulating IL-6, in the
inflammatory process can be triggered by many fac-
tors, such as anesthesia, surgical procedure, hemodynamic
changes, ischemia-reperfusion injury, hypothermia and
endotoxin release [1, 24]. As a result, both the immune
and hematopoietic systems are involved, in response to
local and systemic inflammatory reactions [25], leading
to microcirculatory disorders and even multiorgan failure
[26]. Usually, plasma IL-6 is significantly elevated 1 h
and peaks 1-6 h after CPB, and then falls but remains sig-
nificantly higher [27-34]. In patients receiving pulmonary
endarterectomy, under profound hypothermic circulatory
arrest, the peak of circulating IL-6 could be delayed until
12 h after the operation [35]. Lequier ef al. [36] observed
a delayed peak, which occurred 8 h after CPB. Beghetti
et al. [37] noted, in pediatric cardiac surgical patients
that the circulating IL-6 levels peaked 6 h after CPB and
remained high for five days. Dehoux et al. [38] observed,
in a prospective control study that IL-6 remained high 1-6
h after CPB, with no significant peak, but kinetics of IL-
6 in lipopolysaccharide-induced whole blood cell cultures
was contrary and in a parabolic curve form with a nadir
appearing 2 h after CPB, implying the impact of CPB on
lipopolysaccharide hyporesponsiveness.

Hauser et al. [39] noted that serum and alveolar IL-6 levels
increased after CPB, which correlated with postoperative
morbidity. Thus, IL-6 could be used to assess the severity of
the systemic inflammatory response after CPB. In 32 chil-
dren <two years of age with congenital heart disease repair
under CPB, IL-6 in the bronchoalveolar lavage reached its
peak 2 h and fell 14 h after CPB; however, corticosteroid
inhalation did not influence the IL-6 release in comparison
to control (figure I), implying that corticosteroids did not
affect the pulmonary inflammatory response [40].

Karube et al. [41] reported that IL-6 levels did not differ
between the coronary sinus and the arterial blood. They
explained that IL-6 levels in the arterial blood reflected the
levels in the whole body, while precluding the myocardial
source of IL-6. Wan et al. [42], who reported higher IL-6
levels in the coronary sinus than in the arterial blood, and
higher IL-6 levels in the left atrium than in the pulmonary
artery, proposed a contrary statement that myocardium was
amain source of IL-6. Liebold ez al. [34] found that plasma
IL-6 levels from the arterial blood were much higher than
those from the coronary sinus, and that those from the left
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Figure 1
A comparison of bronchoalveolar interleukin-6 levels between
patients receiving corticosteroid inhalation (ll) and control (H) [40].

atrium were much lower than those from the pulmonary
artery. Taken together, the disparities in IL-6 levels from
blood samples of different sites taken during operations
under CPB could be explained by a limitation in coronary
sinus blood sampling.

Sablotzki et al. [43] found an increased IL-6 release after
CPB with peak values 6 h after the operation, coinciding
with a peak in body temperature. As observed in neonates
and infants receiving cardiac operations, IL-6 started to
increase at the end of CPB and peaked 2 h (at 298 and
254 pg/mL) following protamine injection, but there was
no significant intergroup difference in spite of a more pro-
nounced elevation in neonates [30].

In pediatric patients, it was found that the elevation of
serum IL-6 did not correlate with the duration of the aortic
cross-clamp time (either >80 min or <80 min), tempera-
ture (mild or moderate hypothermia) or surgical approach
(ventriculotomy or atriotomy) on postoperative days 0, 1
and 4 [44]. Griinenfelder ef al. [45] reported, in a prospec-
tively controlled, randomized study, that IL-6 levels were
significantly higher 24 h after the operation in the hypother-
mic than in the normothermic group. Menasche et al. [46]
found that IL-6 levels were higher in patients having a
normothermic bypass, while suggesting that vasodilation
occurring with warm heart operations is mediated by a
temperature-dependent release of cytokines. Ohata et al.
[47] found no differences in IL-6 levels in normother-
mic and moderate hypothermic bypasses before and 0, 12
and 24 h after CPB in adult patients undergoing cardiac
operations.

Steinberg et al. [48] reported increased plasma IL-6 and
complement levels in response to CPB. Mareus et al.
[49] found no correlation between serum IL-6 levels and
CPB duration. Saatvedt et al. [50] noted a close cor-
relation between IL-6 levels 48 h after CPB and CPB
duration. Whitten et al. [51] found a positive correla-
tion between IL-6 levels after CPB and CPB duration,
other than aortic cross-clamp duration. Lequier ef al. [36]
demonstrated a significant increase in plasma IL-6 levels at
all observed times in comparison to the preoperative base-
line, but the insignificant difference in IL-6 levels between
patients with and without endotoxemia following CPB
indicated that IL-6 elevation could be due to CPB alone. In
children undergoing major cardiovascular surgery, serum
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levels of IL-6 increased dramatically during and/or after
the operation, indicating that IL-6 elevation levels could
result from an incorporated impact anesthesia, surgical
trauma, and endothelial functional alterations [52]. More-
over, evidence has been presented to confirm the superior
IL-6-eliminating effects of heparin-coated CPB over con-
ventional CPB [53], membrane oxygenation over bubble
oxygenation [54] and low tidal volume/high positive end-
expiratory pressure (PEEP) over high tidal volume/low
PEEP [55].

In addition, many authors have attempted periopera-
tive conditioning on IL-6 production in cardiac surgical
patients; in most situations, a good effect was obtained
(table 1 ).

CORONARY ARTERY BYPASS GRAFTING

Comparisons between CABG and valve replacement
patients revealed serum IL-6 levels to be significantly
higher in the valve group than in the CABG group at the
end of surgery and 24 h after the operation (figure 2A) [66],
which was explained as the result of cardiotomy suction in
valve surgery.

Some authors [67, 68] found that IL-6 levels were similar
in both on-pump and off-pump CABG patients with a base-
line level of 3.9 and 2.7 pg/mL, respectively. It was also
found that the peak values of IL-6 appeared at the time
of protamine use in both groups, then decreased gradu-
ally and recovered to the baseline level 30 days after the
operation (figure 2B) [67]. Uyar et al. [69] compared the
kinetics of perioperative serum IL-6 levels in valve replace-
ment, on-pump and off-pump CABG patients, finding that
IL-6 was elevated 1 and 4 h after the operation, with simi-
lar trends seen in on-pump and valve replacement patients,
whereas off-pump patients exhibited much higher IL-6 lev-
els at each sampling time. They concluded that off-pump
was associated with a reduced cytokine response. How-
ever, two reports on the kinetics of plasma IL-6 between
on-pump and off-pump CABG by the same group from
the Prince of Wales Hospital, Hong Kong, displayed sim-
ilar trends for each group, but with conflicting results: no
intergroup difference in one report [31], but significantly
elevated plasma IL-6 levels in the on-pump group during
and at the end of surgery in comparison to off-pump, which
was interpreted as a reduced pro-inflammatory reaction to
the off-pump maneuver [33].

In comparison to conventional CABG patients, Striiber
et al. [70] found that the IL-6 levels in patients under-
going a minimally invasive direct coronary artery bypass
(MIDCAB) procedure was significantly lower up to 8 h
after the operation, followed by a gradual elevation and a
match with the levels of the conventional CABG patients
24 h after the operation, indicating a less procedure-related
inflammatory response in MIDCAB due to the lack of
global ischemia, protamine use, and moderate hypother-
mia. Gunaydin ef al. [71] disclosed similar IL-6 trends in
both mini-CPB and conventional CABG patients, whereas,
in the conventional CABG patients, IL-6 levels were sig-
nificantly higher during CPB and at the end of CPB, and
following protamine reversal with respect to mini-CPB
patients (figure 2C). A comparative study of IL-6 levels in
elective percutaneous transluminal coronary angioplasty
(PTCA) without CPB, CPB-supported PTCA, and on-

pump CABG patients demonstrated significant differences
at 3, 6, and 24 h after the procedures, with the highest found
in on-pump CABG patients, supporting the CPB relevance
of IL-6 (figure 2D) [72]. On the contrary, Gulielmos et al.
[73] observed that IL-6 levels started to increase in each
group of CABG procedures within 2 h after ischemia, and
peaked 12 h after ischemia. At 15 min, day 1 and day 2 after
ischemia, IL-6 levels of patients with mini-thoracotomy
CABG were significantly higher than those of conven-
tional CABG patients. The result denied the relation of
IL-6 production due to CPB.

The preoperative IL-6 level could be a biomarker for
predicting postoperative complications, such as atrial fib-
rillation [74, 75]. Hedman et al. [76] proposed a cutoff
value for IL-6 of 3.8 pg/mL, a level above which, in
CABG patients, could predict early graft occlusion and
late adverse cardiovascular events; patients with early graft
occlusion or late adverse cardiovascular events were asso-
ciated with a much higher plasma IL-6 levels (figure 2E).
However, data from articles by Parolari et al. and Hed-
man et al. were somewhat inconsistent. The mean IL-6
level in on-pump CABG in the study by Parolari et al.
was 3.9 pg/mL, whereas the cutoff for predicting adverse
events, as proposed by Hedman et al., was 3.8 pg/mL. The
detection of plasma IL-6 in both studies was the same,
that is, by using commercially available enzyme-linked
immunosorbent assay kits (R&D System). Clearly, the pro-
posed cutoff was not suitable for the patient population
similar to that in Parolari’s study.

Some inflammatory biomarkers, including IL-6, displayed
similar trends in on-pump and off-pump CABG proce-
dures, while other biomarkers, such as tumor necrosis
factor-a, exhibited advanced and elevated peaks. This
revealed that the postoperative inflammatory response was
unrelated to either on-pump or off-pump surgical tech-
niques [67].

HEART VALVE OPERATION

Bacci et al. [77], who evaluated plasma IL-6 levels in
patients receiving aortic or mitral valve replacement with
a bio- or a mechanical prosthesis, found no difference in
plasma IL-6 with respect to the prosthetic valve and the
site of valve insertion (figure 3A). However, the authors
failed to indicate the blood sampling time. Trikas et al.
[78] conducted a prospective randomized control study on
plasma IL-6 among 30 patients with mitral stenosis. In their
study, the healthy controls had an IL-6 level of 3.8 pg/mL,
whereas the mitral stenosis patients had a baseline IL-6
of 6.9 pg/mL and a postoperative value of 5.5 pg/mL at
the six-month follow-up stage (figure 3B). The preoper-
ative elevated IL-6 levels were explained as the result of
an immune response to congestive heart failure, while the
secondary significant decline in IL-6 was due to a reduced
left atrial size and an improved cardiac function.

CONGENITAL HEART DEFECT REPAIR

Various studies revealed that the patients with a congeni-
tal heart defect, regardless of being cyanotic or acyanotic,
presented higher circulating IL-6 levels compared to con-
trols (figure 4A) [79-81]. The more distinctive changes in
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Figure 2
Comparisons of circulating interleukin-6 levels in CABG patients: (A) between patients with CABG (Hll) and those with heart valve replacement
(H) [67]; (B) between on-pump (—9) and off-pump CABG patients (— ) [68]; between min-CPB (H) and conventional CABG patients
(H) [72]; and between patients with elective PTCA without CPB () , CPB-supported PTCA () and on-pump CABG patients (H) [73],
and (E) between patients with (lll) and without (H) early graft occlusion, and between patients with (l) and without () late cardiovascular
events. CABG: coronary artery bypass grafting; CPB: cardiopulmonary bypass; OPCAB: off-pump coronary artery bypass; PTCA: percutaneous

transluminal coronary angioplasty.

the cyanotic patients may be explained by the possible
effect of chronic congestive heart failure and chronic shunt
hypoxemia [79]. Moreover, IL-6 levels were significantly
higher in patients with pulmonary artery hypertension
compared with non-pulmonary artery hypertension con-
trols (figure 4B) [82, 83].

Madhok et al. [84] reported that, in pediatric patients
receiving congenital heart defect repair, the circulating IL-

6 on day 1 after the operation increased to 271 + 68 pg/mL
from a preoperative baseline of 46 £+ 12 pg/mL, then
declined on days 2 and 3 after the operation, but insignifi-
cantly different from the preoperative baseline. The highest
circulating IL-6 level was seen on day 1 after the operation
as 629 + 131 pg/mL in patients with a single ventricle,
which was proportional to the elongated CPB duration of
106 =+ 23 min (figure 4C). Gupta et al. [85] reported that
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Comparison of circulating interleukin-6 levels in patients undergo-
ing heart valve replacement: (A) between bio- (l) and mechanical
(H) heart valve prostheses, and between aortic and mitral implant
positions [78]; and (B) between mitral stenosis patients (preopera-
tion (M) and 6 month postoperation (H)) and control (H) [79]. AV:
aortic valve; MS: mitral stenosis; MV: mitral valve.

serum IL-6 levels did not differ significantly at post-bypass
and at peak time between patients with cavopulmonary
anastomosis and those with other corrective operations in
the pediatric population (figure 4D). The postoperative 2-
h IL-6 levels in pediatric congenital heart defect patients
correlated with a long cross-clamp time (figure 4E) [86]
and increased infusions of inotropics, as well as declined
arterial oxygenation [87], other than in terms of relating to
choices of either a centrifugal or a roller pump (figure 4F)
[88].

PULMONARY ENDARTERECTOMY

IL-6 is a risk factor responsible for the development of
pulmonary artery hypertension by mediating pulmonary
artery remodeling via promoting the proliferation of pul-
monary endothelial and smooth muscle cells [89]. In the
chronic thromboembolic pulmonary hypertension piglet
model, the pulmonary IL-6 gene was significantly over-
expressed in comparison to sham controls or reperfused
animals, indicating that IL-6 activities were associated
with hemodynamic status caused by chronic pulmonary
artery occlusion [90]. Maruna ef al. [35] reported that
plasma IL-6 peaked 12 h after pulmonary endarterectomy
under profound hypothermic circulatory arrest, which was
much higher than the preoperative baseline (25 ng/L ver-

sus 522 ng/L). Whether or not the delayed peak was
due to profound hypothermia was unknown. In patients
receiving pulmonary endarterectomy, however, IL-6 was
significantly higher in the roller pump than in the centrifu-
gal pump group 24 h after the operation (587 £ 38 ng/L
versus 327 &+ 37 ng/L, p<0.001) [91].

AORTIC ANEURYSM/DISSECTION REPAIR

According to contemporary theories, an inflammatory pro-
cess is involved in the formation, expansion, or rupture
of abdominal aortic aneurysms (AAAs) [92]. Research
showed that IL-6 levels did not differ between patients
with acute and chronic aortic dissections and chronic and
hypertensive or healthy controls, but did differ between
acute and hypertensive or healthy controls [93]. The
results suggested differential pro-inflammatory cytokine
activities between acute and chronic courses of aortic
dissection. Artemiou et al. [94] found serum IL-6 lev-
els did not differ between patients with ascending and
patients with descending aortic aneurysms (7.58 pg/mL
versus 6.86 pg/mL, p = 0.449). IL-6 levels detected in the
aortic tissues were higher in patients with AAAs and tho-
racic aortic aneurysms compared with controls (figure 5A)
[95]. Wallinder et al. [96] compared plasma IL-6 lev-
els of patients with different sizes of AAAs and found
increased IL-6 levels in patients with an AAA >5.0 cm,
in comparison to those with an AAA <5.0 cm, albeit
without significant difference. However, IL-6 levels in
larger AAA patients were significantly higher than in
controls (figure 5B). Juvonen et al. [97] reported that IL-
6 concentration was similar, irrespective of dimensions
of AAAs and the presence of thrombus. However, other
authors [94, 96, 98] stated that IL-6 levels in AAA patients
depended on aneurysmal dimensions and even aneurys-
mal growth rates. The discovery of increased IL-6 in the
thrombus of the AAA hinted that the thrombus could be a
source of IL-6 due to the leukocyte response and the pro-
duction of other inflammatory cytokines, such as tumor
necrosis factor-a [99]. The intramural thrombus in situ in
endovascularly repaired patients could explain the stronger
inflammatory response during endovascular repair [42].
Cheuk et al. [100] noted a rapid peak time for plasma IL-6
in patients with endovascular treatment of type B aortic
dissection appearing within hours after treatment, but IL-6
reduced remarkably 6 h and returned to the baseline level
24 h after treatment. Another discovery in their study was
that plasma IL-6 levels were directly proportional to the
length of the endovascular graft deployed. Gabriel ef al.
[101] observed a plasma L-6 peak appeared 24 h after the
endovascular treatment of aortic aneurysms. In their opin-
ion, the IL-6 elevation was due to the contact between
the leukocytes and the stent graft. Dawson et al. [102]
compared the plasma IL-6 levels among three groups of
AAA patients: unrepaired, endovascularly repaired, and
surgically repaired. In their study, IL-6 levels descended
in order in the three groups, namely, the endovascularly
repaired AAA patients had a higher IL-6 than those receiv-
ing open surgery (figure 5C). This was explained by a
still-active AAA in the endovascularly treated patients.
Stamataki et al. [103] reported that, in patients receiving
AAA repair, IL-6 levels elevated at the end of surgery,
which directly correlated with the aortic cross-clamp time.
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Circulating interleukin-6 levels in patients with congenital heart defects: (A) between cyanotic (lll) and acyanotic (H) patients and control (Hll)
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Another study showed cytosolic IL-6 levels of ruptured
AAA patients were significantly higher than those of either
asymptomatic AAA patients or cadaveric kidney donor
controls (figure 5D) [104]. The mechanisms of surgically
and endovascularly repaired aortic aneurysms for IL-6
reversal remain to be clarified.

CARDIAC MYXOMA RESECTION

Seino et al. [105] reported serum IL-6 levels in two
patients undergoing cardiac myxoma resections, revealing
that serum IL-6 levels were higher before surgery (6 and
9 pg/mL), but fell afterwards (4 pg/mL). Clinical observa-
tions on a group of seven cardiac myxoma patients revealed

a close correlation between tumor size and preoperative
IL-6 levels (figure 6A), while myxoma resection led to a
significant reduction in circulating IL-6 (figure 6B) [106].
Mochizuki et al. [15] observed a rapid decline in serum
IL-6 after myxoma resection, along with sustained ele-
vation after recurrence. In cases where cardiac myxoma
induced intracerebral aneurysms, serum and cerebrospinal
IL-6 levels could have been persistently high [16].

HEART TRANSPLANTATION

IL-6 was determined as a sensitive biomarker of allograft
rejection based on the significantly elevated IL-6 levels
in the severe rejection group, as opposed to the no or
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mild rejection group [107]. Similarly, Perez-Villa et al. those with grade 3A or above (figure 7A). They stated
[108] reported that serum IL-6 levels were higher in heart that patients with serum IL-6 >30 pg/mL were unlikely to
transplant patients with a low grade (0-2) rejection than develop allograft rejection above grade 3A. Kubala et al.
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[109] reported that plasma IL-6 levels in the early reperfu-
sion period (30 min) were higher in heart transplant patients
than in non-heart transplant patients, but the situation was
reversed in the late reperfusion period (24 h) with a higher
IL-6 level in non-transplant patients, which was probably
the result of a lack of immunosuppressive therapy. Wan
et al. [24] reported a similar elevation-repression trend of
plasma IL-6 from early (90 min) to late (12-24 h) reper-
fusion, finding that IL-6 at the 90-min reperfusion point
correlated with ischemic time. As described by Sakai et
al. [110], plasma IL-6 levels in heart transplant patients
remained stable before the start of CPB, decreased after
CPB and then increased significantly compared to con-
trols at the end of CPB until 60 min after CPB, before
returning to the control value 24 h after the operation
(67 £9 pg/mL). In non-transplant cardiac surgical patients
under CPB, a similar IL-6 elevation was only seen 60 min
after CPB (290 + 76 pg/mL), with the elevation remain-
ing for 24 h (138 £ 42 pg/mL). The results suggested that
CPB could have led to IL-6 elevation, but heart transplants
brought about an IL-6 turndown due to immunosuppres-
sive therapeutics (figure 7B). Birks et al. [111] compared
serum and myocardial tissue IL-6 levels between unused
and used heart donors; however, no significant difference
was found in serum IL-6, but IL-6 mRNA was 2.4 times
higher in unused than in used heart donors. They ascribed
the increased IL-6 mRNA in unused donors to the afore-
hand infusions of inotropic agents. Plenz et al. [112] found
that the mRNAs of IL-6, IL6R and gp130 were upregulated
in donor and failure hearts, in comparison to controls, with
no cardiac chamber difference noted, indicating that donor
or failure hearts might produce IL-6 and mediate acute
allograft rejection and late transplantation vasculopathy.
Circulating IL-6, irrespective of its source (either from the
donor heart or from the recipient), would negatively impact
the donor heart [113].

LEFT VENTRICULAR ASSIST DEVICE (LVAD)
IMPLANT

In all patients, circulating IL-6 levels were elevated shortly
after assist device implantation, unless the candidates were

not infected or had not deteriorated (figure 8A) [114].
Research revealed that LVAD implants were associated
with an initial decrease in IL-6 levels up to 90 days after
implantation, before recovering to pre-implantation lev-
els (figure 8B) [115]. This phenomenon was attributed
to cardiac function improvement after LVAD implanta-
tion, along with subsequent overt or significant infection
or immunosuppression. Goldstein et al. [116] found an
initial decrease in serum IL-6 at the time of LVAD implan-
tation to 33.6 & 9 (range: 1.07-106.9) pg/mL, followed by
a secondary decline to 11.3 £ 4 pg/mL at the two-month
follow-up stage (figure 8C), while a late elevation was only
observed in patients with a serious device infection. Caruso
et al. [52] defined a pre-implantation cutoff of serum IL-6
of 8.3 pg/mL, as patients with an IL-6 level above this
cutoff point were found to have longer hospitalization
duration, poorer cardiac function or more serious compli-
cations, such as multiorgan failure. Loebe et al. [117]
compared two sorts of LVADs and found the axial flow
MicroMed DeBakey device was associated with higher
IL-6 levels than the pulsatile Novacor device (figure 8D).
Myocardial and serum IL-6 levels of 23 LVAD implant
patients showed higher myocardial IL-6 protein and serum
IL-6 in comparison to those of heart transplant patients
(figure 8E) [118]. However, myocardial IL-6 contents were
unlikely to correlate with the cardiac function of LVAD
recipients, and incapable of predicting clinical outcomes
with respect to circulating IL-6 levels [119].

CONCLUSIONS

In cardiac surgical patients, the expression of IL-6 reflects
the inflammatory process in relation to anesthesia, sur-
gical trauma, CPB, and perioperative complications. It
also predicts postoperative cardiac function and compli-
cations, such as infection, atrial fibrillation, cardiac
dysfunction, and myxoma recurrence or metastasis. Preop-
erative preconditioning or immediate treatment by way of
steroids, anesthetics, aprotinin, and ultrafiltration can bene-
fit patients with eliminations of inflammatory cytokine and
improvements in their outcomes. Novel therapeutic agents
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