

RESEARCH ARTICLE

IL-17, IL-10, IL-6, and IFN- γ in Egyptian Behçet's disease: correlation with clinical manifestations

Roba M. Talaat¹, Hiba Sibaii², Iman H. Bassyouni³, Amany El-Wakkad⁴

¹ Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Egypt.

² National Research Centre (NRC), Medical Physiology Department, Egypt

³ Cairo University, Faculty of Medicine, Rheumatology and Rehabilitation Department, Cairo, Egypt

⁴ National Research Centre (NRC) , Medical physiology Department, Egypt.

Correspondence: H. Sibaii
<hrs992002@yahoo.com>

Accepted for publication January 17, 2019

To cite this article: Talaat RM, Sibaii H, Bassyouni IH, El-Wakkad A. IL-17, IL-10, IL-6, and IFN- γ in Egyptian Behçet's disease: correlation with clinical manifestations. *Eur. Cytokine Netw.* 2019; 30(1): 15-22. doi: 10.1684/ecn.2019.0421

ABSTRACT. There are a limited number of studies that report the polarization of the immune system toward the production of T helper 1 (Th1), Th2, or Th17-type cytokines in patients with Behçet's disease (BD). Here, we aimed to detect the presence of various cytokines in serum samples of Egyptian BD patients and to determine the correlation between their production levels and clinical manifestations. To that aim, serum levels of IFN- γ , IL-10, IL-6, and IL-17 measured by ELISA were determined in BD patients with active or inactive disease to evaluate their clinical relevance. The results of the present study show significantly elevated levels of IL-17 and IL-6, as well as a reduction in IL-10, and no change in IFN- γ , in sera of BD patients, as compared to the healthy control group. Moreover, IL-6 serum levels were increased in BD patients in active stages of disease and correlated with arthritic manifestations. On the other hand, IL-10 serum levels were significantly decreased in patients with gastrointestinal tract complications. Furthermore, a positive correlation was observed between IL-10 serum levels and ocular manifestations in BD patients, in contrast to those of IL-17, showing no correlation with the different clinical manifestations. Taken together, the magnitude of IL-6 serum levels could be a potential marker for arthritic manifestations and disease activity, whereas those of IFN- γ , IL-10, and IL-17 cannot be considered predictors for different clinical manifestations in patients with BD.

Key words: Behçet's disease, cytokines, clinical manifestations, Th1, Th2, Th17

Behçet's disease (BD) is a multisystem inflammatory autoimmune disease characterized by recurrent oral aphthous ulcers, genital ulcers, skin lesions, and ocular inflammation [1, 2]. It can frequently involve the joints in addition to vascular, neurological, and gastrointestinal systems [3, 4]. Cytokines and helper T cells play a crucial role in the inflammatory responses in BD [5, 6]. Elevated or altered levels of specific cytokines have been found in patients with Behçet's disease [7, 8]. The helper T cells are divided into Th1, Th2, and Th17 cells according to their cytokine secretion.

Th1 and Th17 cells were found to be involved in the development of several diseases because of their respective proinflammatory cytokines, interferon- γ (IFN- γ) and Interleukin-17 (IL-17). Th17 that produces IL-17 was found to be increased and activated in BD patients [9-11]. IFN- γ is a lymphokine that acts as an immunomodulator [12], proinflammatory cytokine [13] as well as antagonizing the function of IL-17, which is a critical pathogenic cytokine in autoimmune disease [14]. IFN- γ can reduce the pathways and the production of pathogenic autoantibody that plays an important role in autoimmune disease [13].

Interleukin-10 (IL-10) is a cytokine with broad anti-inflammatory properties; it was originally described as

a T helper (Th2) derived cytokine and induced by Th17 cells in chronic inflammation for a feedback regulation [15]. IL-10 involved in the down regulation of autoimmune disease [16], inhibiting the production of IFN- γ [17] and could restrain the pathogenic role of Th17 cells [16]. Also, IL-10 has a negative effect on the generation of Th1 cells, thus helping in the polarization of a helper T-cell response toward a Th2 type [18, 19]. IL-6 is a key cytokine in BD as it plays a role in the differentiation of CD4+ T cells to Th17 cells [20, 21]. It has been proved in previous studies that IL-6 is one of the inflammatory cytokines secreted mononuclear phagocytes and neutrophils in patients with BD [22]. We aimed in our study to observe the aspects IFN- γ , IL-10, IL-6, and IL-17 in Egyptian Behçet's disease and their correlation with different clinical patterns.

SUBJECTS AND METHODS

Patient characteristics

Sixty-four patients with BD were recruited from the Department of Rheumatology at El-Kasr El-Aini Hospital (50 men and 14 women; mean age 34.1 ± 10.70) and were diagnosed according to the International Study Group (ISG) for Behçet's disease

criteria (ISG for Behcet's Disease, 1990) [23]. Twenty age and gender-matched healthy control subjects were included in the study. Patients who had other autoimmune diseases, infection, or malignancy were excluded from the study. Informed consent was obtained from all subjects. The onset of the syndrome was defined as the time when the patient fulfilled the diagnostic criteria.

Detailed clinical characteristics were recorded for each patient. Skin lesions (pseudo-folliculitis and erythema nodosum-like) were reported. The involvement of peripheral joints documented by a rheumatologist was noted. All the patients underwent complete ophthalmic examination and fundus fluorescein angiography. The diagnosis of vascular involvement was made on clinical signs, by Doppler ultrasonography and/or angiography using computed tomographic or magnetic resonance techniques where appropriate. When central nervous system (CNS) involvement was suspected from the history and the clinical examination, CT scan, cerebrospinal fluid examination, and/or MRI were performed to confirm the clinical findings. Other clinical manifestations, such as cardiopulmonary, intestinal, and kidney involvement, were also registered. The pathergy test was performed using a 20-gauge sterile needle on the forearms and the result was read 48 hours later by the same investigator. If a papule or a pustule formed at the site of the needle prick, the test was considered positive.

At the time of blood sampling, patients with two or more lesions in the previous 4 weeks (including oral ulcers, genital ulcers, skin lesions, uveitis, vascular, arthritis, gastrointestinal lesions, central nervous system lesions, and pulmonary involvement) were regarded to have active disease [24]. Almost all patients, except seven cases, were on a treatment specifically for BD (including colchicine, prednisone, azathioprine, thalidomide, cyclosporine, cyclophosphamide, and methotrexate). Routine laboratory investigations were collected from the patients' records.

Cytokine assay

The levels of circulating cytokines [IFN- γ (0.195-100 ng/mL) and IL-10 (0.195-100 ng/mL)] were determined in plasma of patients and controls by ELISA as previously described [25, 26] with slight modifications. Commercial DuoSet ELISA kits were used for the detection of total concentrations of IL-6 (9.38-600 pg/mL) (R&D System, Inc., Minneapolis, MN), IL-17 (less than 10 pg/mL) (RayBiotech, Inc. Norcross, GA) according to the manufacturer's instructions. Briefly, samples or standards were added to a coated microtiter plate and incubated for 2h at room temperature and then overnight at 4°C. Free sites were blocked with 5% fetal bovine plasma (FBS). Biotinylated polyclonal antibody was added for 2h at 37°C. At the end of the incubation period, streptavidine conjugated to horseradish peroxidase was added to the wells. After additional 1h incubation, hydrogen peroxide (H₂O₂) and tetramethylbenzidine (TMB) substrate solution (1:1) were added. The reaction was stopped by 1M HCl stopping buffer.

Table 1
Demographic, clinical features and laboratory data of 64 patients with BD.

Parameter	Value
<i>Demographic DATA</i>	
Age (mean \pm SD)	34.1 \pm 10.70
Disease duration (mean \pm SD)	
Male/female	50/14
<i>Clinical involvement</i>	
Oral ulcers (%)	64 (100%)
Genital ulcers (%)	60 (93.8%)
Ocular involvement (%)	37 (57.8%)
Skin lesion (%)	37 (57.8 %)
Vascular (%)	18 (28.1 %)
Neuro (%)	15 (23.4 %)
Arthritis	17 (26.6 %)
GIT (%)	3 (4.7%)
Chest (%)	4 (6.2%)
Active patients (%)	28 (43.8%)
<i>Laboratory investigations</i>	
ESR mmHg/hr (mean \pm SD)	37.85 \pm 20.40
Haemoglobin gm% (mean \pm SD)	13.34 \pm 1.3
WBC 1,000/mm ³ (mean \pm SD)	8.86 \pm 4.4
Neutrophils 1,000/mm ³ (mean \pm SD)	58.82 \pm 11.4
PLT 1,000/mm ³ (mean \pm SD)	269.51 \pm 57.3

All data are presented as mean \pm SD.

The absorbance of each well was measured at 450nm using a microplate reader (SunriseTM, Tecan Group Ltd. Männedorf/Switzerland). Each plasma sample was analyzed in duplicates. The ELISA reader-controlling software (Softmax) readily processes the digital data of a raw absorbency value into a standard curve from which cytokine concentrations of unknown samples can be derived directly.

Statistical analysis

The Statistical Package for Social Sciences (SPSS) version 19 (LEAD Technology Inc., Charlotte, NC, USA) was used to analyze the data. Data were presented as means with their corresponding standard error (SE) among different groups followed by independent T test. Also, spearman's rank correlation was used to examine the relationship between two continuous variables. Chi square test was performed to categorical data. *P*-values less than 0.05 were considered significant level.

RESULTS

Patients characteristics

All patients (64) have oral ulcer (100%), 60 patients have genital ulcers (93.8%), 37 patients have ocular manifestations (57.8%), 37 patients have skin manifestations (57.8%), 18 patients have vascular manifestations (28.1%), 15 patients have neurological manifestations (23.4%), 17 patients have arthritis (26.6%), 3 patients have GIT manifestations (4.7%), 4 patients have chest manifestations (6.2%). Patients with two or more lesions in the previous 4 weeks were regarded to have active disease; there were 28 patients

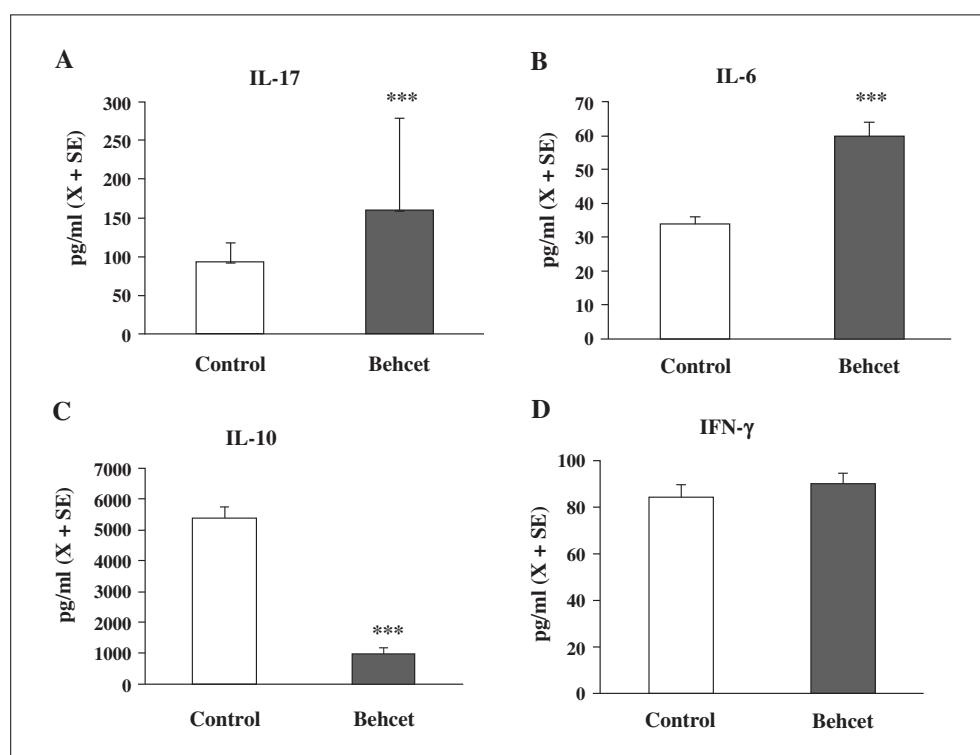
in active state (43.8%) and 36 patients in inactive state (56.2%) at the time of blood sampling (*table 1*).

Soluble cytokine levels in BD patients and healthy controls

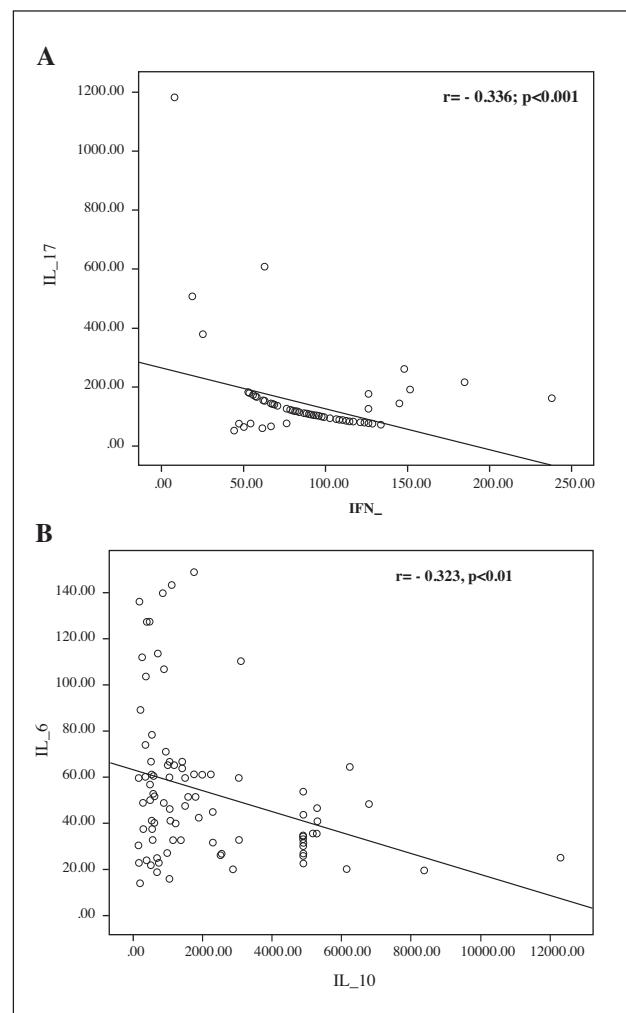
As shown in *figure 1*, BD patients showed a significant increase in serum levels of IL-17 (*figure 1A*) and IL-6 (*figure 1B*) cytokine compared to control group ($P < 0.041$ and $P < 0.0001$ respectively). On the other hand, serum level of IL-10 has shown a significant lower level in BD patients when compared to control group ($P < 0.001$) as shown in *figure 1C*. Also, serum level of IFN- γ was slightly elevated in BD patients but was not significant from the control group (*figure 1D*). The Th17 cytokine IL-17 has shown a negative correlation with the Th1 cytokine IFN- γ ($r = -0.336$, $P < 0.001$), (*figure 2A*) and a significant negative correlation between IL-6 and IL-10 has been observed ($r = -0.323$; $P < 0.01$) (*figure 2B*).

Soluble Cytokine Levels in BD Clinical Manifestations

As BD is a heterogeneous disease, further analysis was performed to compare the level of soluble cytokines in BD patients in the presence and absence of some clinical manifestations at the time of blood sampling (*tables 2-5*). IL-6 was increased in active disease patients compared to those in inactive stage, at $P < 0.05$. IL-10 was decreased in patients with GIT manifestations compared to those with no manifestations ($P < 0.05$) and was increased insignificantly in patients with eye manifestations. This study showed no significant differences in IL-17 level neither in relation


to any specific organ involvement nor to the clinical activity of disease. Also, this study showed that patients with ocular and chest manifestations had significant decrease in IFN- γ levels than those without (at $P < 0.05$ and $P < 0.01$ respectively).

Correlation between Cytokines and BD Laboratory Investigations and Clinical Manifestations


Our study showed a positive correlation between IL-6 and ESR ($r = 0.38$; $P < 0.001$), disease activity ($r = 0.270$, $P < 0.05$), and arthritic manifestations ($r = 0.260$, $P < 0.05$). Moreover, a negative correlation was observed between IFN- γ and ocular manifestation ($r = -0.325$, $P < 0.01$). Also, a positive correlation was detected between IL-10 and ocular involvement ($r = 0.250$, $P < 0.05$). On the other hand, there was no correlation between IL-17 and specific organ involvement. These results are presented in *table 6*.

DISCUSSION

The main idea of our study was built on investigating a set of cytokines in BD patients with different clinical manifestations, in order to assess any potential correlation between these circulating cytokines, and the clinical features of disease. Several studies reported the involvement of specific cytokines as mediators in BD [27, 28]. Cytokines involved can be categorized into different types such as Th1, Th2, and Th17. These different cytokines play an important role in disease pathogenesis [28, 29]. Our results showed an increase in IL-6 levels in BD patients compared to the control group, which is in accordance with earlier studies that were reported in patients suffering from BD in Turkey

Figure 1
Serum levels of IL-17 (A), IL-6 (B), IL-10 (C) and IFN- γ in the patients with Behcet's disease in comparison to control group. Results are expressed as mean \pm standard error. Asterisk (*) denotes statistically significant difference from control group; *** $P < 0.001$.

Figure 2

A) A negative correlation between IL-17 and IFN- γ ($r = -0.336$, $P < 0.001$), **B)** A negative correlation between IL-6 and IL-10 ($r = -0.323$; $P < 0.01$).

and Japan [30, 31], respectively. Moreover, the present study showed that the disease activity is correlated with the increased level of IL-6 and in patients with active stage, which is in agreement with earlier studies [32, 33]. IL-6 is a multifunctional pro-inflammatory

cytokine with an important role in the regulation of immune response [34]. Earlier studies revealed that IL-6 is implicated and over expressed in the pathology of many autoimmune and inflammatory diseases, but overproduction of IL-6 might lead to abnormal B cell differentiation and antibody production [35]. Also, this study showed a negative correlation between IL-6 and IL-10, which could be explained that in normal state IL-10 inhibit inflammatory cytokines which lead to the down-regulation of immune responses [36]. This study showed that IL-10 was decreased in BD patients compared to control group so there was no inhibitory action on IL-6. The previous reason might explain the increased level of IL-6 and the negative correlation found between them and this is in agreement with an earlier study [37]. Moreover, our study revealed a positive correlation between IL-6 and arthritic manifestation and this is in accordance with Frikha *et al.* [38] who postulated that inflammation and synovitis are caused by persistent vasculitis that constitutes the primary pathology in BD. Accordingly, clinicians approved the use of an anti-IL-6 receptor antibody for the treatment of moderately to severely active rheumatoid arthritis [39]. Also, it was reported that the immune response in BD is related to either the Th1 pathway [40] or the increase in Th17 cytokines [41]. The present study did not show a significant difference in serum level of IFN- γ between BD patients and control groups and this might be attributed to the fact that IL-6 promotes Th2 cell differentiation and inhibits IFN- γ production [33]. IFN- γ is a protective cytokine in the development of an autoimmune response [13]. This might explain the nonsignificant difference between the levels of IFN- γ in BD patients and control groups. IFN- γ is a pro-inflammatory cytokine that plays a central role in inflammation and autoimmune disease [42]. On the other hand, IFN- γ is as a master regulator of inflammation and immune response [43, 44]. IFN- γ has a self-regulatory process that maintains the homeostasis of immune system, when body is in a state of inflammation high levels of IFN- γ will be secreted to down regulate that inflammation by activating the regulatory mechanisms that deliver a

Table 2
Association of the most common clinical findings of the disease with IL-6 in the patients with BD.

Clinical manifestations	NO (%)	Median IL-6		<i>P</i> -value
		Present	Absent	
Oral involvement	64 (100)	60.74 ± 4.24	-	-
Genital involvement	60 (93.8)	44.8 ± 10.51	61.8 ± 4.45	0.20
Skin involvement	37 (57.8)	55.4 ± 6.1	64.6 ± 5.8	0.28
Ocular involvement	37 (57.8)	54.5 ± 5.08	69.28 ± 7.03	0.09
Vascular involvement	18 (28.1)	69.43 ± 9.04	57.34 ± 4.69	0.24
Neurological involvement	15 (22.3)	65.7 ± 7.96	59.2 ± 5.0	0.49
Articular involvement	17 (26.6)	71.37 ± 8.84	56.9 ± 4.74	0.16
Chest involvement	4 (6.26)	82.1 ± 22.3	59.3 ± 4.27	0.38
GIT involvement	3 (4.7)	102.7 ± 31.0	58.6 ± 4.09	0.29
Activity	28 (43.8)	71.06 ± 7.56	$52.7 \pm 4.37^{**}$	0.04

Results are expressed as mean pg/mL \pm standard error. * $P < 0.05$; ** $P < 0.01$.

Table 3
Association of the most common clinical findings and the disease with IL-10 in the patients with BD.

Clinical manifestations	NO (%)	Median IL-10			P-value
			Present	Absent	
Oral involvement	64 (100)	980.7 \pm 88.32	-	-	-
Genital involvement	60 (93.8)	1,148 \pm 642.4	969.5 \pm 86.3	0.8	
Skin involvement	37 (57.8)	980.7 \pm 145.8	980.7 \pm 111.2	1	
Ocular involvement	37 (57.8)	1,116 \pm 125.27	794.3 \pm 112.7	0.06	
Vascular involvement	18 (28.1)	837 \pm 159.59	1,036 \pm 105.67	0.3	
Neurological involvement	15 (22.3)	833.2 \pm 167.36	1,025 \pm 103.4	0.33	
Articular involvement	17 (26.6)	1,184 \pm 180.3	906.6 \pm 100	0.18	
Chest involvement	4 (6.26)	644 \pm 246	1,003.2 \pm 92.43	0.24	
GIT involvement	3 (4.7)	617 \pm 117.5*	998 \pm 91.96	0.05	
Activity	28 (43.8)	981 \pm 147.28	979 \pm 109.3	0.99	

Results are expressed as mean pg/mL \pm standard error. *P < 0.05; **P < 0.01.

Table 4
Association of the most common clinical findings of the disease with IL-17 in the patients with BD

Clinical manifestations	NO (%)	Median IL-17			P-value
			Present	Absent	
Oral involvement	64 (100)	160.9 \pm 19.67	-	-	-
Genital involvement	60 (93.8)	238 \pm 12.3	155.7 \pm 19.54	0.55	
Skin involvement	37 (57.8)	152.8 \pm 18.71	166.8 \pm 31.37	0.70	
Ocular involvement	37 (57.8)	169 \pm 31.05	148.7 \pm 19.58	0.5	
Vascular involvement	18 (28.1)	128 \pm 9.62	173 \pm 26.97	0.123	
Neurological involvement	15 (22.3)	133 \pm 10.22	169 \pm 25.45	0.19	
Articular involvement	17 (26.5)	223 \pm 66.69	138 \pm 10.96	0.22	
Chest involvement	4 (6.26)	259.3 \pm 117.0	154.3 \pm 19.56	0.43	
GIT involvement	3 (4.7)	146 \pm 19.9	161 \pm 20.6	0.6	
Activity	28 (43.8)	185 \pm 40.7	141 \pm 14.8	0.32	

Results are expressed as mean pg/mL \pm standard error. *P < 0.05; **P < 0.01.

Table 5
Association of the most common clinical findings of the disease with IFN- γ in the patients with BD

Clinical manifestations	NO (%)	Median IFN- γ			P-value
			Present	Absent	
Oral involvement	64 (100)	90.0 \pm 4.52	-	-	-
Genital involvement	60 (93.7)	78.7 \pm 5.75	90.7 \pm 4.80	0.146	
Skin involvement	37 (57.8)	86.9 \pm 6.80	92.21 \pm 6.63	0.55	
Ocular involvement	37 (57.8)	100.3 \pm 6.01	82.4 \pm 6.26 *	0.04	
Vascular involvement	18 (28.1)	99.1 \pm 7.61	86.4 \pm 5.51	0.18	
Neurological involvement	15 (22.3)	91.35 \pm 9.1	89.5 \pm 5.25	0.86	
Articular involvement	17 (26.5)	81.57 \pm 9.1	93.0 \pm 5.1	0.28	
Chest involvement	4 (6.26)	67.9 \pm 6.81*	91.4 \pm 4.7	0.027	
GIT involvement	3 (4.68)	68.9 \pm 11	91.0 \pm 4.6	0.17	
Activity	28 (43.7)	87.3 \pm 8.3	92.0 \pm 4.8	0.623	

Results are expressed as mean pg/mL \pm standard error. *P < 0.05; **P < 0.01.

Table 6
Correlation between plasma cytokine levels with features of BD patients and disease activity.

Clinical manifestations	IFN- γ r (P-value)	IL-10 r (P-value)	IL-6 r (P-value)	IL-17 r (P-value)
Genital	$r = 0.121; P = 0.343$	$r = 0.038; P = 0.763$	$r = 0.121; P = 0.343$	$r = -0.061; P = 0.631$
Skin	$r = 0.135; P = 0.286$	$r = 0.028; P = 0.825$	$r = 0.126; P = 0.326$	$r = -0.176; P = 0.163$
Ocular	$r = -0.325; P = 0.009^{**}$	$r = 0.250; P = 0.046^{*}$	$r = -0.207; P = 0.100$	$r = 0.048; P = 0.707$
Vascular	$r = 0.207; P = 0.101$	$r = -0.162; P = 0.201$	$r = 0.141; P = 0.266$	$r = -0.093; P = 0.464$
Neuro	$r = -0.026; P = 0.839$	$r = -0.130; P = 0.307$	$r = 0.139; P = 0.274$	$r = 0.039; P = 0.760$
Arthritis	$r = -0.184; P = 0.146$	$r = 0.184; P = 0.146$	$r = 0.260; P = 0.038^{*}$	$r = 0.150; P = 0.236$
Chest	$r = -0.210; P = 0.096$	$r = -0.152; P = 0.230$	$r = 0.117; P = 0.357$	$r = 0.189; P = 0.135$
GIT	$r = -0.158; P = 0.212$	$r = -0.112; P = 0.378$	$r = 0.178; P = 0.159$	$r = 0.090; P = 0.479$
Activity	$r = -0.055; P = 0.668$	$r = -0.065; P = 0.611$	$r = 0.274; P = 0.049^{*}$	$r = -0.038; P = 0.768$
Duration	$r = 0.159; P = 0.209$	$r = 0.094; P = 0.462$	$r = 0.226; P = 0.07$	$r = -0.113; P = 0.373$

* $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$.

negative feedback [44]. Additionally, this study showed a decrease in serum level of IFN- γ in ocular and chest involvement. This effect could be related to IL-10 that down-regulates the expression of NO that in turn antagonizes the effect of IFN- γ , which prompts a protective role of IL-10 [45]. Other studies are not in accordance with this study as they observed Th1 dominance in BD uveitis, but we found a decrease in serum level of IFN- γ in the active stage and an increase in the inactive stage [11, 46]. Ozdamar *et al.* in 2009 [47] found high levels of IFN- γ in the bronchoalveolar lavage from BD with pulmonary disease and this is not in accordance with our results as we detect a lower serum level of IFN- γ . This could be explained by the difference in type of samples (serum or bronchoalveolar lavage) and time of samples collection.

Additionally, the results of the present study showed an elevated level of IL-17 in BD compared to control group and this is in agreement with Chi *et al.* [9, 48]. Th17 cells produce a number of proinflammatory cytokines such as IL-17 and IL-22, whereas IL-6 is essential for their development [9, 49]. Recent data suggest that Th17 plays a crucial role in the pathogenesis of BD as it activates neutrophils. IL-6 plays a role in the differentiation of CD4+ T cells to Th17 cells in BD [20, 21]. The present finding showed an increase in serum level of IL-6 that is in agreement with Kim and Bettelli [20, 21]. Also, we observed a negative correlation between IL-17 and IFN- γ that is in agreement with Chi and Hamzaoui [9, 48] who reported an elevation in IL-23 and IL-17A but not IFN- γ .

The anti-inflammatory cytokine IL-10 is an immunosuppressive cytokine and involved in the down regulation of autoimmune disease; the decreased level of IL-10 contributes to the persistent inflammation found in BD patients [16, 50]. IL-10 shows a positive correlation with eye manifestation which could be attributed to the fact that IL-10 is a potential cytokine of protecting effect [28, 36]. The current study observed a decrease in serum level of IL-10 in BD patients compared to control group. Also, a decrease in serum level of IL-10 in patients suffering from GIT manifestations and a positive correlation were ob-

served between IL-10 and patients with eye manifestation. These findings support those of Fitzgerald *et al.* [16] and Guo [50]. In contrast, however, Aridogan *et al.* [51] and Ben Ahmed *et al.* [40] observed an increased level of IL-10 in peripheral blood mononuclear cells from patients with BD. The reason for this discrepancy is at present not clear.

The present study revealed that Th2, Th17 cytokines are involved in the pathophysiology of BD disease except for IFN- γ that is a Th1 cytokine and this finding is in agreement with Vaccarino *et al.* [52]. However, these cytokines cannot be considered markers for the different clinical manifestations observed in BD patients apart from IL-6 that could be a potential marker for arthritic manifestations and disease activity.

CONCLUSION

BD is not uncommon in Egypt but there is little information of the involvement of cytokines in the pathogenesis of this heterogenous disease. Whereas IL-6 and IL-17 are potential markers for BD. IL-17, IL-10, and IFN- γ serum levels are not correlated with any of the different clinical manifestations of BD, except for IL-6 that could be a potential marker for arthritic manifestation and disease activity.

Disclosure. Acknowledgment: We would like to express our gratitude to Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Egypt for providing us with the laboratory equipment and to the Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University, Cairo, Egypt for providing us with the outpatient clinic as a facility. Financial support: none. Conflict of interest: none.

REFERENCES

1. Zeidan MJ, Saadoun D, Garrido M, Klatzmann D, Six A, Cacoub P. Behcet's disease physiopathology: a contemporary review. *Auto Immun Highlights* 2016; 7 : 4.
2. Puccetti A, Pelosi A, Fiore FP, Patuzzo G, Lunardi C, Dolcino M. MicroRNA expression profiling in Behcet's disease. *J Immunol Res* 2018;2405150.

3. Zeidan MJ, Saadoun D, Garrido M, Klatzmann D, Six A, Cacoub P. Behcet's disease physiopathology: a contemporary review. *Auto Immun Highlights* 2016; 7 : 4.
4. Gallizzi R, De Vivo D, Valenti S, Pidone C, Romeo C, Caruso R, Claudio Romano R. Intestinal and neurological involvement in Behcet disease: a clinical case. *Ital J Pediatr* 2017; 43 : 33.
5. Hamzaoui K, Hamzaoui A, Guemira F, Bessioud M, Hamza M, Ayed K. Cytokine profile in Behcet's disease patients. Relationship with disease activity. *Scand J Rheumatol* 2002; 31 : 205.
6. Shimizu J, Yoshikawa H, Takada E, Hirotsu C, Suzuki N. Unbalanced helper T cell function in Behcet's disease. *Inflamm Regen* 2011; 31 : 297.
7. Sadeghi A, Davatchi F, Shahram F, Karimimoghadam A, Alikhani M, Pezeshgi A, Mazloomzadeh S, Sadeghi-Abdollahi B, Asadi-Khavi M. Serum profiles of cytokines in Behcet's disease. *J Clin Med* 2017; 6 : 49.
8. Takeuchi M, Karasawa Y, Harimoto K, Tanaka A, Shibata M, Sato T, Caspi RR, Ito M. Analysis of Th Cell-related cytokine production in Behcet disease patients with uveitis before and after infliximab treatment. *Ocul Immunol Inflamm* 2017; 25 : 52.
9. Chi W, Yang P, Zhu X, et al. Production of interleukin-17 in Behcet's disease is inhibited by cyclosporin A. *Mol Vis* 2010; 19 : 880.
10. Liang L, Wang H, Peng XY, Zhao M. The changes of Thelper lymphocyte subsets in patients with Behcet's disease. *Zhonghua YanKe ZaZhi* 2011; 47 : 393.
11. Sugita S, Kawazoe Y, Imai A, Yamada Y, Horie S, Mochizuki M. Inhibition of Th17 differentiation by anti-TNF-alpha therapy in uveitis patients with Behcet's disease. *Arthritis Res Ther* 2012; 14.
12. Lin CF, Lin CM, Lee KY, Wu SY, Feng PH, Chen KYHC, Chen CL, Wang YC, Tseng PC, Tsai TT. Escape from IFN- γ -dependent immunosurveillance in tumorigenesis. *J Biomed Sci* 2017; 24 : 10.
13. Rosloniec EF, Latham K, Guedez YB. Paradoxical role of IFN- γ in models of Th1-mediated autoimmunity. *Arthritis Res* 2002; 4 : 333.
14. Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S, Sudo K, Iwakura Y. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. *J Immunol* 2006; 177 : 566.
15. Kubo M, Motomura Y. Transcriptional regulation of the anti-inflammatory cytokine IL-10 in acquired immune cells. *Front Immunol* 2012; 3 : 275.
16. Fitzgerald DC, Zhang GX, El-Behi M, et al. Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27-stimulated T cells. *Nat Immunol* 2007; 8 : 1372.
17. Couper KN, Blount DG, Riley EM. IL-10: the master regulator of immunity to infection. *J Immunol* 2008; 180 : 5771.
18. Mosmann T. Complexity or coherence? Cytokine secretion by B cells. *Nat Immunol* 2000; 6 : 465.
19. Yu CR, Mahdi RM, Ebong S, Vistica BP, Gery I, Egwuagu CE. Suppressor of cytokine signaling 3 regulates proliferation and activation of T-helper cells. *J Biol Chem* 2003; 278 : 29752.
20. Kim ES, Kim SW, Moon CM, et al. Interactions between IL17A, IL23R, and STAT4 polymorphisms confer susceptibility to intestinal Behcet's disease in Korean population. *Life Sci* 2012; 90 : 740.
21. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. *Nature* 2006; 441 : 235-8.
22. Akdeniz N, Esrefoglu M, Keles MS, Karakuzu A, Atasoy M. Serum interleukin-2, interleukin-6, tumour necrosis factor-alpha and nitric oxide levels in patients with Behcet's disease. *Ann Acad Med Singapore* 2004; 33 : 596-9.
23. International Study Group for Behcet's Disease. Criteria for diagnosis of Behcet's disease. *Lancet* 1990; 335(8697):1078.
24. Aydintug AO, Tokgoz G, Ozoran K, Duzgun N, Guler A, Tutkak H. Elevated levels of soluble intercellular adhesion molecule-1 correlate with disease activity in Behcet's disease. *Rheumatol Int* 1995; 15 : 75.
25. Talaat RM, El-Bassiouny AI, Osman AM, Yossif M, Charmy R, Al-Sherbiny MM. Cytokine secretion profile associated with periportal fibrosis in *S. mansoni* infected Egyptian patients. *Parasitol Res* 2007; 101 : 289.
26. Talaat RM. Soluble angiogenesis factors in sera of Egyptian patients with hepatitis C virus infection: correlation with disease severity. *Viral Immunol* 2010; 23 : 151.
27. Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. *Annu Rev Immunol* 2007; 25 : 821.
28. Zhou ZY, Chen SL, Shen N, Lu Y. Cytokines and Behcet's disease. *Autoimmun Rev* 2012; 11 : 699.
29. Akkurt ZM, Bozkurt M, Ucmak D, Uksel Y, Ucak H, Sula B, Ozkurt GZ, Yildiz M, Akdeniz D, Arica M. Serum cytokine levels in Behcet's disease. *J Clin Lab Anal* 2015; 29 : 317.
30. Central Hirohata S. Nervous system involvement in Behcet's disease. *Rinsho Shinkeigaku* 2001; 41 : 1147.
31. Akman A, Ekinci NC, Kacaroglu H, et al. Relationship between Turkish patients and Behcet's disease. *Arch Dermatol Res* 2008; 300 : 19.
32. Koarada S, Haruta Y, Tada Y, et al. Increased entry of CD4+ T cells into the Th1 cytokine effector pathway during T-cell division following stimulation in Behcet's disease. *Rheumatology (Oxford)* 2004; 43 : 843.
33. Nalbant S, Sahan B, Durna M, et al. Cytokine profile in Behcet uveitis. *Bratislav Lek Listy* 2008; 109 : 551.
34. Choy E, Rose-John S. Interleukin-6 as a multifunctional regulator: inflammation, immune response, and fibrosis. *J Scleroderma Relat Disord* 2017; 2(Suppl. 2):S1-5.
35. Kallen KJ. The role of transsignalling via the agonistic soluble IL-6 receptor in human diseases. *Biochim Biophys Acta* 2002; 1592 : 323.
36. Pineton de Chambrun M, Wechsler B, Geri G, Cacoub P, Saadoun D. New insights into the pathogenesis of Behcet's disease. *Autoimmun Rev* 2012; 11 : 687.
37. Fessler JB. Vasculitis and related diseases. In : Koopman WJ, Moreland LW, (eds). *Arthritis and allied conditions*. Philadelphia, Pa, USA: Lippincott Williams and Wilkins;1835-44.
38. Frikha F, Marzouk S, Kaddour N, Frigui M, Bahloul Z. Destructive arthritis in Behcet's disease: a report of eight cases and literature review. *Int J Rheum Dis* 2009; 12 : 250.
39. Hirano T, Ohguro N, Hohki S, et al. A case of Behcet's disease treated with a humanized anti-interleukin-6 receptor antibody, tocilizumab. *Mod Rheumatol* 2012; 22 : 298.
40. Ben Ahmed M, Houman H, Miled M, Dellagi K, Louzir H. Involvement of chemokines and Th1 cytokines in the pathogenesis of mucocutaneous lesions of Behcet's disease. *Arthritis Rheum* 2004; 50 : 2291.

41. Jiang S, Liu X, Luo L, et al. Serum levels of Th17-related cytokines in Behçet disease patients after cataract surgery. *Mol Vis* 2011; 17 : 1425.
42. Pollard KM, Cauvi DM, Toomey CB, Morris KV, Kono DH. Interferon- γ and systemic autoimmunity. *Discov Med* 2013; 16 : 123.
43. Ramya S, Gaddam S. *Cytokines that mediate and regulate immune responses*; 2015. <http://austinpublishinggroup.com/ebooks/innovative-immunology/chapters/II-14-05.pdf> (innovative immunology, ISBN: 978-0-9971499-1-3).
44. Zhang J. Yin and yang interplay of IFN- γ in inflammation and autoimmune disease. *J Clin Investig* 2007; 117 : 871-3.
45. Belguendouz H, Messaoudene D, Lahmar K, et al. Interferon-gamma and nitric oxide production during Behçet uveitis. immunomodulatory effect of IL-10. *J Interferon Cytokine Res* 2011; 21 : 643-51.
46. Ilhan F, Demir T, Türkçüoglu P, Turgut B, Demir N, Gödekmerdan A. Th1 polarization of the immune response in uveitis in Behçet's disease. *Can J Ophthalmol* 2008; 43 : 105.
47. Ozdamar Y, Berker N, Bahar G, et al. Inflammatory mediators and posterior segment involvement in ocular Behçet disease. *Eur J Ophthalmol* 2009; 19 : 998.
48. Hamzaoui K, Bouali E, Ghorbel I, Khanfir M, Houman H, Hamzaoui A. Expression of Th17 and ROR γ t mRNA in Behçet's disease. *Med Sci Monit* 2011; 17 : 227.
49. Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M, Onoue M, Yagita H, Ishii N, Evans R, Honda K, Takeda K. ATP drives lamina propria TH17 cell differentiation. *Nature* 2008; 455 : 808.
50. Guo B. IL-10 modulates Th17 pathogenicity during autoimmune diseases. *J Clin Cell Immunol* 2016; 7 : 400.
51. Aridogan BC, Yildirim M, Baysal V, Inaloz HS, Baz K, Kaya S. Serum levels of IL-4, IL-10, IL-12, IL-13 and IFN-gamma in Behçet's disease. *J Dermatol* 2003; 30 : 602.
52. Vaccarino L, Triolo G, Palombo AA, Scola L, Palmeri M, Bova M, Candore G, Lio D, Balistreri CR. Pathological implications of Th1/Th2 cytokine genetic variants in Behçet's disease: data from a pilot study in a Sicilian population. *Biochem Genet* 2013; 51(11-12):967-75. doi: 10.1007/s10528-013-9621-x.