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ABSTRACT: Vehicle-induced response separation is a crucial issue in structural health monitoring (SHM). This paper
proposes a block-wise sliding recursive wavelet transform algorithm to meet the real-time processing requirements
of monitoring data. To extend the separation target from a fixed dataset to a continuously updating data stream, a
block-wise sliding framework is first developed. This framework is further optimized considering the characteristics
of real-time data streams, and its advantage in computational efficiency is theoretically demonstrated. During the
decomposition and reconstruction processes, information from neighboring data blocks is fully utilized to reduce
algorithmic complexity. In addition, a delay-setting strategy is introduced for each processing window to mitigate
boundary effects, thereby balancing accuracy and efficiency. Simulated signal experiments are conducted to determine
the optimal delay configuration and to verify the algorithm’s superior performance, achieving a lower Root Mean
Square Error (RMSE) and only 0.0249 times the average computational time compared with the original algorithm.
Furthermore, strain signals from the Lieshi River Bridge are employed to validate the method. The proposed algorithm
successfully separates the static trend from vehicle-induced responses in real time across different sampling frequencies,
demonstrating its effectiveness and applicability in real-time bridge monitoring.
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1 Introduction

In the daily use of bridges, the structures are exposed to various vertical loads, which can be generally
divided into two categories: dynamic loads caused by the passage of vehicles and static loads induced by
environmental factors. Individual vehicle loads produce spatially localized dynamic responses, resulting
in a temporal “peaking” effect in the monitoring signal. The static load, mainly caused by environmental
factors such as temperature, is reflected as a long-term overall variation in the monitoring signal. In the
application of structural health monitoring (SHM) systems, the evaluation and diagnosis of bridge damage
often require only the static load response (static signal), while vehicle weight identification uses only the
vehicle-induced dynamic signal. However, during sensor sampling, these two types of signals are coupled,
making the development of signal separation algorithms necessary. In recent years, with the development
of structural monitoring technology, data analysis in many studies is no longer confined to a fixed segment
of data but to a real-time data stream [I1-3]. Therefore, the development of algorithms for the real-time
separation of vehicle-induced and static signals has become a more important and urgent issue.
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Approaches to separating vehicle-induced dynamics and static trends in SHM fall broadly into
temperature-assisted and signal-only categories. In the temperature-assisted category, the static response
is inferred from the correlation between temperature and strain—via, for example, Square-Root Slope
Function (SRSF), Bayesian warping, nighttime correlation analysis, deep kernel regression, iterative regres-
sion, or spatiotemporal Dynamic Convolution Neural Network-Long Short-Term Memory (DCNN-LSTM)
modeling—thereby achieving separation through prediction [4-8]. In the signal-only category, the total
response is decomposed using time-frequency analysis or learning-based methods, including wavelet anal-
ysis, Empirical Mode Decomposition (EMD), LSTM-based extraction, Variational Mode Decomposition
(VMD)/EMD for online separation [9-12], and online Kalman filtering [13,14].

Despite their utility, both families face limitations in achieving real-time separation of vehicle-induced
responses. The temperature-strain correlation often exhibits temporal lag and site-dependent variability that
are difficult to quantify, reducing prediction accuracy [15-18]. Within signal-only methods, linear filters are
computationally efficient but often lack separation precision, whereas nonlinear iterative techniques (e.g.,
EMD, VMD) and online Kalman filtering incur high computational and memory costs and show strong
dependence on model assumptions and parameter tuning, which limits their efficiency for high-frequency
data streams [9-12]. These limitations highlight the need for a deterministic, model-free approach capable
of processing streaming data with bounded latency and predictable computational demand [13,14].

The Discrete Wavelet Transform (DWT) provides lower computational complexity than Continuous
Wavelet Transform (CWT) or VMD and is supported by a well-established theoretical foundation [19]. In the
field of structural health monitoring, the application of DWT can be roughly divided into two categories [20].
The first category involves decomposing the original signal to extract time-frequency features, mainly
for signal anomaly detection [21,22] and structural condition assessment [23,24]. The second category
involves decomposition and reconstruction of the original signal to extract specific components, with
applications including denoising of seismic waves [25], pavement sensor signal processing [26], extraction
of transient structural responses [27], fatigue history editing [28], and vehicle-induced response extraction
in bridges [29]. However, in all these studies, wavelet decomposition and reconstruction were performed on
fixed-length datasets, rather than on real-time streaming signals.

Therefore, it is essential to develop a wavelet transform algorithm capable of operating efficiently in
real-time streaming environments. Such an algorithm can not only improve the efficiency of vehicle-induced
signal separation for real-time monitoring but also benefit other engineering fields requiring online signal
processing. This paper proposes a Block-wise Sliding Wavelet Transform (BSWT) and its recursive variant
(BSRWT) for streaming signal separation. We first outline the BSWT framework for streaming deployment,
then present the recursive boundary-aware update scheme (BSRWT), and finally evaluate both approaches
on simulated and field data. Compared with recursive EMD/VMD (which are iterative, parameter-sensitive,
and computationally intensive) and online Kalman filtering (which is model-dependent and tuning-intensive
for nonstationary multi-component mixtures), the proposed framework is deterministic, model-free, and
resource-bounded, featuring an explicit latency control and a closed-form complexity behavior.

This work contributes three main innovations for streaming SHM. First, wavelet-based separation
is reformulated into a block-wise sliding pipeline that produces continuous outputs under a fixed, user-
controllable delay. Second, a recursive reuse mechanism is introduced across adjacent windows, so that the
per-update cost scales with the decomposition depth and filter length rather than with the full window
size, enabling strict real-time operation without iterative optimization. Third, a latency—accuracy analysis is
presented, offering a practical delay selection strategy that mitigates sliding-window boundary distortions
while maintaining bounded latency.
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2 Block-Wise Sliding Wavelet Transform
2.1 Signal Extraction and Decomposition
2.1.1 Signal Separation within a Single Time Window

Vehicle-induced signal separation within a single time window requires first obtaining the static signal
from the original signal using the Discrete Wavelet Transform (DWT), which consists of two main steps:
decomposition and reconstruction. In the decomposition step, the original signal is divided into multiple
layers, and at each layer, the signal is separated into a detail component and an approximation component. In
the reconstruction step, only the approximation component from the highest layer is used to reconstruct the
signal, while all detail components are discarded. The reconstructed signal represents the static component
of the original signal. The vehicle-induced signal is then obtained by subtracting the static component from
the original signal.

The flowchart of the algorithm is shown in Fig. 1 (an example of a three-layer DWT). “A” followed
by a number denotes the approximation component at the corresponding layer, “D” denotes the detail
component, and “R” denotes the reconstructed signal. Two parameters must be determined in this algorithm:
the number of decomposition layers and the wavelet basis function. The wavelet basis function defines the
coeflicients of the high-pass and low-pass filters, as well as the reconstruction filters used in the process.

Level 3 | Reconstruction
Rect‘ul-‘ ilter ReconFilter ReconFilter
|

Level 2

LowFregFilter

Level 1
LowFregFilter

LowFreqFilter

12

HighFreqFilter

Figure 1: Flowchart of DWT

The process of decomposition and reconstruction mainly refers to the Mallet fast algorithm [30,31],
which will be briefly reviewed in Sections 2.1.1and 2.1.2. Some details in the convolution on the data boundary
will also be elaborated.

2.1.2 Decomposition

In the decomposition step, the original signal (also denoted as the approximate signal of layer Oth) is
firstly convolved with the high-pass filter, and the signal obtained after convolution is downsampled by half
of its length to get the detailed signal of the Ist layer. The original signal is also convolved with the low-
pass filter and downsampled by half of its length to get the approximate signal of the 1st layer. Then, the
approximate signal of the 1st layer is convolved with the high-pass filter and the low-pass filter respectively
and then downsampled to get the detail and approximate signal of the 2nd layer.
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Let n be the number of decomposition layers. The process is shown in the following equation:

Aja (i) = X L(K)A;(2i - k) 1)
D (i) = Y H(k)A;(2i - k) 2)

where 0 < j < n and j denotes the number of layers of the signal. i in the brackets represents the sequence
number in the signal. The length of the signal of A ;,; is half of that of A ;. I represents the length of the filter.
L and H stand for the low-pass filter and high-pass filter, respectively.

It should be noted that the length of the series should remain the same after the convolution is done.
Therefore, it is inevitable that a number of zeros need to be added to the beginning or end of the series
during the convolution. Fig. 2 below shows the process of convolution when adding a number of zeros at the
beginning of the previous signal during the process of calculating A j,; from A .

Convolution Core
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X x i % X
Process of |
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X 2 X X
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: Ln - L2 L1
Process of 5. 3 8 Pox oix i
lculating - - S 3
Aj(n) 0 0 EAI.(D AR A4(B) A7) - =D ae-Ha@-3e-1| 0 0 0

Figure 2: The convolution on the signal boundary in decomposition

In the process of wavelet decomposition, each layer of the detail signal contains the high-frequency
information of the approximation signal from the previous layer. As the decomposition progresses, more
high-frequency information is gradually removed, leaving only the lower-frequency content that represents
the overall trend of the signal. When the original data undergoes multi-layer decomposition, the resulting
approximation signal becomes progressively shorter in length. After several layers of decomposition, the final
approximation signal obtained serves as the input for the reconstruction process.

2.1.3 Reconstruction

In this section, we describe how to reconstruct the approximate signal at the nth layer into a signal of
the same length as the original input. Although wavelet reconstruction can incorporate multiple layers of
detail and approximation information, in this study it is sufficient to use only the highest-level approximation
signal, since the objective is to extract the static component of the signal.

During reconstruction, the approximate signal from the nth layer is first upsampled by inserting zeros
between adjacent data points. For example, if the approximate signal from the previous layer is {1, 2, 3, 4,
5, 6}, the upsampled signal becomes {0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6}. After upsampling, the sequence is
convolved with the reconstruction filter to obtain the reconstructed signal for the previous layer. Unlike the
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decomposition process, zeros are appended to the end of the signal during convolution to ensure that the
reconstructed signal maintains the same length as the input signal. This procedure forms the basis of the
wavelet reconstruction process described in this study.

R3) Rj. (% +1),n is even number 3)
! 0, n is odd number
. 1 ~ .
R; (i) =, F(k)R;(i - k) (4)

where F represents the reconstruction filter, j represents the number of the layer of reconstructed signal,
0 < j < n. The nth layer’s reconstructed signal is the A, obtained in the decomposition process and the Oth
layer is the static signal separated from the original signal. Therefore, the vehicle-induced signal can be
obtained by subtracting the static signal from the original signal.

2.2 Real-Time Signal Stream Separation by Window Sliding

In the previous section, the process of separating vehicle-induced signals using the wavelet transform
within a fixed time window was introduced. However, in real-time monitoring, the input to the algorithm
is a continuously updating data stream rather than a fixed-length signal segment. To address this, a sliding-
window approach is adopted, as illustrated in Fig. 3.
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window at ¢ ’
> time

amplitude

WA YATYA |

time

. amplitude
separation /\/\A/\/\/
window at #+2 KT

— — »time

separation
window at #+1

Figure 3: Sliding-window process of a real-time signal separation system

First, an initial window is defined, within which the wavelet transform is applied to perform signal
separation. This window must be sufficiently large to ensure that the vehicle-induced response can be clearly
distinguished from the static response. Afterward, whenever a new data point is received from the sensor,
the extraction window shifts forward, and the same wavelet transform algorithm with identical parameters
is applied to the updated window for signal separation. The end portion of the new separation result is then
appended to the previous results. As the window continues to slide, the signal is separated in real time.

Through this mechanism, the Block-wise Sliding Wavelet Transform (BSWT) achieves real-time signal
separation. However, two significant limitations remain. First, for adjacent windows, most computations
are repeated, resulting in low computational efficiency. Second, because the final separated signal is formed
by concatenating results at the window boundaries, it is subject to a strong boundary effect, which may
reduce separation accuracy. To address these issues, the Block-wise Sliding Recursive Wavelet Transform
(BSRWT) is proposed. This method utilizes data from adjacent windows to improve the efficiency of BSWT
and introduces a controlled delay to enhance accuracy. Specifically, the recursive scheme reuses information
from the previous window, allowing each update to process only the newly entered and soon-to-exit data
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points at each decomposition level. Consequently, the computational cost per update depends only on the
number of decomposition levels and the filter length, rather than on the total window size.

3 Block-Wise Sliding Recursive Wavelet Transform
3.1 Recursive Wavelet Transform

As shown in Fig. 4, during the window-sliding process for data separation, the signal in each subsequent
window is shifted forward by one sample relative to the previous window, and it terminates with a new data
point received from the sensor. The recursive wavelet transform leverages this property in real-time signal
transmission to reduce algorithmic complexity and enhance computational efficiency.

cepaation windowst time of¢ 0D |H@ @ ADMG )| - [SGat Bty
1 I Il I 1 I I 1 I
i i S Rl TR £ e o
I I 1 I I I 1 I I
Original Signal in the separation AE2(DIAS2(2) AG2(3)AE2 (4] oo 5Ll Ag”(L‘,.,,AE*’(LW.,Aéﬂ(LW., e
window at time of #+2 =% |=% |2 2 O

Figure 4: The feature of signal in adjacent sliding windows

In this section, superscripts of the letter symbols denote the time dimension, subscripts indicate the
decomposition level in the wavelet transform, and numbers in brackets represent the index position within
the data sequence.

3.1.1 Recursive Decomposition

The equivalent decomposition process is performed with reference to the stationary wavelet transform
(SWT) method [32,33]. Unlike the commonly used discrete wavelet transform (DWT), the SWT does not
downsample the data at each level when computing the next layer of wavelet coefficients; instead, it upsamples
the convolution kernel at each stage.

Assume that the wavelet decomposition has n levels. The convolution kernel at the kth level is denoted
as G, while Gy represents the convolution kernel applied directly to the original signal. Gy corresponds to
the low-pass filter coeflicients, which are determined solely by the selected wavelet basis function.

In the standard DWT, when calculating the approximation signal at the second level, the first-level
convolved signal must be further convolved with the low-pass filter after downsampling. This process is
equivalent to performing the convolution without downsampling, but using a modified convolution kernel
in which zeros are inserted at regular intervals, followed by downsampling after the convolution is completed.

Therefore, the process of downsampling and convolution in DWT can be replaced by the fol-
lowing process: the original signal is convolved with Gy, G;...G,_; to obtain the series A;, A;...A,
and after that A, is downsampled (take 1 every 2"). G, are the coefficients of the low-pass filter, G;
adds 1 zero to Gy in l-term intervals, G, adds 1 zero to G; in l-term intervals. Assuming that the
coefficients of Gy are {gi, ,...,gi), which is the coefficients of the low-pass filter. Then G will be

{£1,0,0,...,0,¢,0,0,...,0,...,¢,0,0,...,0}.
—_—
2k—1zeros 2k_1zeros 2k —1zeros
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Take a 3 layers’ HAAR wavelet (dbl wavelet) as an example. Its low-pass filter coefficients are ? x {1,1}.
Suppose the original data is {1, 2, 3, 4,5, 6,7 8, 9,10, 11, 12, 13 14,15,16}.

Using the method described above, G, G,, G; are 2 x {1,0,1, 0} Y= x {1,0, 0 O 1,0,0, 0}
{1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0}, respectively. The result of the first convolutlon is 22 x {1,3,5,7, 9 11,
13,15, 17,19, 21, 23, 25, 27, 29, 31}. The result of the second convolution is Y2 >< {1,3, 6,10, 14, 18, 22, 26, 30,
34, 38, 42, 46, 50, 54, 58}. The result of the third convolution i is 32 >< {1 3, 6,10, 15, 21, 28, 36, 44, 52, 60, 68,
76, 84, 92,100}. After downsampling (take 1 every 2°), the result is 2 ' {1, 44}.

Use the traditional method introduced in Section 2. The result of the first convolut1on is also %2 x {1,
3,5,7,9,11,13,15,17,19, 21, 23, 25, 27, 29, 31} and the result of the first downsampling is V2 {1,5, 9 13,17,
% {1, 6, 14, 22, 30, 38, 46, 54} and the result of the

second downsampling is X2 T >< {1,14, 30, 46 }. The result of the third convolution is 7 >< {1,15, 44,76} and

21, 25, 29}. The result of the second convolution is %=

3
the result of the third downsampling is % x {1, 44}, which is exactly the same with the result obtained by
the method in this chapter.

In the scenario of real-time monitoring, the data in the latter window is changed only by adding the last
term (newly input data) and deleting the first term compared to the data in the previous window. Therefore,
when computing A; at time ¢ (denoted as A!), most part of A at time t — 1 (denoted as A!™") can be reused.
Only the convolution computation that is related to the new input need to be performed and place the result
at the end of the new series. Similarly, as is shown in Fig. 5, other layers in the time window can be calculated

by taking layers at the previous time as references.
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Figure 5: Process of recursive decomposition in real-time signal stream

3.1.2 Recursive Reconstruction

The nth layer of approximate signal can be obtained by downsampling (take 1 every 2" term, from the

Ist term) A
filter after upsampling.

However, in
ber thereafter

recursive
(denoted as

reconstruction, the

{dl, az,...

first

number

in A,
,a;}) are extracted to construct a new series

». In traditional DWT, each layer of reconstruction signal is convolved with the reconstruction

num-
Bn >

and every 2"
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B, ={0,0,...,0,4;,0,0,...,0,a5,...,0,0,...,0,a;}. Let G_oo = {go,> Lo,> - - - »g_0i} (of length d), which
——————
2"—1zeros 2"—1zeros 2"—1zeros

denotes the reconstruction filter coefficient. A series of convolutional kernels G_o, (k =0,1,2,...,n—1)
are constructed in the following way:

G_ox ={0,0,...,0,£,,,0,0,...,0,85,,...,0,0,...,0,¢_0;},k=0,1,2,...,n -1 (5)
N —
2k—1zeros 2k—1zeros 2k—1zeros

B, is of the same length as the original signal. B,,_; is calculated by convolving B, with G_o,,_1. B,,_»
is calculated by convolving B,,_; with G_o,_», etc. After being downsampled by at interval of 2%, By, is equal
to the kth layer of reconstructed signal B is exactly the same with the reconstructed signal calculated in the
Mallet algorithm.

Take the data in 3.1.1 as an example. The reconstruction filter coeflicient of dbl wavelet is \/TE x {1,1}. So

3
B; = 2% {0,0,0,0,0,0,0,1,0,0,0,0,0,0,0, 44}, G_o; = 2 x {0,0,0,1,0,0,0,1}, G_o; = *2 x {0, 1,
0,1}, G_oo = *2 x {1,1}.

2 1

Tt can be calculated that B, = %2 x {0,0,0,1,0,0, 0, 44,0, 0,0, 44}, B, = %2 x {0,1,0,1,0, 44, 0, 44,
0,44,0,44}, Bo ={1,1,1,1,1, 44, 44, 44, 44, 44, 44, 44}, which is the same with the result calculated by the
traditional method.

In real-time monitoring scenarios, from the previous section, it has been known that compared to Atn_l,
A’ has the first term deleted and the rest of the terms shifted forward as a whole, adding the new input to
the last term.

Since the non-zero portion of B, consists of the integer multiples of 2"th terms in A, B, at the time
of t (denoted as B!) can be calculated based on B, at the time of  — 2" (denoted as B;‘zn) by the following
method: Delete the first 2" terms of B 2", add 2" — 1 zeros and the last number of A’, at the end. The process
is shown in Fig. 6.

Bt+2" 0030 a, 0,..,0 a, 0,550 as 0,500 ai_1 0,..,0 aj
N 2n—1zero n n TR Ly
—1zero —1zero: 2"—1zero —1zero:
gt 0,..,0| a, [0,...0[ a3 0,-.,0 |@_y [0,..0| @ |0,..,0[ajy
N 2" —1zero: N—1zero: 2M—1zero. n—1zero n—1zero!
n
BltV+ZX2 az (1 -1 | Aj—1 5 1) ai [} Ai41 0,00 Ajy2
2M—1zero: nN—1zero 2N —1zero n—1zero

Figure 6: Calculate B, based on B 2" in real-time scenarios
In the process of calculate B!~2" from B:~2", convolution is used (let the length of the convolution kernel
be Leors Leor = d x 2"7') and the convolution is done by adding zeros to the end of the sequence. When
calculate B, from B!, these numbers are no longer in the end but in the middle of the sequence, causing
boundary effect (will be further discussed in 3.2). So the L.,, numbers at the end of B,_; and the newly added
2" numbers must be recalculated, while the rest part of B;fl can be reused, as is shown in Fig. 7.

The process of getting B,,_, from B,_,; is similar with the method described above. It is notable that
the length of the data that can be reused is still the length of the window minus L., + 2". By (the final
reconstructed signal) can be calculated in this way.
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Figure 7: The reusable part of B; when calculating B;:zn

Therefore, when using the recursive reconstruction method, it is necessary to use the traditional method
to calculate B, B,,_1, . . ., By for the first 2" times. When calculating the reconstructed data when ¢ = 2" +1,
refer to the data when ¢ = 1. When calculating the reconstructed data when ¢ = 2" + 2, refer to the data when
t =2, and so on.

So far, the framework of recursive reconstruction and the reusable part of the previous data when time
forwards are clear. However, when calculating B,[(”n based on B!, it is not necessary to do the convolution
with G_oy. In the part that cannot be reused, only the non-zero numbers need to be figured out. Here is how
the calculation can be further simplified by using a similar method in Mallet’s fast algorithm.

Firstly, the non-zero numbers to be calculated in the nth layer (the non-zero numbers in the last
d x 2" + 2" numbers) are extracted (the length of these non-zero numbers is %}’2" = % +1), and the
zeros are inserted at interval to form a new sequence. Convolved this new sequence with the original low-
pass reconfiguration filter to get the non-zero numbers to be calculated in the (n — 1)th layer. And so on until

we get to layer 0, which is the final sequence of data required.

The advantage of this “pyramid” algorithm is that it uses upsampling to avoid long convolution kernel.
As is shown in the figures below, the algorithm in Fig. 8 can be replaced by the one in Fig. 9. The square in
the two figures represents a non-zero number and each row represents the part that needs to be recalculated
in each layer.
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Figure 8: The original algorithm of calculating non-zero part
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Figure 9: The improved algorithm for calculating the non-zero part

In conclusion, the flowchart of the proposed Block-wise Sliding Recursive Wavelet Transform (BSRWT)
algorithm is shown in Fig. 10. The original signal is first downsampled and convolved to obtain the decom-
posed signal. Then, the decomposed signal is upsampled and convolved to reconstruct the separated signal.
As the time window continuously slides, new segments of the original signal are input to achieve real-time
signal separation. Meanwhile, data from adjacent time windows are reused to enhance the computational
efficiency of the algorithm.
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Figure 10: Flowchart of BSRWT

3.2 The Boundary Effect in Window Sliding and Its Solution

As is shown in Fig. 11, in the application of the algorithm above, the boundary of the window has a
distortion effect.

The main reasons for the boundary effect are as follows. In all the convolution processes, 0 is added to
the boundary (at the start or the end of the original sequence) to ensure that the sequences before and after
convolution remain of the same length. Therefore, in the process of each convolution, the way of calculation
of the numbers at the beginning or the end differs from that of the numbers in the middle.
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Figure 11: Boundary effect in a window

Moreover, within the section affected by the boundary effect, the degree of distortion varies. The closer to
the data boundary, the more serious the distortion is. This is due to the fact that the closer to the boundary, the
higher the proportion of zeros in the convolution calculation, and the greater the difference with the middle.

The main factors affecting the length of the boundary distortion are as follows. Since the distortion is
caused by zeros added in the boundary in the convolution, the length of the distortion is related to the longest
length of the convolution kernel used in all steps. Let the length of the decomposition and reconstruction
filter be d, and the number of decomposition layers be #. In all steps of the previous methods, the longest
convolution kernel is of length d x 2", so the theoretical distortion bound should be d x 2".

The boundary effect problem can generally be solved by methods like signal extension, mirroring, etc.
But such methods are difficult to achieve in a scenario of real-time data stream, so in this paper a plain
method is proposed as follows.

Since the boundary distortion exists at the end of each window, each time the number out of the
boundary effect instead of the last number is taken as the final separation result. The cost of this is that this
causes a delay of d x 2" in the real-time monitoring.

3.3 Comparison between the Complexity of BSRWT and BSWT

Let the number of layers of the wavelet decomposition be 1, the length of the window be L,,;, = 2V, and
the length of the filter using the wavelet basis function be d.

When using BSWT, take a single sliding of the window as the object of study. During the decomposition
process, the convolution operation of the first layer requires 2~ x d multiplications, and the convolution
operation of the second layer requires 2¥~! x d multiplications and so on. The convolution operation of the
Nth layer requires 2V~"*! x d multiplications. So a total of 2V~"*1(2" — 1) x d multiplications are required
to be performed in the decomposition. The wavelet reconstruction and the decomposition process require
the same number of multiplication calculations. So a total of 2¥"*2(2" — 1) x d multiplications are required
for a single window sliding when using BSWT.

When using BSRWT, take a single sliding of the window as the object of study. During the
decomposition process, d x (1 +2+...+ 2"‘1) =d x (2" = 1) multiplications are required, and during
the reconstruction process, d x (% + 1) X (1 +2+...+ 2”_1) =d x (% + 1) x (2" —1) multiplications are

required. So a total of d x (% + 2) x (2" —1) multiplications is required for a single window sliding when
using BSRWT.
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Dividing the number of multiplication calculations for the two methods yields

2N—n+2(2n _ 1) x d ~ 2N—n+2 ~ 4Lwin (6)
dx(2+2)x(27-1) (4+2) (4+2)2n

Overall, the computational effort of the baseline grows with the window length because each shift
recomputes all convolutions inside the window, whereas the proposed method updates only boundary
portions at each level; therefore, the effort per update mainly follows the number of decomposition layers
and the filter length and is insensitive to the window length. Since L,,;, must be strictly larger than 2" x d,
BSRWT can simplify the computational complexity of BSWT in most situations, which is also well verified
in the subsequent experiments.

4 Experiments and Results
4.1 Simulated Signal Experiment

The signal in the health monitoring environment is a fusion of multiple time-varying signals. In
order to assess the accuracy of the above algorithms, a signal consisting of two time-varying sub-signals
is simulated with reference to the previous scholars” research [12]. BSWT and BSRWT are applied on this
signal respectively to separate the time-varying sub-signals. The composition of the signal is as follows: the
frequency is 50 Hz, sigl and sig2 are both sub-signals with time-varying amplitude and frequency, sigl is a
low-frequency signal simulating non-vehicle-induced strains, and sig2 is a high-frequency signal appearing
only in 25-30 s and 75-80 s, simulating vehicle-induced signals:

signal = sigl + sig2 (7)
sigl = (6+0.02 x sin(27t)) x cos(2mfit) (8)
sig2 = (6.3+1xsin(2nt)) x cos(2nf + g) 9)
1 t<15
fi=10.001 x (£ —30)2-225x0.001+1 15<¢<45 (10)
1-0.001 x (t—45) t>45
0 0<t<25
5% (t—30)+2 25<t<30
fa= 0 30<t<75 (11)
6 x (t—85)+2.5 75<t<80
0 80 <t <100
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The two signal components and the total signal after mixing are shown in Fig. 12:
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Figure 12: Simulated signal for experiment

Figs. 13 and 14 show the comparison between the separation results using BSRWT and BSWT in the
time and time-frequency domains under the parameter setting of db4 wavelet base and 5 decomposition
layers. It can be found that the BSWT undergoes more obvious modal aliasing in the segment where the
vehicle-caused signal appears, while the BSRWT gives a better result.

To further evaluate the performance of BSWT and BSRWT under different configurations of decom-
position layers, wavelet bases, and delay settings, experiments were conducted using various parameter
combinations. Specifically, the number of decomposition layers was set from 1 to 5, and the wavelet basis
functions were selected from ‘db2’, ‘db3’, ‘db4’, ‘db5; and ‘db6’ for both BSWT and BSRWT to perform signal
separation. For BSRWTT, the delay was varied from 0 to twice the theoretical boundary length, sampled at 5-
point intervals under each parameter configuration. In total, 412 sets of separation experiments were carried
out using different parameter combinations.
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Figure 13: Time-amplitude results of BSWT and BSRWT under condition of db4, 5 layers
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spectrogram of BSRWT result
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Figure 14: Time-frequency spectrogram of the results of BSWT and BSRWT under the condition of db4, 5 layers

To compare the accuracy of BSRWT and BSWT under different delay settings, signal separation was
performed using BSRWT with varying delays while keeping the number of decomposition layers and wavelet
basis function constant. The results obtained by BSRWT were then compared with those of BSWT under
the same configuration. The comparison results are presented in Fig. 15, where the horizontal axis represents
the ratio of the BSRWT delay to the theoretical boundary length under the same parameter conditions, and
the vertical axis represents the ratio of the RMSE of BSRWT to that of BSWT with the same decomposition
layers and wavelet basis functions.
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Figure 15: Result RMSE of BSRWT under different delays compared with BSWT

To investigate the accuracy of BSRWT and BSWT under different decomposition layers, the RMSE
values of their separation results were calculated for each layer configuration. In the BSRWT experiments,
all delay settings were chosen to be greater than the theoretical boundary length to ensure reliable separation
performance. As shown in Fig. 16, samples with the same number of decomposition layers are represented by
the same color. The left panel illustrates the RMSE distribution of BSRW'T, while the right panel shows that of
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BSWT. It can be observed that, under identical decomposition layers, the RMSEs of BSRWT are consistently
lower than those of BSWT, indicating that BSRWT achieves higher separation accuracy.
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Figure 16: RMSE of BSRWT and BSWT with different decomposition layers

To examine the accuracy of BSRWT and BSWT under different wavelet bases, the RMSE values of
their separation results were calculated for each wavelet basis. In the BSRWT experiments, all delay settings
were greater than the theoretical boundary length to ensure consistent separation performance. As shown
in Fig. 17, samples using the same wavelet basis are represented by the same color. The left panel illustrates
the RMSE distribution of BSRW'T, while the right panel shows that of BSWT. It can be observed that, under
the same wavelet basis, the RMSEs of BSRWT are generally lower than those of BSWT, demonstrating the
superior separation accuracy of BSRWT across different wavelet bases.

T T T T T

1.8 b
14+ E

N 1

| ! _

1 ! ]
| ! I !
| |

1 1 I
| : |
1.2 F 1 | L 1
1 !

1 E 1

0.6 b

1.6

RMSE
-

04F

.
|

db2 db3 db4 db5 db6
Wavelet Basis

Figure 17: RMSE of BSRWT and BSWT with different wavelet bases

In summary, under different combinations of decomposition layers and wavelet basis functions, BSRWT
demonstrates superior signal separation accuracy compared to BSWT, provided that the delay setting of
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BSRWT exceeds the theoretical boundary length. One possible explanation is that, although BSWT applies
signal extension at the convolution boundaries to partially mitigate boundary effects, during the window-
sliding process most of the separated results originate from the edge regions of the window, where signal
extension still introduces residual boundary distortions, thereby reducing accuracy. In contrast, BSRWT
achieves higher separation precision by incorporating information from adjacent windows, albeit at the
expense of a certain processing delay.

To compare the computational complexity of the two algorithms, the elapsed time required by each
method to perform signal separation under the same hardware environment and with different numbers of
decomposition layers was recorded. The results are presented in Fig. 18.
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Figure 18: Elapsed time of BSWT and BSRWT under different decomposition layers

Under the same decomposition layers and wavelet basis functions, the average elapsed time of BSRWT
is only 0.0249 times that of BSWT under matched settings. This provides strong evidence that BSRWT is
significantly more efficient than BSWT when operating under identical parameters in real-time monitoring
scenarios. In practical applications, the per-sample separation time must be shorter than the sampling period.
In our field evaluation, this requirement was satisfied across all effective sampling rates listed in Table 1 (2,
4,10, and 20 Hz), including the maximum available rate of 20 Hz.

Table 1: Effect of delay on accuracy

Delay setting relative to RMSE (BSRWT vs. Edge

boundary span BSWT) artifacts Note
. . , Smaller latency but
d < boundary span Typically higher Noticeable more edge error
Balanced
d ~ boundary span Lower Mild latency-accuracy
point
. Diminishing returns
§ > boundary span Lower Minimal

on more delay

The experimental results demonstrate that the streamlined computational complexity of the BSRWT
algorithm greatly enhances the feasibility of real-time separation for high-frequency data. At the same time,
BSRWT achieves substantial improvements in separation accuracy at the cost of a moderate, controllable
delay. These advantages arise from a structural innovation—specifically, reusing inter-window computations
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and linking accuracy to a bounded, user-controlled delay—rather than from a simple implementation adjust-
ment.

4.2 Real Strain Signal Experiment

The Lie Shi River Bridge is located on the Jiangsu Coastal Highway (Yancheng-Nantong section),
crossing the Lie Shi River in Rugao City, as shown in the on-site photo in Figs. 19 and 20. The bridge
superstructure consists of partially simply supported and partially continuous prestressed concrete box
girders. The girder system is divided into 12 groups, each containing six spans, with a total bridge length
of 2168.20 m and an average girder height of approximately 1.5 m. The bridge deck is composed of a 5 cm
waterproof concrete layer overlaid with 9 cm of asphalt concrete. The health monitoring system of the Lie Shi
River Bridge was commissioned in November 2015, with 56 sensors installed across key structural locations.
In this study, the vertical strain signal recorded at the mid-span of the fifth span on a day in August 2018 was
selected as the experimental dataset. The strain data were sampled at 20 Hz, yielding a total 0of 1,692,000 data
points over a 24-h period.

Figure 19: Field scenes of Lie Shi River Bridge
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Figure 20: The section of the girder

This continuous record encompasses a wide range of typical operational conditions for long-
span prestressed concrete box-girder bridges, including: (i) daily thermal cycles that drive slow drifts;
(i) mixed traffic with multi-axle trucks and time-of-day variations (nighttime low traffic vs. rush-hour
high traffic), producing transient peaks with diverse amplitudes and spacings; and (iii) sensor drift and
ambient disturbances. These factors jointly create the low-frequency trend plus peak-shaped transients that
motivate streaming separation. The sensor is placed at the mid-span of the fifth span, a standard location for
capturing vehicle-induced responses while being sensitive to thermal trends, making the case typical rather
than exceptional for SHM deployments.

In separating the vehicle-induced strain from the total signal, it is necessary to remove the long-term
static trend and retain the vehicle-induced component. Accordingly, separation quality can be evaluated
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along two dimensions: (i) the separated vehicle-induced strain should not contain long-period components,
and (ii) local details of the vehicular strain should remain undistorted relative to the original signal.

To verify the performance of BSRWT under different sampling frequencies, the original signal
was downsampled to multiple target rates and processed with appropriate parameter settings. The post-
downsampling frequencies and algorithm parameters are listed in Table 2. The number of decomposition
layers was reduced as the sampling frequency decreased to achieve better separation, and the delay was set
slightly longer than the theoretical boundary length to mitigate boundary effects.

Table 2: The frequency of the downsampled signals and parameters used in BSRWT

Wavelet Decomposition Points of Actual time
Frequency/Hz .
basis layers delay delay/s
20 dbé6 9 3000 150
10 dbs 8 2100 210
4 dbs 5 260 65
2 db3 5 130 65

The downsampled signals were processed using the BSRWT algorithm to obtain the long-period static
strain components, which were then subtracted from the original signals to extract the vehicle-induced strain
components. The separated vehicle-induced signals are presented in the following figures. Fig. 21 illustrates
the original (unseparated) strain signal and its local details, while Fig. 22 displays the separated vehicle-
induced signals and corresponding details under different downsampling rates. Across these sampling
rates, the proposed method consistently eliminates long-period drift while preserving the peak shapes
and temporal characteristics of the vehicle-induced strain. This indicates that the separation behavior
remains stable and robust under varying effective sampling intervals and noise conditions within the same
24-h dataset. These findings—namely, the ability to remove slow-varying trends while maintaining transient
peak integrity with bounded per-sample latency—align with the requirements of other real-time streaming
signal applications such as seismic transient detection, biomedical waveform analysis, and edge IoT sensing,
suggesting that the proposed approach is task-general rather than bridge-specific.

It can be observed that the unseparated signal exhibits pronounced long-period fluctuations throughout
the day, primarily caused by environmental factors such as temperature variation. In contrast, this low-
frequency component is effectively removed in the separated signals. A comparison of the local details
between the unseparated and separated signals shows that their amplitudes and waveforms remain nearly
identical, indicating that the separation process introduces no noticeable distortion to the vehicle-induced
strain components.

raw strain signal unprocessed local signal
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Figure 21: Unseparated signal and its local detail
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Figure 22: Separated signal and its local detail at different downsampling rates

The elapsed times for the four experimental cases are presented in Table 3. In all cases, the average
computation time per data point is shorter than the signal sampling period, thereby satisfying the real-time

processing requirement for continuous monitoring applications.

Table 3: Elapsed times in different sampling frequency scenarios

Average computation .
Total el 1
Frequency/Hz ota. clapsed time for a single data Sam'p g
Time/s . period/s
point/s
20 2240 1.32 x 1073 0.05
10 738 8.73 x 1074 0.1
4 113 3.37 x 1074 0.25
2 55 3.25x107* 0.5

5 Conclusion and Outlook

In this paper, a real-time vehicle-induced signal separation framework based on sliding-window wavelet

decomposition is proposed and refined. The main contributions are summarized as follows:
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(1) A Block-wise Sliding Wavelet Transform (BSWT) is developed for real-time signal separation. It
achieves continuous separation through a sliding-window mechanism. However, its computational effi-
ciency is limited due to redundant calculations between adjacent windows, and its accuracy is affected by
boundary effects.

(2) To address these limitations, an enhanced algorithm—Block-wise Sliding Recursive Wavelet Trans-
form (BSRWT)—is proposed. This method fully utilizes the overlapping information between adjacent
windows, thereby reducing computational complexity. Meanwhile, it analyzes the origin of boundary effects
and introduces an effective delay strategy to improve separation accuracy.

(3) Experiments on simulated signals demonstrate that, compared with BSWT, the improved BSRWT
achieves higher separation accuracy and significantly shorter computation time, with only a minor
delay introduced.

(4) Field experiments on bridge strain data further validate that the proposed method can effectively
separate vehicle-induced strain from total strain, successfully removing long-term static components while
preserving local waveform integrity of the vehicle-induced response.

In future work, the proposed algorithm will be further developed in the following directions. First, we
plan to relax the current power-of-two window constraint, enabling support for arbitrary integer window
lengths while maintaining real-time streaming capability. Second, the selection of decomposition layers and
wavelet bases currently relies on empirical tuning without a theoretical foundation. We aim to establish
an adaptive, data-driven selection mechanism by integrating lightweight online optimization or machine-
learning-assisted strategies under bounded per-sample computational and memory costs. In parallel, we
will formalize the delay-accuracy trade-oft for practical applications by developing guidelines for delay
adjustment in real deployments—specifically, methods for determining default delay values and strategies
for increasing or decreasing the delay as noise levels or traffic conditions vary. Third, the proposed streaming
framework has potential applications beyond structural health monitoring (SHM). Its deterministic updates
and bounded per-sample computational complexity make it suitable for seismic monitoring (separating tran-
sient arrivals from long-period drifts under strict latency requirements), biomedical signal processing such
as Electrocardiogram (ECG)/Photoplethysmography (PPG) denoising (preserving waveform morphology
in on-device streaming), and Internet of Things (IoT)-based edge sensing (maintaining stable compute and
memory footprints under variable sampling rates). Future studies will focus on domain-specific adaptations
of layer depth and wavelet selection, followed by short-term field trials to validate the generality of the
approach across different environments and sensor platforms.

Acknowledgement: The authors would like to thank all individuals and organizations that contributed to this study
through administrative and technical assistance, as well as material or equipment support. Their contributions were
essential to the successful completion of this research.

Funding Statement: The authors acknowledge the support of the Major Science and Technology Project of Yunnan
Province, China (Grant No. 202502AD080007), and the National Natural Science Foundation of China (Grant No.
52378288).

Author Contributions: Jie Li: Writing—original draft, Visualization, Validation. Nan An: Methodology, Formal
analysis, Data curation, Conceptualization. Youliang Ding: Supervision, Software, Resources. All authors reviewed the
results and approved the final version of the manuscript.

Availability of Data and Materials: Data available on request from the authors.



Struct Durab Health Monit. 2026;20(1) 21

Ethics Approval: This study involves the separation, application, and validation of bridge monitoring data. It does not
involve human or animal experiments, nor the use of any sensitive materials. Therefore, formal ethical approval was not
required. All experiments were conducted in accordance with standard engineering practices and safety regulations.

Conflicts of Interest: The authors declare that there is no conflict of interests in this paper.

References

L

10.

11.

12.

13.

14.

15.

16.

17.

Jayasinghe S, Mahmoodian M, Sidiq A, Nanayakkara T, Alavi A, Mazaheri S, et al. Innovative digital twin with
artificial neural networks for real-time monitoring of structural response: a port structure case study. Ocean Eng.
2024;312:119187. doi:10.1016/j.0ceaneng.2024.119187.

Di Trapani F, Oddo MC, Sberna AP, La Mendola L. Structural health monitoring of masonry structures using stress
sensors: experimental induced damage tests and proposed approach for real-time monitoring. Constr Build Mater.
2024;449(3):138077. doi:10.1016/j.conbuildmat.2024.138077.

Kang G-H, Jang ], Cho G, Lee 1Y, Park Y-B. Real-time structural health monitoring of carbon fiber-reinforced
plastic sandwich structures with carbon nanotube-dispersed core using electromechanical behavior data. Polym
Test. 2024;136(1-2):108471. doi:10.1016/j.polymertesting.2024.108471.

Jiang H, Wan C, Yang K, Ding Y, Xue S. Modeling relationships for field strain data under thermal effects using
functional data analysis. Measurement. 2021;177(10):109279. d0i:10.1016/j.measurement.2021.109279.

Yang K, Ding Y, Sun P, Zhao H, Geng F. Modeling of temperature time-lag effect for concrete box-girder bridges.
Appl Sci. 2019;9(16):3255. doi:10.3390/app9163255.

Xu B, Liu C. A deep kernel regression-based forecasting framework for temperature-induced strain in large-span
bridges. Eng Struct. 2025;323:119259. doi:10.1016/j.engstruct.2024.119259.

Glashier T, Kromanis R, Buchanan C. An iterative regression-based thermal response prediction methodology for
instrumented civil infrastructure. Adv Eng Inform. 2024;60(1851):102347. d0i:10.1016/j.aei.2023.102347.

Huang M, Zhang ], Hu ], Ye Z, Deng Z, Wan N. Nonlinear modeling of temperature-induced bearing displacement
of long-span single-pier rigid frame bridge based on DCNN-LSTM. Case Stud Therm Eng. 2024;53(8):103897.
doi:10.1016/j.csite.2023.103897.

Wei S, Zhang Z, Li S, Li H. Strain features and condition assessment of orthotropic steel deck cable-supported
bridges subjected to vehicle loads by using dense FBG strain sensors. Smart Mater Struct. 2017;26(10):104007.
doi:10.1088/1361- 665x/aa7600.

Zhou Y, Sun LM, Min ZH. Girder strain analysis of a cable-stayed bridge. Zhendong Yu Chongji/J Vib Shock.
2011;30(4):230-5.

Zhao H, Ding Y, Li A, Ren Z, Yang K. Live-load strain evaluation of the prestressed concrete box-girder bridge
using deep learning and clustering. Struct Health Monit. 2020;19(4):1051-63. doi:10.1177/1475921719875630.

Dan D, Zeng G, Pan R, Yin P. Block-wise recursive sliding variational mode decomposition method and its
application on online separating of bridge vehicle-induced strain monitoring signals. Mech Syst Signal Process.
2023;198(10):110389. doi:10.1016/j.ymssp.2023.110389.

Dan D, Wang C, Pan R, Cao Y. Online sifting technique for structural health monitoring data based on recursive
EMD processing framework. Buildings. 2022;12(9):1312. d0i:10.3390/buildings12091312.

Abrecht DG, Schwantes JM, Kukkadapu RK, McDonald BS, Eiden GC, Sweet LE. Real-time noise reduction for
Méssbauer spectroscopy through online implementation of a modified Kalman filter. Nucl Instrum Methods Phys
Res Sect A Accel Spectrometers Detect Assoc Equip. 2015;773:66-71. d0i:10.1016/j.nima.2014.10.053.

Ju H, Zhai W, Deng Y, Chen M, Li A. Temperature time-lag effect elimination method of structural deformation
monitoring data for cable-stayed bridges. Case Stud Therm Eng. 2023;42:102696. doi:10.1016/j.csite.2023.102696.
Wang Y, Zhang G, Wang H, Liu L, Wang X, Zheng S, et al. Investigation of temperature effects on wide steel box
girder of suspension bridge based on long-term monitoring data. Sci Rep. 2024;14(1):9691. doi:10.21203/rs.3.rs-
3820692/v1.

Wang G-X, Ding Y-L, Sun P, Wu L-L, Yue Q. Assessing static performance of the dashengguan yangtze bridge by
monitoring the correlation between temperature field and its static strains. Math Probl Eng. 2015;2015:1-12.


https://doi.org/10.1016/j.oceaneng.2024.119187
https://doi.org/10.1016/j.conbuildmat.2024.138077
https://doi.org/10.1016/j.polymertesting.2024.108471
https://doi.org/10.1016/j.measurement.2021.109279
https://doi.org/10.3390/app9163255
https://doi.org/10.1016/j.engstruct.2024.119259
https://doi.org/10.1016/j.aei.2023.102347
https://doi.org/10.1016/j.csite.2023.103897
https://doi.org/10.1088/1361-665x/aa7600
https://doi.org/10.1177/1475921719875630
https://doi.org/10.1016/j.ymssp.2023.110389
https://doi.org/10.3390/buildings12091312
https://doi.org/10.1016/j.nima.2014.10.053
https://doi.org/10.1016/j.csite.2023.102696
https://doi.org/10.21203/rs.3.rs-3820692/v1
https://doi.org/10.21203/rs.3.rs-3820692/v1

22

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

3L

32.

33.

Struct Durab Health Monit. 2026;20(1)

Chen C, Wang Z, Wang Y, Wang T, Luo Z. Reliability assessment for PSC box-girder bridges based on SHM strain
measurements. ] Sensors. 2017;2017(5):1-13. d0i:10.1155/2017/8613659.

Barelli L, Barluzzi E, Bidini G, Bonucci F. Cylinders diagnosis system of a 1 MW internal combustion engine
through vibrational signal processing using DWT technique. Appl Energy. 2012;92:44-50. doi:10.1016/j.apenergy.
2011.09.040.

Chin C, Abdullah S, Ariffin A, Singh S, Arifin A. A review of the wavelet transform for durability and structural
health monitoring in automotive applications. Alex Eng J. 2024;99:204-16. doi:10.1016/j.aej.2024.04.069.

Chen B, Zhang Z, Sun C, Li B, Zi Y, He Z. Fault feature extraction of gearbox by using overcomplete rational
dilation discrete wavelet transform on signals measured from vibration sensors. Mech Syst Signal Process.
2012;33(3):275-98. d0i:10.1016/j.ymssp.2012.07.007.

Hashim M, Nasef MH, Kabeel AE, Ghazaly NM. Combustion fault detection technique of spark ignition engine
based on wavelet packet transform and artificial neural network. Alex Eng J. 2020;59(5):3687-97. d0i:10.1016/j.aej.
2020.06.023.

LiuZ, Jiang B, Tang L, Liu Y, Zhang C, Li Y. Features of long-term health monitored strains of a bridge with wavelet
analysis. Theor Appl Mech Lett. 2011;1(5):051006. doi:10.1063/2.1105106.

Liu J-L, Wang S-E Li Y-Z, Yu A-H. Time-varying damage detection in beam structures using variational
mode decomposition and continuous wavelet transform. Constr Build Mater. 2024;411(4):134416. doi:10.1016/j.
conbuildmat.2023.134416.

Geetha K, Hota MK, Karras DA. A novel approach for seismic signal denoising using optimized discrete wavelet
transform via honey badger optimization algorithm. J Appl Geophys. 2023;219(6):105236. doi:10.1016/j.jappgeo.
2023.105236.

Golmohammadi A, Hasheminejad N, Hernando D, Vanlanduit S, Bergh WVD. Performance assessment of discrete
wavelet transform for de-noising of FBG sensors signals embedded in asphalt pavement. Opt Fiber Technol.
2024;82:103596. doi:10.1016/j.yofte.2023.103596.

Xia Y-X, Cheng Y-F Ni Y-Q, Jin Z-Q. A data-driven wavelet filter for separating peak-shaped waveforms in SHM
signals of civil structures. Mech Syst Signal Process. 2024;219(9):111588. doi:10.1016/j.ymssp.2024.111588.

Oh C. Application of wavelet transform in fatigue history editing. Int J Fatigue. 2001;23(3):241-50. doi:10.1016/
s0142-1123(00)00091-8.

LiS, Xu H, Zhang X, Cao M, Sumarac D, Novak D. Automatic uncoupling of massive dynamic strains induced by
vehicle- and temperature-loads for monitoring of operating bridges. Mech Syst Signal Process. 2022;166(3):108332.
doi:10.1016/j.ymssp.2021.108332.

Cano A, Arévalo P, Benavides D, Jurado F. Integrating discrete wavelet transform with neural networks and
machine learning for fault detection in microgrids. Int J Electr Power Energy Syst. 2024;155(3):109616. doi:10.1016/
j.ijepes.2023.109616.

de Vel O, Mallet Y, Coomans D. Chapter 4—the discrete wavelet transform in practice. In: Walczak B, editor. Data
handling in science and technology. Amsterdam, The Netherlands: Elsevier; 2000. p. 85-118. doi:10.1016/s0922-
3487(00)80029-5.

Fantini D, Silva Siqueira M, Pinto M, Guimarées M, Brasil M. Wind speed short-term prediction using recurrent
neural network GRU model and stationary wavelet transform GRU hybrid model. Energy Convers Manag.
2024;308(4):118333. doi:10.1016/j.enconman.2024.118333.

Leal MM, Costa FB, Campos JTLS. Improved traditional directional protection by using the stationary wavelet
transform. Int J Electr Power Energy Syst. 2019;105(9):59-69. doi:10.1016/j.ijepes.2018.08.005.


https://doi.org/10.1155/2017/8613659
https://doi.org/10.1016/j.apenergy.2011.09.040
https://doi.org/10.1016/j.apenergy.2011.09.040
https://doi.org/10.1016/j.aej.2024.04.069
https://doi.org/10.1016/j.ymssp.2012.07.007
https://doi.org/10.1016/j.aej.2020.06.023
https://doi.org/10.1016/j.aej.2020.06.023
https://doi.org/10.1063/2.1105106
https://doi.org/10.1016/j.conbuildmat.2023.134416
https://doi.org/10.1016/j.conbuildmat.2023.134416
https://doi.org/10.1016/j.jappgeo.2023.105236
https://doi.org/10.1016/j.jappgeo.2023.105236
https://doi.org/10.1016/j.yofte.2023.103596
https://doi.org/10.1016/j.ymssp.2024.111588
https://doi.org/10.1016/s0142-1123(00)00091-8
https://doi.org/10.1016/s0142-1123(00)00091-8
https://doi.org/10.1016/j.ymssp.2021.108332
https://doi.org/10.1016/j.ijepes.2023.109616
https://doi.org/10.1016/j.ijepes.2023.109616
https://doi.org/10.1016/s0922-3487(00)80029-5
https://doi.org/10.1016/s0922-3487(00)80029-5
https://doi.org/10.1016/j.enconman.2024.118333
https://doi.org/10.1016/j.ijepes.2018.08.005

	Block-Wise Sliding Recursive Wavelet Transform and Its Application in
obreakspace Real-Time Vehicle-Induced Signal Separation
	1 Introduction
	2 Block-Wise Sliding Wavelet Transform
	3 Block-Wise Sliding Recursive Wavelet Transform
	4 Experiments and Results
	5 Conclusion and Outlook
	References


