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ABSTRACT: Vehicle-induced response separation is a crucial issue in structural healthmonitoring (SHM).�is paper

proposes a block-wise sliding recursive wavelet transform algorithm to meet the real-time processing requirements

of monitoring data. To extend the separation target from a �xed dataset to a continuously updating data stream, a

block-wise sliding framework is �rst developed. �is framework is further optimized considering the characteristics

of real-time data streams, and its advantage in computational e�ciency is theoretically demonstrated. During the

decomposition and reconstruction processes, information from neighboring data blocks is fully utilized to reduce

algorithmic complexity. In addition, a delay-setting strategy is introduced for each processing window to mitigate

boundary e�ects, thereby balancing accuracy and e�ciency. Simulated signal experiments are conducted to determine

the optimal delay con�guration and to verify the algorithm’s superior performance, achieving a lower Root Mean

Square Error (RMSE) and only 0.0249 times the average computational time compared with the original algorithm.

Furthermore, strain signals from the Lieshi River Bridge are employed to validate the method.�e proposed algorithm

successfully separates the static trend from vehicle-induced responses in real time across di�erent sampling frequencies,

demonstrating its e�ectiveness and applicability in real-time bridge monitoring.
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1 Introduction

In the daily use of bridges, the structures are exposed to various vertical loads, which can be generally

divided into two categories: dynamic loads caused by the passage of vehicles and static loads induced by

environmental factors. Individual vehicle loads produce spatially localized dynamic responses, resulting

in a temporal “peaking” e�ect in the monitoring signal. �e static load, mainly caused by environmental

factors such as temperature, is re�ected as a long-term overall variation in the monitoring signal. In the

application of structural health monitoring (SHM) systems, the evaluation and diagnosis of bridge damage

o�en require only the static load response (static signal), while vehicle weight identi�cation uses only the

vehicle-induced dynamic signal. However, during sensor sampling, these two types of signals are coupled,

making the development of signal separation algorithms necessary. In recent years, with the development

of structural monitoring technology, data analysis in many studies is no longer con�ned to a �xed segment

of data but to a real-time data stream [1–3]. �erefore, the development of algorithms for the real-time

separation of vehicle-induced and static signals has become a more important and urgent issue.
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Approaches to separating vehicle-induced dynamics and static trends in SHM fall broadly into

temperature-assisted and signal-only categories. In the temperature-assisted category, the static response

is inferred from the correlation between temperature and strain—via, for example, Square-Root Slope

Function (SRSF), Bayesian warping, nighttime correlation analysis, deep kernel regression, iterative regres-

sion, or spatiotemporal Dynamic Convolution Neural Network-Long Short-TermMemory (DCNN-LSTM)

modeling—thereby achieving separation through prediction [4–8]. In the signal-only category, the total

response is decomposed using time–frequency analysis or learning-based methods, including wavelet anal-

ysis, Empirical Mode Decomposition (EMD), LSTM-based extraction, Variational Mode Decomposition

(VMD)/EMD for online separation [9–12], and online Kalman �ltering [13,14].

Despite their utility, both families face limitations in achieving real-time separation of vehicle-induced

responses.�e temperature–strain correlation o�en exhibits temporal lag and site-dependent variability that

are di�cult to quantify, reducing prediction accuracy [15–18]. Within signal-only methods, linear �lters are

computationally e�cient but o�en lack separation precision, whereas nonlinear iterative techniques (e.g.,

EMD, VMD) and online Kalman �ltering incur high computational and memory costs and show strong

dependence on model assumptions and parameter tuning, which limits their e�ciency for high-frequency

data streams [9–12]. �ese limitations highlight the need for a deterministic, model-free approach capable

of processing streaming data with bounded latency and predictable computational demand [13,14].

�e Discrete Wavelet Transform (DWT) provides lower computational complexity than Continuous

Wavelet Transform (CWT) orVMDand is supported by a well-established theoretical foundation [19]. In the

�eld of structural healthmonitoring, the application ofDWTcan be roughly divided into two categories [20].

�e �rst category involves decomposing the original signal to extract time–frequency features, mainly

for signal anomaly detection [21,22] and structural condition assessment [23,24]. �e second category

involves decomposition and reconstruction of the original signal to extract speci�c components, with

applications including denoising of seismic waves [25], pavement sensor signal processing [26], extraction

of transient structural responses [27], fatigue history editing [28], and vehicle-induced response extraction

in bridges [29]. However, in all these studies, wavelet decomposition and reconstruction were performed on

�xed-length datasets, rather than on real-time streaming signals.

�erefore, it is essential to develop a wavelet transform algorithm capable of operating e�ciently in

real-time streaming environments. Such an algorithm can not only improve the e�ciency of vehicle-induced

signal separation for real-time monitoring but also bene�t other engineering �elds requiring online signal

processing. �is paper proposes a Block-wise Sliding Wavelet Transform (BSWT) and its recursive variant

(BSRWT) for streaming signal separation. We �rst outline the BSWT framework for streaming deployment,

then present the recursive boundary-aware update scheme (BSRWT), and �nally evaluate both approaches

on simulated and �eld data. Compared with recursive EMD/VMD (which are iterative, parameter-sensitive,

and computationally intensive) and onlineKalman�ltering (which ismodel-dependent and tuning-intensive

for nonstationary multi-component mixtures), the proposed framework is deterministic, model-free, and

resource-bounded, featuring an explicit latency control and a closed-form complexity behavior.

�is work contributes three main innovations for streaming SHM. First, wavelet-based separation

is reformulated into a block-wise sliding pipeline that produces continuous outputs under a �xed, user-

controllable delay. Second, a recursive reuse mechanism is introduced across adjacent windows, so that the

per-update cost scales with the decomposition depth and �lter length rather than with the full window

size, enabling strict real-time operation without iterative optimization. �ird, a latency–accuracy analysis is

presented, o�ering a practical delay selection strategy that mitigates sliding-window boundary distortions

while maintaining bounded latency.
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2 Block-Wise SlidingWavelet Transform

2.1 Signal Extraction and Decomposition

2.1.1 Signal Separation within a Single Time Window

Vehicle-induced signal separation within a single time window requires �rst obtaining the static signal

from the original signal using the Discrete Wavelet Transform (DWT), which consists of two main steps:

decomposition and reconstruction. In the decomposition step, the original signal is divided into multiple

layers, and at each layer, the signal is separated into a detail component and an approximation component. In

the reconstruction step, only the approximation component from the highest layer is used to reconstruct the

signal, while all detail components are discarded. �e reconstructed signal represents the static component

of the original signal. �e vehicle-induced signal is then obtained by subtracting the static component from

the original signal.

�e �owchart of the algorithm is shown in Fig. 1 (an example of a three-layer DWT). “A” followed

by a number denotes the approximation component at the corresponding layer, “D” denotes the detail

component, and “R” denotes the reconstructed signal. Two parametersmust be determined in this algorithm:

the number of decomposition layers and the wavelet basis function. �e wavelet basis function de�nes the

coe�cients of the high-pass and low-pass �lters, as well as the reconstruction �lters used in the process.

Figure 1: Flowchart of DWT

�e process of decomposition and reconstruction mainly refers to the Mallet fast algorithm [30,31],

whichwill be brie�y reviewed in Sections 2.1.1 and 2.1.2. Somedetails in the convolution on the data boundary

will also be elaborated.

2.1.2 Decomposition

In the decomposition step, the original signal (also denoted as the approximate signal of layer 0th) is

�rstly convolved with the high-pass �lter, and the signal obtained a�er convolution is downsampled by half

of its length to get the detailed signal of the 1st layer. �e original signal is also convolved with the low-

pass �lter and downsampled by half of its length to get the approximate signal of the 1st layer. �en, the

approximate signal of the 1st layer is convolved with the high-pass �lter and the low-pass �lter respectively

and then downsampled to get the detail and approximate signal of the 2nd layer.
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Let n be the number of decomposition layers. �e process is shown in the following equation:

A j+1 (i) = ∑
l

k=1
L(k)A j(2i − k) (1)

D j+1 (i) = ∑
l

k=1
H(k)A j(2i − k) (2)

where 0 ≤ j < n and j denotes the number of layers of the signal. i in the brackets represents the sequence

number in the signal. �e length of the signal of A j+1 is half of that of A j. l represents the length of the �lter.

L and H stand for the low-pass �lter and high-pass �lter, respectively.

It should be noted that the length of the series should remain the same a�er the convolution is done.

�erefore, it is inevitable that a number of zeros need to be added to the beginning or end of the series

during the convolution. Fig. 2 below shows the process of convolution when adding a number of zeros at the

beginning of the previous signal during the process of calculating A j+1 from A j.

Figure 2: �e convolution on the signal boundary in decomposition

In the process of wavelet decomposition, each layer of the detail signal contains the high-frequency

information of the approximation signal from the previous layer. As the decomposition progresses, more

high-frequency information is gradually removed, leaving only the lower-frequency content that represents

the overall trend of the signal. When the original data undergoes multi-layer decomposition, the resulting

approximation signal becomes progressively shorter in length. A�er several layers of decomposition, the �nal

approximation signal obtained serves as the input for the reconstruction process.

2.1.3 Reconstruction

In this section, we describe how to reconstruct the approximate signal at the nth layer into a signal of

the same length as the original input. Although wavelet reconstruction can incorporate multiple layers of

detail and approximation information, in this study it is su�cient to use only the highest-level approximation

signal, since the objective is to extract the static component of the signal.

During reconstruction, the approximate signal from the nth layer is �rst upsampled by inserting zeros

between adjacent data points. For example, if the approximate signal from the previous layer is {1, 2, 3, 4,
5, 6}, the upsampled signal becomes {0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6}. A�er upsampling, the sequence is

convolved with the reconstruction �lter to obtain the reconstructed signal for the previous layer. Unlike the
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decomposition process, zeros are appended to the end of the signal during convolution to ensure that the

reconstructed signal maintains the same length as the input signal. �is procedure forms the basis of the

wavelet reconstruction process described in this study.

R̃ j(i) =
⎧⎪⎪⎨⎪⎪⎩

R j+1 ( i2 + 1) , n is even number

0, n is odd number
(3)

R j (i) = ∑
l

k=1
F(k)R̃ j(i − k) (4)

where F represents the reconstruction �lter, j represents the number of the layer of reconstructed signal,

0 ≤ j < n. �e nth layer’s reconstructed signal is the An obtained in the decomposition process and the 0th

layer is the static signal separated from the original signal. �erefore, the vehicle-induced signal can be

obtained by subtracting the static signal from the original signal.

2.2 Real-Time Signal Stream Separation by Window Sliding

In the previous section, the process of separating vehicle-induced signals using the wavelet transform

within a �xed time window was introduced. However, in real-time monitoring, the input to the algorithm

is a continuously updating data stream rather than a �xed-length signal segment. To address this, a sliding-

window approach is adopted, as illustrated in Fig. 3.

Figure 3: Sliding-window process of a real-time signal separation system

First, an initial window is de�ned, within which the wavelet transform is applied to perform signal

separation.�is windowmust be su�ciently large to ensure that the vehicle-induced response can be clearly

distinguished from the static response. A�erward, whenever a new data point is received from the sensor,

the extraction window shi�s forward, and the same wavelet transform algorithm with identical parameters

is applied to the updated window for signal separation. �e end portion of the new separation result is then

appended to the previous results. As the window continues to slide, the signal is separated in real time.

�rough this mechanism, the Block-wise Sliding Wavelet Transform (BSWT) achieves real-time signal

separation. However, two signi�cant limitations remain. First, for adjacent windows, most computations

are repeated, resulting in low computational e�ciency. Second, because the �nal separated signal is formed

by concatenating results at the window boundaries, it is subject to a strong boundary e�ect, which may

reduce separation accuracy. To address these issues, the Block-wise Sliding Recursive Wavelet Transform

(BSRWT) is proposed. �is method utilizes data from adjacent windows to improve the e�ciency of BSWT

and introduces a controlled delay to enhance accuracy. Speci�cally, the recursive scheme reuses information

from the previous window, allowing each update to process only the newly entered and soon-to-exit data
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points at each decomposition level. Consequently, the computational cost per update depends only on the

number of decomposition levels and the �lter length, rather than on the total window size.

3 Block-Wise Sliding Recursive Wavelet Transform

3.1 Recursive Wavelet Transform

As shown in Fig. 4, during the window-sliding process for data separation, the signal in each subsequent

window is shi�ed forward by one sample relative to the previous window, and it terminates with a new data

point received from the sensor. �e recursive wavelet transform leverages this property in real-time signal

transmission to reduce algorithmic complexity and enhance computational e�ciency.

Figure 4: �e feature of signal in adjacent sliding windows

In this section, superscripts of the letter symbols denote the time dimension, subscripts indicate the

decomposition level in the wavelet transform, and numbers in brackets represent the index position within

the data sequence.

3.1.1 Recursive Decomposition

�e equivalent decomposition process is performed with reference to the stationary wavelet transform

(SWT) method [32,33]. Unlike the commonly used discrete wavelet transform (DWT), the SWT does not

downsample the data at each levelwhen computing the next layer ofwavelet coe�cients; instead, it upsamples

the convolution kernel at each stage.

Assume that the wavelet decomposition has n levels. �e convolution kernel at the kth level is denoted

as Gk, while G0 represents the convolution kernel applied directly to the original signal. G0 corresponds to

the low-pass �lter coe�cients, which are determined solely by the selected wavelet basis function.

In the standard DWT, when calculating the approximation signal at the second level, the �rst-level

convolved signal must be further convolved with the low-pass �lter a�er downsampling. �is process is

equivalent to performing the convolution without downsampling, but using a modi�ed convolution kernel

inwhich zeros are inserted at regular intervals, followed by downsampling a�er the convolution is completed.

�erefore, the process of downsampling and convolution in DWT can be replaced by the fol-

lowing process: the original signal is convolved with G0, G1 . . .Gn−1 to obtain the series A1, A2 . . .An

and a�er that An is downsampled (take 1 every 2n). G0 are the coe�cients of the low-pass �lter, G1

adds 1 zero to G0 in 1-term intervals, G2 adds 1 zero to G1 in 1-term intervals. Assuming that the

coe�cients of G0 are {g1 , g2 , . . . , g i), which is the coe�cients of the low-pass �lter. �en Gk will be

{g1 , 0, 0, . . . , 0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2k−1zeros

, g2 , 0, 0, . . . , 0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2k−1zeros

, . . . , g i , 0, 0, . . . , 0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2k−1zeros

}.
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Take a 3 layers’ HAARwavelet (db1 wavelet) as an example. Its low-pass �lter coe�cients are
√
2
2
× {1, 1}.

Suppose the original data is {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}.

Using the method described above, G1, G2, G3 are
√
2
2
× {1, 0, 1, 0},

√
2
2
× {1, 0, 0, 0, 1, 0, 0, 0},

√
2
2
×

{1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0}, respectively. �e result of the �rst convolution is
√
2
2
× {1, 3, 5, 7, 9, 11,

13, 15, 17, 19, 21, 23, 25, 27, 29, 31}. �e result of the second convolution is
√
2
2

2
× {1, 3, 6, 10, 14, 18, 22, 26, 30,

34, 38, 42, 46, 50, 54, 58}. �e result of the third convolution is
√
2
2

3
× {1, 3, 6, 10, 15, 21, 28, 36, 44, 52, 60, 68,

76, 84, 92, 100}. A�er downsampling (take 1 every 23), the result is
√
2
2

3
× {1, 44}.

Use the traditional method introduced in Section 2. �e result of the �rst convolution is also
√
2
2
× {1,

3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31} and the result of the �rst downsampling is
√
2
2
× {1, 5, 9, 13, 17,

21, 25, 29}. �e result of the second convolution is
√
2
2

2
× {1, 6, 14, 22, 30, 38, 46, 54} and the result of the

second downsampling is
√
2
2

2
× {1, 14, 30, 46}. �e result of the third convolution is

√
2
2

3
× {1, 15, 44, 76} and

the result of the third downsampling is
√
2
2

3
× {1, 44}, which is exactly the same with the result obtained by

the method in this chapter.

In the scenario of real-timemonitoring, the data in the latter window is changed only by adding the last

term (newly input data) and deleting the �rst term compared to the data in the previous window.�erefore,

when computing A1 at time t (denoted as At
1), most part of A1 at time t − 1 (denoted as At−1

1 ) can be reused.

Only the convolution computation that is related to the new input need to be performed and place the result

at the end of the new series. Similarly, as is shown in Fig. 5, other layers in the time window can be calculated

by taking layers at the previous time as references.

Figure 5: Process of recursive decomposition in real-time signal stream

3.1.2 Recursive Reconstruction

�e nth layer of approximate signal can be obtained by downsampling (take 1 every 2n term, from the

1st term) An . In traditional DWT, each layer of reconstruction signal is convolved with the reconstruction

�lter a�er upsampling.

However, in recursive reconstruction, the �rst number in An and every 2n num-

ber therea�er (denoted as {a1 , a2 , . . . , a i}) are extracted to construct a new series Bn ,
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Bn = {0, 0, . . . , 0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2n−1zeros

, a1 , 0, 0, . . . , 0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2n−1zeros

, a2 , . . . , 0, 0, . . . , 0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2n−1zeros

, a i}. Let G_o0 = {go 1 , go2 , . . . , g_o i} (of length d), which

denotes the reconstruction �lter coe�cient. A series of convolutional kernels G_ok (k = 0, 1, 2, . . . , n − 1)
are constructed in the following way:

G_ok = {0, 0, . . . , 0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2k−1zeros

, go 1 , 0, 0, . . . , 0´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2k−1zeros

, go2 , . . . , 0, 0, . . . , 0´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2k−1zeros

, g_o i}, k = 0, 1, 2, . . . , n − 1 (5)

Bn is of the same length as the original signal. Bn−1 is calculated by convolving Bn with G_on−1. Bn−2

is calculated by convolving Bn−1 with G_on−2, etc. A�er being downsampled by at interval of 2k , Bk is equal

to the kth layer of reconstructed signal B0 is exactly the same with the reconstructed signal calculated in the

Mallet algorithm.

Take the data in 3.1.1 as an example.�e reconstruction �lter coe�cient of db1 wavelet is
√
2
2
× {1, 1}. So

B3 =
√
2
2

3
× {0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 44}, G_o2 =

√
2
2
× {0, 0, 0, 1, 0, 0, 0, 1}, G_o1 =

√
2
2
× {0, 1,

0, 1}, G_o0 =
√
2
2
× {1, 1}.

It can be calculated that B2 =
√
2
2

2
× {0, 0, 0, 1, 0, 0, 0, 44, 0, 0, 0, 44}, B1 =

√
2
2

1
× {0, 1, 0, 1, 0, 44, 0, 44,

0, 44, 0, 44}, B0 = {1, 1, 1, 1, 1, 44, 44, 44, 44, 44, 44, 44}, which is the same with the result calculated by the

traditional method.

In real-time monitoring scenarios, from the previous section, it has been known that compared to At−1
n ,

At
n has the �rst term deleted and the rest of the terms shi�ed forward as a whole, adding the new input to

the last term.

Since the non-zero portion of Bn consists of the integer multiples of 2nth terms in An , Bn at the time

of t (denoted as Bt
n) can be calculated based on Bn at the time of t − 2n (denoted as Bt−2n

n ) by the following

method: Delete the �rst 2n terms of Bt−2n

n , add 2n − 1 zeros and the last number of At
n at the end.�e process

is shown in Fig. 6.

Figure 6: Calculate Bt
n based on Bt−2n

n in real-time scenarios

In the process of calculate Bt−2n

n−1 from Bt−2n

n , convolution is used (let the length of the convolution kernel

be Lcor , Lcor = d × 2n−1) and the convolution is done by adding zeros to the end of the sequence. When

calculate Bt
n−1 from Bt

n , these numbers are no longer in the end but in the middle of the sequence, causing

boundary e�ect (will be further discussed in 3.2). So the Lcor numbers at the end of Bt
n−1 and the newly added

2n numbers must be recalculated, while the rest part of Bt
n−1 can be reused, as is shown in Fig. 7.

�e process of getting Bn−2 from Bn−1 is similar with the method described above. It is notable that

the length of the data that can be reused is still the length of the window minus Lcor + 2n . B0 (the �nal

reconstructed signal) can be calculated in this way.
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Figure 7: �e reusable part of Bt
k
when calculating Bt+2n

k

�erefore, when using the recursive reconstructionmethod, it is necessary to use the traditionalmethod

to calculate Bn , Bn−1, . . ., B0 for the �rst 2
n times. When calculating the reconstructed data when t = 2n + 1,

refer to the data when t = 1. When calculating the reconstructed data when t = 2n + 2, refer to the data when
t = 2, and so on.

So far, the framework of recursive reconstruction and the reusable part of the previous data when time

forwards are clear. However, when calculating Bt+2n

k based on Bt
k , it is not necessary to do the convolution

withG_ok . In the part that cannot be reused, only the non-zero numbers need to be �gured out. Here is how

the calculation can be further simpli�ed by using a similar method in Mallet’s fast algorithm.

Firstly, the non-zero numbers to be calculated in the nth layer (the non-zero numbers in the last

d × 2n−1 + 2n numbers) are extracted (the length of these non-zero numbers is d×2n−1+2n

2n
= d

2
+ 1), and the

zeros are inserted at interval to form a new sequence. Convolved this new sequence with the original low-

pass recon�guration �lter to get the non-zero numbers to be calculated in the (n − 1)th layer. And so on until
we get to layer 0, which is the �nal sequence of data required.

�e advantage of this “pyramid” algorithm is that it uses upsampling to avoid long convolution kernel.

As is shown in the �gures below, the algorithm in Fig. 8 can be replaced by the one in Fig. 9. �e square in

the two �gures represents a non-zero number and each row represents the part that needs to be recalculated

in each layer.

Figure 8: �e original algorithm of calculating non-zero part
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Figure 9: �e improved algorithm for calculating the non-zero part

In conclusion, the �owchart of the proposed Block-wise Sliding RecursiveWavelet Transform (BSRWT)

algorithm is shown in Fig. 10. �e original signal is �rst downsampled and convolved to obtain the decom-

posed signal. �en, the decomposed signal is upsampled and convolved to reconstruct the separated signal.

As the time window continuously slides, new segments of the original signal are input to achieve real-time

signal separation. Meanwhile, data from adjacent time windows are reused to enhance the computational

e�ciency of the algorithm.

Figure 10: Flowchart of BSRWT

3.2 �e Boundary E�ect in Window Sliding and Its Solution

As is shown in Fig. 11, in the application of the algorithm above, the boundary of the window has a

distortion e�ect.

�e main reasons for the boundary e�ect are as follows. In all the convolution processes, 0 is added to

the boundary (at the start or the end of the original sequence) to ensure that the sequences before and a�er

convolution remain of the same length.�erefore, in the process of each convolution, the way of calculation

of the numbers at the beginning or the end di�ers from that of the numbers in the middle.
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Figure 11: Boundary e�ect in a window

Moreover, within the section a�ected by the boundary e�ect, the degree of distortion varies.�e closer to

the data boundary, themore serious the distortion is.�is is due to the fact that the closer to the boundary, the

higher the proportion of zeros in the convolution calculation, and the greater the di�erence with the middle.

�e main factors a�ecting the length of the boundary distortion are as follows. Since the distortion is

caused by zeros added in the boundary in the convolution, the length of the distortion is related to the longest

length of the convolution kernel used in all steps. Let the length of the decomposition and reconstruction

�lter be d, and the number of decomposition layers be n. In all steps of the previous methods, the longest

convolution kernel is of length d × 2n , so the theoretical distortion bound should be d × 2n .
�e boundary e�ect problem can generally be solved by methods like signal extension, mirroring, etc.

But such methods are di�cult to achieve in a scenario of real-time data stream, so in this paper a plain

method is proposed as follows.

Since the boundary distortion exists at the end of each window, each time the number out of the

boundary e�ect instead of the last number is taken as the �nal separation result. �e cost of this is that this

causes a delay of d × 2n in the real-time monitoring.

3.3 Comparison between the Complexity of BSRWT and BSWT

Let the number of layers of the wavelet decomposition be n, the length of the window be Lw in = 2N , and
the length of the �lter using the wavelet basis function be d.

When using BSWT, take a single sliding of the window as the object of study. During the decomposition

process, the convolution operation of the �rst layer requires 2N × d multiplications, and the convolution

operation of the second layer requires 2N−1 × d multiplications and so on. �e convolution operation of the

Nth layer requires 2N−n+1 × d multiplications. So a total of 2N−n+1(2n − 1) × d multiplications are required

to be performed in the decomposition. �e wavelet reconstruction and the decomposition process require

the same number of multiplication calculations. So a total of 2N−n+2(2n − 1) × d multiplications are required

for a single window sliding when using BSWT.

When using BSRWT, take a single sliding of the window as the object of study. During the

decomposition process, d × (1 + 2 + . . . + 2n−1) = d × (2n − 1) multiplications are required, and during

the reconstruction process, d × ( d
2
+ 1) × (1 + 2 + . . . + 2n−1) = d × ( d

2
+ 1) × (2n − 1) multiplications are

required. So a total of d × ( d
2
+ 2) × (2n − 1) multiplications is required for a single window sliding when

using BSRWT.
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Dividing the number of multiplication calculations for the two methods yields

2N−n+2(2n − 1) × d
d × ( d

2
+ 2) × (2n − 1)

=
2N−n+2

( d
2
+ 2)

=
4Lw in

( d
2
+ 2) 2n

(6)

Overall, the computational e�ort of the baseline grows with the window length because each shi�

recomputes all convolutions inside the window, whereas the proposed method updates only boundary

portions at each level; therefore, the e�ort per update mainly follows the number of decomposition layers

and the �lter length and is insensitive to the window length. Since Lw in must be strictly larger than 2n × d,
BSRWT can simplify the computational complexity of BSWT in most situations, which is also well veri�ed

in the subsequent experiments.

4 Experiments and Results

4.1 Simulated Signal Experiment

�e signal in the health monitoring environment is a fusion of multiple time-varying signals. In

order to assess the accuracy of the above algorithms, a signal consisting of two time-varying sub-signals

is simulated with reference to the previous scholars’ research [12]. BSWT and BSRWT are applied on this

signal respectively to separate the time-varying sub-signals. �e composition of the signal is as follows: the

frequency is 50 Hz, sig1 and sig2 are both sub-signals with time-varying amplitude and frequency, sig1 is a

low-frequency signal simulating non-vehicle-induced strains, and sig2 is a high-frequency signal appearing

only in 25–30 s and 75–80 s, simulating vehicle-induced signals:

signal = sig1 + sig2 (7)

sig1 = (6 + 0.02 × sin(2πt)) × cos(2π f1 t) (8)

sig2 = (6.3 + 1 × sin(2πt)) × cos(2π f2 +
π

2
) (9)

f1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 t < 15
0.001 × (t − 30)2 − 225 × 0.001 + 1 15 ≤ t ≤ 45

1 − 0.001 × (t − 45) t > 45
(10)

f2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 ≤ t ≤ 25
5 × (t − 30) + 2 25 ≤ t ≤ 30

0

6 × (t − 85) + 2.5
0

30 ≤ t ≤ 75
75 ≤ t ≤ 80
80 ≤ t ≤ 100

(11)
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�e two signal components and the total signal a�er mixing are shown in Fig. 12:

Figure 12: Simulated signal for experiment

Figs. 13 and 14 show the comparison between the separation results using BSRWT and BSWT in the

time and time-frequency domains under the parameter setting of db4 wavelet base and 5 decomposition

layers. It can be found that the BSWT undergoes more obvious modal aliasing in the segment where the

vehicle-caused signal appears, while the BSRWT gives a better result.

To further evaluate the performance of BSWT and BSRWT under di�erent con�gurations of decom-

position layers, wavelet bases, and delay settings, experiments were conducted using various parameter

combinations. Speci�cally, the number of decomposition layers was set from 1 to 5, and the wavelet basis

functions were selected from ‘db2’, ‘db3’, ‘db4’, ‘db5’, and ‘db6’ for both BSWT and BSRWT to perform signal

separation. For BSRWT, the delay was varied from 0 to twice the theoretical boundary length, sampled at 5-

point intervals under each parameter con�guration. In total, 412 sets of separation experiments were carried

out using di�erent parameter combinations.

Figure 13: Time-amplitude results of BSWT and BSRWT under condition of db4, 5 layers
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Figure 14: Time-frequency spectrogram of the results of BSWT and BSRWT under the condition of db4, 5 layers

To compare the accuracy of BSRWT and BSWT under di�erent delay settings, signal separation was

performed using BSRWTwith varying delays while keeping the number of decomposition layers andwavelet

basis function constant. �e results obtained by BSRWT were then compared with those of BSWT under

the same con�guration.�e comparison results are presented in Fig. 15, where the horizontal axis represents

the ratio of the BSRWT delay to the theoretical boundary length under the same parameter conditions, and

the vertical axis represents the ratio of the RMSE of BSRWT to that of BSWT with the same decomposition

layers and wavelet basis functions.

Figure 15: Result RMSE of BSRWT under di�erent delays compared with BSWT

To investigate the accuracy of BSRWT and BSWT under di�erent decomposition layers, the RMSE

values of their separation results were calculated for each layer con�guration. In the BSRWT experiments,

all delay settings were chosen to be greater than the theoretical boundary length to ensure reliable separation

performance. As shown in Fig. 16, samples with the same number of decomposition layers are represented by

the same color.�e le� panel illustrates the RMSE distribution of BSRWT, while the right panel shows that of
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BSWT. It can be observed that, under identical decomposition layers, the RMSEs of BSRWT are consistently

lower than those of BSWT, indicating that BSRWT achieves higher separation accuracy.

Figure 16: RMSE of BSRWT and BSWT with di�erent decomposition layers

To examine the accuracy of BSRWT and BSWT under di�erent wavelet bases, the RMSE values of

their separation results were calculated for each wavelet basis. In the BSRWT experiments, all delay settings

were greater than the theoretical boundary length to ensure consistent separation performance. As shown

in Fig. 17, samples using the same wavelet basis are represented by the same color. �e le� panel illustrates

the RMSE distribution of BSRWT, while the right panel shows that of BSWT. It can be observed that, under

the same wavelet basis, the RMSEs of BSRWT are generally lower than those of BSWT, demonstrating the

superior separation accuracy of BSRWT across di�erent wavelet bases.

Figure 17: RMSE of BSRWT and BSWT with di�erent wavelet bases

In summary, under di�erent combinations of decomposition layers andwavelet basis functions, BSRWT

demonstrates superior signal separation accuracy compared to BSWT, provided that the delay setting of
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BSRWT exceeds the theoretical boundary length. One possible explanation is that, although BSWT applies

signal extension at the convolution boundaries to partially mitigate boundary e�ects, during the window-

sliding process most of the separated results originate from the edge regions of the window, where signal

extension still introduces residual boundary distortions, thereby reducing accuracy. In contrast, BSRWT

achieves higher separation precision by incorporating information from adjacent windows, albeit at the

expense of a certain processing delay.

To compare the computational complexity of the two algorithms, the elapsed time required by each

method to perform signal separation under the same hardware environment and with di�erent numbers of

decomposition layers was recorded. �e results are presented in Fig. 18.

Figure 18: Elapsed time of BSWT and BSRWT under di�erent decomposition layers

Under the same decomposition layers and wavelet basis functions, the average elapsed time of BSRWT

is only 0.0249 times that of BSWT under matched settings. �is provides strong evidence that BSRWT is

signi�cantly more e�cient than BSWT when operating under identical parameters in real-time monitoring

scenarios. In practical applications, the per-sample separation timemust be shorter than the sampling period.

In our �eld evaluation, this requirement was satis�ed across all e�ective sampling rates listed in Table 1 (2,

4, 10, and 20 Hz), including the maximum available rate of 20 Hz.

Table 1: E�ect of delay on accuracy

Delay setting relative to

boundary span

RMSE (BSRWT vs.

BSWT)

Edge

artifacts
Note

δ < boundary span Typically higher Noticeable
Smaller latency but

more edge error

δ ≈ boundary span Lower Mild

Balanced

latency–accuracy

point

δ > boundary span Lower Minimal
Diminishing returns

on more delay

�e experimental results demonstrate that the streamlined computational complexity of the BSRWT

algorithm greatly enhances the feasibility of real-time separation for high-frequency data. At the same time,

BSRWT achieves substantial improvements in separation accuracy at the cost of a moderate, controllable

delay.�ese advantages arise from a structural innovation—speci�cally, reusing inter-window computations
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and linking accuracy to a bounded, user-controlled delay—rather than from a simple implementation adjust-

ment.

4.2 Real Strain Signal Experiment

�e Lie Shi River Bridge is located on the Jiangsu Coastal Highway (Yancheng–Nantong section),

crossing the Lie Shi River in Rugao City, as shown in the on-site photo in Figs. 19 and 20. �e bridge

superstructure consists of partially simply supported and partially continuous prestressed concrete box

girders. �e girder system is divided into 12 groups, each containing six spans, with a total bridge length

of 2168.20 m and an average girder height of approximately 1.5 m. �e bridge deck is composed of a 5 cm

waterproof concrete layer overlaid with 9 cm of asphalt concrete.�e healthmonitoring system of the Lie Shi

River Bridge was commissioned in November 2015, with 56 sensors installed across key structural locations.

In this study, the vertical strain signal recorded at the mid-span of the ��h span on a day in August 2018 was

selected as the experimental dataset.�e strain data were sampled at 20 Hz, yielding a total of 1,692,000 data

points over a 24-h period.

Figure 19: Field scenes of Lie Shi River Bridge

Figure 20: �e section of the girder

�is continuous record encompasses a wide range of typical operational conditions for long-

span prestressed concrete box-girder bridges, including: (i) daily thermal cycles that drive slow dri�s;

(ii) mixed tra�c with multi-axle trucks and time-of-day variations (nighttime low tra�c vs. rush-hour

high tra�c), producing transient peaks with diverse amplitudes and spacings; and (iii) sensor dri� and

ambient disturbances. �ese factors jointly create the low-frequency trend plus peak-shaped transients that

motivate streaming separation.�e sensor is placed at the mid-span of the ��h span, a standard location for

capturing vehicle-induced responses while being sensitive to thermal trends, making the case typical rather

than exceptional for SHM deployments.

In separating the vehicle-induced strain from the total signal, it is necessary to remove the long-term

static trend and retain the vehicle-induced component. Accordingly, separation quality can be evaluated
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along two dimensions: (i) the separated vehicle-induced strain should not contain long-period components,

and (ii) local details of the vehicular strain should remain undistorted relative to the original signal.

To verify the performance of BSRWT under di�erent sampling frequencies, the original signal

was downsampled to multiple target rates and processed with appropriate parameter settings. �e post-

downsampling frequencies and algorithm parameters are listed in Table 2. �e number of decomposition

layers was reduced as the sampling frequency decreased to achieve better separation, and the delay was set

slightly longer than the theoretical boundary length to mitigate boundary e�ects.

Table 2: �e frequency of the downsampled signals and parameters used in BSRWT

Frequency/Hz
Wavelet

basis

Decomposition

layers

Points of

delay

Actual time

delay/s

20 db6 9 3000 150

10 db5 8 2100 210

4 db5 5 260 65

2 db3 5 130 65

�e downsampled signals were processed using the BSRWT algorithm to obtain the long-period static

strain components, whichwere then subtracted from the original signals to extract the vehicle-induced strain

components. �e separated vehicle-induced signals are presented in the following �gures. Fig. 21 illustrates

the original (unseparated) strain signal and its local details, while Fig. 22 displays the separated vehicle-

induced signals and corresponding details under di�erent downsampling rates. Across these sampling

rates, the proposed method consistently eliminates long-period dri� while preserving the peak shapes

and temporal characteristics of the vehicle-induced strain. �is indicates that the separation behavior

remains stable and robust under varying e�ective sampling intervals and noise conditions within the same

24-h dataset.�ese �ndings—namely, the ability to remove slow-varying trends while maintaining transient

peak integrity with bounded per-sample latency—align with the requirements of other real-time streaming

signal applications such as seismic transient detection, biomedical waveform analysis, and edge IoT sensing,

suggesting that the proposed approach is task-general rather than bridge-speci�c.

It can be observed that the unseparated signal exhibits pronounced long-period �uctuations throughout

the day, primarily caused by environmental factors such as temperature variation. In contrast, this low-

frequency component is e�ectively removed in the separated signals. A comparison of the local details

between the unseparated and separated signals shows that their amplitudes and waveforms remain nearly

identical, indicating that the separation process introduces no noticeable distortion to the vehicle-induced

strain components.

Figure 21: Unseparated signal and its local detail
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Figure 22: Separated signal and its local detail at di�erent downsampling rates

�e elapsed times for the four experimental cases are presented in Table 3. In all cases, the average

computation time per data point is shorter than the signal sampling period, thereby satisfying the real-time

processing requirement for continuous monitoring applications.

Table 3: Elapsed times in di�erent sampling frequency scenarios

Frequency/Hz
Total elapsed

Time/s

Average computation

time for a single data

point/s

Sampling

period/s

20 2240 1.32 × 10−3 0.05

10 738 8.73 × 10−4 0.1

4 113 3.37 × 10−4 0.25

2 55 3.25 × 10−4 0.5

5 Conclusion and Outlook

In this paper, a real-time vehicle-induced signal separation framework based on sliding-windowwavelet

decomposition is proposed and re�ned. �e main contributions are summarized as follows:
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(1) A Block-wise Sliding Wavelet Transform (BSWT) is developed for real-time signal separation. It

achieves continuous separation through a sliding-window mechanism. However, its computational e�-

ciency is limited due to redundant calculations between adjacent windows, and its accuracy is a�ected by

boundary e�ects.

(2) To address these limitations, an enhanced algorithm—Block-wise Sliding Recursive Wavelet Trans-

form (BSRWT)—is proposed. �is method fully utilizes the overlapping information between adjacent

windows, thereby reducing computational complexity. Meanwhile, it analyzes the origin of boundary e�ects

and introduces an e�ective delay strategy to improve separation accuracy.

(3) Experiments on simulated signals demonstrate that, compared with BSWT, the improved BSRWT

achieves higher separation accuracy and signi�cantly shorter computation time, with only a minor

delay introduced.

(4) Field experiments on bridge strain data further validate that the proposed method can e�ectively

separate vehicle-induced strain from total strain, successfully removing long-term static components while

preserving local waveform integrity of the vehicle-induced response.

In future work, the proposed algorithm will be further developed in the following directions. First, we

plan to relax the current power-of-two window constraint, enabling support for arbitrary integer window

lengths while maintaining real-time streaming capability. Second, the selection of decomposition layers and

wavelet bases currently relies on empirical tuning without a theoretical foundation. We aim to establish

an adaptive, data-driven selection mechanism by integrating lightweight online optimization or machine-

learning–assisted strategies under bounded per-sample computational and memory costs. In parallel, we

will formalize the delay–accuracy trade-o� for practical applications by developing guidelines for delay

adjustment in real deployments—speci�cally, methods for determining default delay values and strategies

for increasing or decreasing the delay as noise levels or tra�c conditions vary.�ird, the proposed streaming

framework has potential applications beyond structural health monitoring (SHM). Its deterministic updates

and bounded per-sample computational complexitymake it suitable for seismicmonitoring (separating tran-

sient arrivals from long-period dri�s under strict latency requirements), biomedical signal processing such

as Electrocardiogram (ECG)/Photoplethysmography (PPG) denoising (preserving waveform morphology

in on-device streaming), and Internet of �ings (IoT)-based edge sensing (maintaining stable compute and

memory footprints under variable sampling rates). Future studies will focus on domain-speci�c adaptations

of layer depth and wavelet selection, followed by short-term �eld trials to validate the generality of the

approach across di�erent environments and sensor platforms.
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