

Doi:10.32604/jpm.2025.069514

CORRECTION

Correction: Recent Advancements in Nanocomposites-Based Antibiofilm Food Packaging

Bandana Padhan^{1,#}, Rajkumar Patel^{2,#}, Priyanka Bhowmik³, Ananya Roy¹, Joyjyoti Das^{1,*}, Yong Yu^{4,5} and Madhumita Patel^{6,*}

In the article "Recent Advancements in Nanocomposites-Based Antibiofilm Food Packaging" by Bandana Padhan et al. (Journal of Polymer Materials, 2025, Vol. 42, No. 2, pp. 411–433. doi:10.32604/jpm. 2024.059156), originally published online on December 9, 2024, and formally included in Vol. 42, No. 2 (published on July 11, 2025), Table 1 contained incorrect information regarding antimicrobial effects of materials incorporating silver and ethyl lauroyl arginate (LAE[®]). The corrected version of Table 1 is provided below.

Table 1: Application of silver nanoparticles for antibiofilm food packaging

Composite	Incorporation level	Antimicrobial capacity	Other physical properties	Limitations	Ref.
IONPURE IPL incorporated LDPE films	Ag_50—LDPE film with 2% of IONPURE IPL (0.036% silver) incorporation			No antibacterial effects against A. flavus and E. coli	[28]
Ethyl lauroyl arginate (LAE [®]) incorporated biofilms	LAE_50—INZEA F19 biofilm with 6% LAE incorporation	S.enterica growth decreased.		Aspergillus flavus was not affected	[28]

(Continued)

¹Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India ²Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Incheon, 21983, Republic of Korea

³Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India

⁴Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310007, China

⁵College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China

⁶Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea

^{*}Corresponding Authors: Joyjyoti Das. Email: jjd0007@gmail.com; Madhumita Patel. Email: madhurk29@gmail.com Published: 11 July 2025

570 J Polym Mater. 2025;42(2)

Table 1	(continued)
Table 1	Continue	u

Composite	Incorporation level	Antimicrobial capacity	Other physical properties	Limitations	Ref.
Ethyl lauroyl	LAE® —30 mg/mL	Reduction in <i>P</i> .			[28]
arginate ($\mathrm{LAE}^{^{\circledR}}$)	for spraying and 22	<i>putida</i> growth			
incorporated	mg/L for total	by 99.99%.			
polystyrene pads	immersion				

A correction has also been made to the text in Section: Silver Nanoparticles against Biofilm, Paragraph 5, which previously misrepresented the antimicrobial effects of the materials.

Corrected Paragraph

"In a study conducted by [28], the antibacterial activity of two novel active films with silver, as IONPURE IPL, and ethyl lauroyl arginate (LAE[©]) respectively was assessed. One of these films was fabricated by incorporating silver in a low-density polyethylene (LDPE) matrix while the other was fabricated using an LAE[©] incorporated biofilm material INZEA F19. While silver incorporated LDPE films showed no antibacterial activity against *E. coli* and *Aspergillus flavus*, LAE[©] incorporated INZEA F19 reduced the growth of *Salmonella enterica* (*S. enterica*) but did not inhibit the growth of *Aspergillus flavus*. Interestingly, a 99.99% reduction in growth of *Pseudomonas putida* was observed when active polystyrene (PS) pads incorporated with LAE[©] were used. Notably, LAE[©] retained its antibacterial action against *S. enterica* even after thermal treatment at 180°C for 6 and 15 min (Fig. 1) [28]."

The authors apologize for any inconvenience caused and state that the scientific conclusions are unaffected. The original article has been updated.