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ABSTRACT: Nowadays, cyberattacks are considered a significant threat not only to the reputation of organizations
through the theft of customers” data or reducing operational throughput, but also to their data ownership and the
safety and security of their operations. In recent decades, machine learning techniques have been widely employed
in cybersecurity research to detect various types of cyberattacks. In the domain of cybersecurity data, and especially
in Trojan detection datasets, it is common for datasets to record multiple statistical measures for a single concept.
We referred to them as SWMEF features in this paper, which include metrics such as standard deviation, minimum,
maximum, total, variance, ... for a single feature. The primary question this paper aims to address is the effectiveness
of SWMF features in the performance of three widely used classifiers—Random Forest, Neural Network, and the
LSTM deep learning method—in detecting Trojan cyberattacks. Our implementations on Trojan detection dataset
demonstrate that while considering SWMEF features enhance the performance of the Random Forest model in terms of
accuracy from 0.82251855 to 0.992487558, and Kappa from 0.646722 to 0.985278422, the absence of SWMFs tends to
either have no effect or slightly improve the performance of the neural network and LSTM classifiers in terms of loss,
and prediction accuracy from 0.99291 to one for Neural network from 0.999981219 to 0.999981218893792 for LSTM. As
a result, these features could be eliminated from the input for neural network-based classifiers.

KEYWORDS: Cyber-attack detection; cybersecurity; deep learning models; feature importance; machine learning;
Trojan detection

1 Introduction

Trojan malware is a type of threat that appears to be legitimate software, enticing users to take actions
such as downloading or attempting to install it. Once executed, the payload provides the attacker with the
opportunity to carry out further malicious activities, such as installing additional malware, monitoring user
behavior, or stealing data. Trojan threats can cause significant reputational damage to companies and lead
to widespread customer churn. The nature of a Trojan can vary widely. It may function as a backdoor,
ransomware, spyware, part of a botnet, a rootkit, a fake antivirus, or take on other malicious forms.

There are also hardware trojans (HTs) that are malicious attack vectors concealed within ICs, causing a
security threat that monitors device operations secretly. When the payloads of HT are activated, the malicious
action will start. The variety of the supply chains of ICs makes developing a consistent detection approach
very difficult [1].
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Given access to a dataset containing all recorded Trojan events, various statistical and analytical methods
can be employed to distinguish between Trojan and non-Trojan behaviors. This paper aims to apply machine
learning and deep learning techniques to effectively detect and classify Trojan threats.

One common structure of cybersecurity datasets is to represent statistical measures for a single concept,
which are then used to generate various features. In this research, we refer to these features as SWME.
Statistical Wise Measure Features (SWMF) refers to the existence of multiple statistical measures for one
single metric, such as standard deviation, mean, minimum, maximum, and/or variance, per a single concept,
such as flow-IAT in a cybersecurity-based dataset. For example, in the Trojan' dataset, there are multiple
SWME, such as Flow.IAT Max, Flow.IAT Min, Flow.IAT Mean, and Flow.IAT Std represents a single concept
of flow-IAT, which refers to flow inter-arrival time observations in network monitoring. This phenomenon
is common in other cybersecurity datasets, such as CSE-CIC-IDS2018" for intrusion detection.

In this paper, our goal is to investigate whether SWMFs are truly effective for the task of Trojan detection
in machine learning and cybersecurity paradigms. To the best of our knowledge, this is the first research
study that specifically focuses on this concept.

The contributions of this paper are as follows:

o We compare the performance of the Random Forest model, neural network-based model, and the LSTM
deep learning classifier on the binary classification task of Trojan detection.

«  We investigate the effectiveness of SWMF features in the context of cybersecurity data, specifically in
relation to the Trojan detection problem, using Random Forest, neural network classifiers, and an LSTM
model. To the best of our knowledge, this is the first study to explore this research question.

The paper is organized as follows: first, we review previous work on attack detection, and we focus on
the research on Trojan detection conducted by researchers. Then, we detail our methodology. Initially, we use
Decision Tree, Random Forest, and XGBoost algorithms to assess feature importances. Following that, we
apply the aforementioned models to evaluate performance in two settings: with SWMEF features and without
them. This allows us to measure the impact of including SWMF on model effectiveness.

2 Literature Review

Ahmadi et al. (2023) measured model overfitting through utilizing various overfitting combating
techniques in machine learning, such as LASSO, XGBoost classifier and dropout mechanism in a deep neural
network for the intrusion detection problem. They proved and illustrated the effectiveness of the Decision
Tree classifier with the least amount of overfitting on the reduced sets of features constructed from Auto
Encoders [2].

Laghrissi et al. (2021) implemented three classifiers as LSTM’, LSTM-PCA" and LSTM-MI" for feature
selection and reduction and for attack detection on the KDD99° dataset. The results show the outperfor-

mance of the LSTM-PCA approach for attack detection. The results of the experiments were compared to
improved CNN, LSTM-RNN, and pruning VELM [3].

llmpsz//\\ ww.kaggle.com/datasets/subhajournal/trojan-detection
https://www.kaggle.com/datasets/solarmainframe/ids-intrusion-csv
3Long—Short Term Memory
4Principal Component Analysis
> Mutual Information
https://www.kaggle.com/datasets/toobajamal/kdd99-dataset
"Shen Y, Zheng K, Wu C, Zhang M, Niu X, Yang Y. An ensemble method based on selection using bat algorithm for intrusion detection. Comput J.
2018;61(4):526-38.
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Ruth Ramya et al. (2024) proposed a framework for detecting Trojans in which a dataset containing
both benign and malicious samples was first collected. Following comprehensive preprocessing and feature
engineering, Random Forest, Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN)
models were employed. To further improve performance, a hybrid fusion of machine learning and deep
learning techniques was applied, which outperformed the individual models [4].

After putting the AE-IDS in place, RMSE" is used as the judgment metric to distinguish the normal
traffic from the abnormal ones. The CSE-CIC-IDS’2018 AWS dataset is used in this paper. The dataset
includes seven types of attacks, including Brute-force (Brute-force-Web, Brute-force XSS, FTP Brute-force,
SSH Brute-force), Bot, DoS (DoS attack Hulk, DoS SlowHT TPTest), DDoS (DDoS attack HOIC, DDoS attack
LOIC-UDP), SQL Injection, and infiltration, including many features representing system logs and network
traffic from which 83 features are selected. The time efficiency of this model is compared to KitNet'’ and the
results show a faster detection time in AE-IDS than KitNet [5].

Leevy and Khoshgoftaar (2020) implemented different classifiers such as CNN, Auto Encoders, LSTM,
AdaBoost, Random Forest, Decision Tree, XGBoost, . .. on CIC2018"' dataset. They reached a high accuracy
rate in some classifiers while they suffer from overfitting. They investigated the lack of addressing class
imbalance, detailed report on the data preprocessing, and transfer learning in the research they reviewed [6].

Choo et al. (2020) utilized machine learning approaches in order to detect hardware-level and Register
Transfer Level (RTL) injected Trojans. The employed classification approaches were decision tree, logistic
regression, Support Vector Machine (SVM), and K-Nearest Neighbors (KNN) with an average True Positive
Rate (TPR) of 93.72% on four branching circuit features. Since the dataset was artificially made through the
Adaptive Synthetic Sampling (ADASYN) algorithm, the result may not reflect the real scenarios [7].

Wijitrisnanto et al. (2021) investigated the Trojan detection problem on multiple data sources, con-
sidering AES, RS232, and WB-Conmax benchmarks on a single branch feature called the Ry feature. The
implemented model was Logistic Regression and Neural Network via a training time of 300 and 894 ms,
respectively, with an accuracy of 92%. However, the model did not perform well regarding the F1 measure
evaluation metric [8].

Kuang et al. (2025) proposed a Hardware Trojans (HT) detection approach based on large pre-trained
models utilizing a novel natural language processing model called NtNDet, which encompasses an approach
called Netlist-to-Natural-Language (NtN) for transforming gate-level netlists to a natural language format
suitable for Natural Language Processing (NLP) models. They also applied a self-attention mechanism
within the Transformer to model Netlist dependencies. They utilized Trust-Hub, TRIT-TC, and TRIT-TS
benchmarks with increased precision by 5.27%, increased True Positive Rate (TPR) by 3.06%, increased True
Negative Rate (TNR) by 0.01%, and increased F1 measure score by 3.17% over the existing HT detection
approaches [1].

Ghimire et al. (2023), proposed a new unsupervised approach for Hardware Trojan detection for small
and short-triggered Trojans that leads to an improvement in trustworthiness of semiconductor IC supply
chains. The unsupervised learning techniques show a better False Positive Rate (FPR) and close accuracy in
comparison to the KNN, SVM, and Gaussian classifiers and resulting in an accuracy of 93% [9].

Das, and Ghosh (2023), investigated the impact of Trojan insertion on quantum circuits via utilizing a
Convolutional Neural Network (CNN) model, called TrojanNet. They generated 12 datasets by considering

8Root Mean Squared Error

The Communications Security Establishment (CSE) and the Canadian Institute for Cybersecurity (CIC)

10Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A., 2018. Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection. Proceedings
of NDSS. Internet Society. doi: 10.14722/ndss.2018.23211.

https://www.unb.ca/cic/datasets/ids-2018.html
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a variation in Trojan gate types, the number of gates, insertion locations, and compiler backends via the
Qiskit framework. Then the TrojanNet model has been trained and evaluated on these datasets. The average
accuracy of 98.80% and an average F1 measure of 98.53% have been achieved by the TrojanNet model [10].

Bajcsy et al. (2021) simulated nine types of Trojan attacks and designed an interactive web-based Trojan
simulator in neural network-based models. They measured and visualized neural network-based models’
states by calculating KL divergence. They also developed the mathematical foundation for designing Trojan
detectors. The results show that the complexities of Trojan problems have a direct relationship to factors such
as the size of the input data space, characteristics of Trojan embedding, the number of classes in the target,
and the number and selection of provided training data points for each class [11].

Liu et al. (2018) tried to issue Trojan attacks against a neural network structure following the research
on poisoning attacks on machine learning models. Through utilizing reverse engineering, they generated a
Trojan trigger by inverting the process and then retraining the model in order to inject malicious behaviors
while stamped as the Trojan in the dataset. They used five different applications to trigger attacks, and the
results show that the attacks were effective [12].

Azizi et al. developed a deep neural network-based model termed T-miner that implemented a
sequence-to-sequence generative model to produce textual data that likely includes Trojan triggers. T-miner
does not need to be trained on any training data upon using a generative model that produced synthetic text
input. They tried to detect Trojan and backdoor cyberattacks based on T-miner. The authors reported 98.75%
overall accuracy while achieving a low false positive rate [13].

Deep neural network structures, either in a single or in a hybrid mode, have been widely used in
detecting various forms of cyberattacks. Gueriani investigated the effectiveness of a hybrid attention-based
LSTM and CNN deep neural network in the structure of an IDS" for detecting Industrial IoT-related
attacks using the Edge-IloTset dataset. They first applied the SMOTE" to balance the dataset and then
evaluated multiple classifiers, where the hybrid attention-based LSTM-CNN model demonstrated the best
performance [14].

Gueriani et al. developed a transformer-based IDS, called BIGAT-ID, in order to detect cyberattacks in
Internet of Medical Things (IoMT) and the Industrial IIoT. To this aim, they employed a bidirectional gated
recurrent unit (BiGRU), LSTM networks, and multi-head attention (MHA) in the structure of an IDS. They
conducted the experiments on two datasets as CICIoMT2024 medical IoT and EdgelloTset industrial IoT.
They reported the detection accuracies of 99.13 percent and 99.34 percent, respectively [15].

Xu et al. developed Malbert, a malware detection system for Windows software-based malware detec-
tion. Malbert learns API sequences by pre-training, and then implements malware detection on data with
malware and benign labels by fine-tuning. They evaluated Malbert on two datasets, the Ki dataset (44,262
samples) and the Catak dataset (7207 samples). Malbert reaches a 99.9% detection rate on both datasets and
a detection rate exceeding 98% [16].

3 Dataset Overview

The Trojan detection dataset'* represents a collection of network flow data designed to simulate realistic
cybersecurity scenarios where malicious software attempts to infiltrate systems through seemingly normal
network communications. Sourced from Kaggle’s cybersecurity repository, this dataset provides researchers
with a robust foundation for developing and evaluating machine learning-based intrusion detection systems.

Ihtrusion Detection Systems
13Synthetic Minority Over-Sampling Technique
https://www.kaggle.com/datasets/subhajournal/trojan-detection
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The dataset encompasses 177,482 individual network flow records, each representing a distinct com-
munication session between source and destination endpoints. These records span approximately 18 days
of network activity, captured from 30 June 2017 to 17 July 2017, providing temporal depth that enables
analysis of attack patterns across different time periods. The data collection methodology appears to
follow controlled laboratory conditions, where Trojan behaviors were systematically injected into monitored
network environments to generate labelled training data that mirrors real-world attack scenarios.

Each network flow record contains 86 distinct features that comprehensively characterize communica-
tion patterns, including fundamental identifiers (flow ID, source IP, destination IP, source port, destination
port), temporal measurements (timestamps, flow duration, inter-arrival times), traffic volume metrics
(packet counts, byte transfers, total length of forward packets, total length of backward packets, ...), and
protocol-specific indicators (TCP flags, URG flag count, CWE flag" count, ECE flag'® count, PSH flag
count, SYN flag count, RST flag count, ACK flag count, FIN flag count, window size). This dataset, like
many other cybersecurity datasets, defines a single character in terms of different statistical measures. For
example, packet length is represented with mean, standard deviation, variance, minimum and maximum.
Such observations happen for different metrics with four or five statistical measures. The multidimensional
feature space captures both the quantitative aspects of network traffic and the subtle behavioral signatures
that distinguish malicious from benign communications, which appears in the target column called Class
which making the problem a binary classification problem.

The dataset maintains class balance, with 90,683 Trojan instances (51.09%) and 86,799 Benign flows
(48.91%). This near-perfect equilibrium eliminates the common machine learning challenge of class imbal-
ance, ensuring that trained models develop unbiased decision boundaries and perform reliably across both
attack and normal traffic scenarios.

Since feature engineering plays a vital role before classification and modelling attempts, first we
employed Decision Tree, Random Forest and XGBoost approaches to investigate the importance of the
existing features. The results are depicted in Figs. I-3. As we can see in these figures, in multiple cases,
Statistical Wise Measure Features (SWMEF) has a place in this list. For example, we can see Flow.IAT Max,
Flow.IAT Min, Flow.IAT Mean, and Flow.IAT Std for flow inter-arrival time observations'’, Fwd.IAT Std and
Fwd.IAT Max for forward inter-arrival time observations, Idle Mean and Idle Max, for idle time observations
in the list of top 15 most important features created by the Decision Tree, as illustrated in Fig. 1.

Fig. 2 illustrates the important features extracted by the Random Forest approach. Fwd.IAT Min,
Fwd.IAT Total, Fwd.IAT Std, Fwd.IAT Mean and Fwd.IAT Max for forward inter-arrival time observa-
tion, Bwd.IAT Max, Bwd.IAT Std, and Bwd.IAT Mean for backward inter-arrival time observations and
Flow.IAT.Max, Flow.IAT.Min, Flow.IAT.Mean, and Flow.IAT.Std for flow inter-arrival time observation based
on Mean Decreased Accuracy metrics are among the SWMEF features. While we can also see some of them in
the list of most important features based on Mean Decreased Gini metric.

Fig. 3 illustrates the important features using the XGBoost approach. In this list, Flow.IAT Min, Flow.IAT
Mean, Flow.IAT Max and Fwd.IAT Std, Fwd.IAT Min and Fwd.IAT Total are all SWMF feature among the
most important features.

Next, we investigate the effectiveness of the existing SWMEF on the performance of various classifica-
tion approaches.

15 CWE: Common Weakness Enumeration helps identify patterns that, if unaddressed, could lead to security vulnerabilities.
16ECE: Explicit Congestion Notification Echo for network congestion management is a signal that congestion was encountered in the network on its
Fath to the destination.

7 Flow.IAT refers to the time difference between consecutive packets or flows within a network.
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Figure 1: Top 15 important features based on decision tree approach
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Figure 3: Most important features based on the XGBoost approach

4 Operation Synopsis

As mentioned in the previous section, the Trojan dataset contains 86 columns, including the target
column labelled Class. The dataset is balanced, and the target column consists of two classes: Benign and
Trojan samples. There are eight features with SWMF extra related features present in the dataset: Flow.IAT,
Fwd.IAT, Bwd.IAT, Idle, Active, Packet Length, Bwd Packet Length, and Fwd Packet Length. Each of these
features is represented with multiple statistical measures such as minimum, maximum, standard deviation,
mean, and in some cases, variance and/or total.

We classify the dataset into two modes:

1. SWMF Mode: In this mode, we retain all SWMEF-related columns and build our models using the full set
of statistical features.

2. Non-SWMF Mode: In this mode, we keep only one representative feature for each SWMF type and
remove the rest. For example, to represent the concept of flow inter-arrival time, we keep Flow.IAT.Mean
and discard the Flow.JAT.Min, Flow.IAT.Max, Flow.IAT.Std, and Flow.IAT Total.

First, the Spearman-based correlation among all features has been computed, and obviously, the
correlation among the SWMF features belonging to the same concept was high. After scaling, we build
classification models for both modes and analyze the impact of including or excluding the set of SWMF
features on model accuracy.

For both modes, during the preprocessing step, we removed the Flow ID, Source IP, and Destination IP
features. We also extracted date and time components from the Timestamp column, and then removed the
month, minute, second and year.

For modelling, we implemented Random Forest (with 50, 80, 150, 300, and 500 trees as the number
of estimators), a neural network, and an LSTM-based deep neural network model. The implementation
environment included RStudio and Python within Jupyter Notebook. The version of scikit-learn used in the
Anaconda Python environment was 1.2.0, while the version of XGBoost in RStudio was 1.7.5.1.

We computed various performance metrics for the neural network and LSTM, including training
accuracy, validation accuracy, prediction accuracy, loss, and validation loss. Additionally, for the Random
Forest models, we calculated Kappa, accuracy, sensitivity, and specificity.
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Table 1 and Fig. 4 present the results of the Random Forest classification approach in Python, using all
SWMEF features. As the number of estimators increases, we observe an improvement in the accuracy. The
highest accuracy and Kappa are achieved with 300 estimators.

Table 1: Result of Random Forest classifier with different numbers of estimators in SWMF mode

N. Estimators Accuracy Kappa Sensitivity Specificity
50 0.992318528  0.984635159  0.985315226  0.999616476
80 0.992412433  0.984823099  0.985241618  0.999884943
150 0.992431214  0.984860653  0.985278422  0.999884943
300 0.992487558  0.985278422 1 0.984973388
500 0.992468776  0.98493581  0.985278422  0.999961648

1.005

1

0.995
(] L J O @ L]

0.99

0.985

0.98
50 80 150 300 500

@ Accuracy Kappa Sensitivity Specificity

Figure 4: Result of Random Forest classifier with different number of estimators in SMWF mode

Table 2 and Fig. 5 show the results of the Random Forest classifier in Python under the Non-SWMF
Mode. In this mode, a noticeable decrease in both accuracy and Kappa is observed due to the removal of
statistical measures. The highest accuracy is obtained with 150 trees, while the best Kappa is achieved with
300 trees.

Table 2: Result of Random Forest classifier with different number of estimators in Non-SWMF Mode

N. Estimator Accuracy Kappa Sensitivity Specificity
50 0.81962626  0.640916 0.702992161 0.94116745

80 0.82101606  0.643649  0.706635751  0.94020864

150 0.82227439  0.646257 0.70093114 0.94872287

300 0.82251855  0.646722  0.702587317 0.94749559

500 0.82165462  0.644966  0.704169887  0.94408223
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Figure 5: Result of Random Forest classifier with different numbers of estimators in Non-SMWF mode
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The results show that evaluation metrics such as accuracy, Kappa, sensitivity, and specificity of the

Random Forest model were significantly affected by the absence of SWMF features.

Then we implemented a neural network structure in Python in SWMF Mode and ran it first up to 100
epochs and then 200 epochs under different batch sizes of 32, 64, 128 and 256 with the mentioned number
of batches under each implementation. The structure of our neural network includes four layers with one
Dropout layer to turn off 50 percent of nodes. The activation function for the three layers is RELU, and for
the last layer is Sigmoid. The best result achieved by batch_size = 64 encompassed 1359 batches under 100
epochs as shown in Table 3 and Figs. 6 and 7. The results of running the same classifier under 200 epochs
have been depicted in Table 4 and Figs. 8 and 9.

Table 3: Result of neural network classifier with different batch sizes under 100 epochs in SWMF mode

Epoch =100 Loss Train_Accuracy Val_Loss Val_Accuracy Prediction_Accuracy
Batch_size = 32, No.
Batches: 2718 0.02940 0.99260 0.03090 0.99290 0.99210
Batch _size = 64, No.
Batches: 1359 0.02770 0.99270 0.03040 0.99290 0.99215
Batch _size =128, No. . 77 0.99270 0.03090 0.99290 0.99291
Batches: 680
Batch _size =256, No. , 75 0.99260 0.03090 0.99290 0.99215
Batches: 340
0.99300
0.99250 o ~
0.99200
0.99150
0.99100
0.99050
32 64 128 256
Batch_Size

«=@==Train_Accuracy

Prediction_Accuracy

Validation_Accuracy

Figure 6: Accuracy of neural network classifier with different batch sizes under 100 epochs in SMWF mode
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Figure 7: Loss of neural network classifier with different batch sizes under 100 epochs in SMWF mode

Table 4: Result of neural network classifier with different batch sizes under 200 epochs in SWMF mode

Epoch =200 Loss Train_Accuracy Val_Loss Val_Accuracy Prediction_Accuracy
Batch_size = 32, No.
Batches: 2718 0.03030 0.99250 0.03040 0.99290 0.99211
Batch_size = 64, No.
atch_size = 64, No 0.02980 0.99260 0.03040 0.99280 0.99215
Batches: 1359
Batch_size = 128, No.
Batches: 680 0.02920 0.99270 0.02940 0.99290 0.99291
Batch_size =256, No. - -9 0.99270 0.03050 0.99290 0.99214
Batches: 340
Accuracy
0.99400
e et
0.99200 ¢ - i
0.99100
32 64 128 256
Batch_Size
== Train_Accuracy =g \/alidation_Accuracy

— Prediction_Accuracy

Figure 8: Accuracy of neural network classifier with different batch sizes under 200 epochs in SMWF mode
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Figure 9: Loss of neural network classifier with different batch sizes under 200 epochs in SMWF mode

Next, we implemented the neural network classifier using the same structure as described earlier,
applied to the Non-SWMF Mode, with 100 epochs, as shown in Table 5 and Fig. 10. We did not include
an accuracy plot, as the model consistently achieved 100% accuracy across all configurations. Furthermore,
since maximum accuracy was already reached, we did not extend the training process to 200 epochs. Among
all configurations, the lowest loss was achieved with a batch size of 256, although all other values remained

the same.

Table 5: Result of neural network classifier with different batch sizes under 100 epochs in Non-SWMF Mode

Epoch =100 Loss Train_Accuracy Val_Loss Val_Accuracy  Prediction_Accuracy
Batch_size = 32, No. ) 10,05830000000 1.00 0.000000000000805 1.00 1.00
Batches: 2718
Batch_size = 64, No. 0775400000000 1.00 0.000000000000000 1.00 1.00
Batches: 1359
Batch_size =128, 1002581100000 1.00 0.000000000000000 1.00 1.00
No. Batches: 680
Batch_size =256, 10000181970000 1.00 0.000000000000000 1.00 1.00
No. Batches: 340
0.000800000000000
0.000700000000000
0.000600000000000
0.000500000000000
0.000400000000000
0.000300000000000
0.000200000000000
0.000100000000000
0.000000000000000 C @
32 64 128 256
Batch_Size
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Figure 10: Loss of neural network classification with different batch sizes under 100 epochs in Non-SWMF Mode

As the final model, we implemented an LSTM-based deep neural network classifier, first in SWMF
Mode, using 5, 10, 15, and 20 epochs, and varying the batch size among 32, 64, 128, and 256. In the LSTM
architecture, we used Binary Cross-Entropy as the loss function and Adam as the optimizer. The results are
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presented in Tables 6-9, while Table 10 summarizes the results for a batch size of 256 across the four epoch
settings. The lowest loss was achieved at 15 epochs, while the prediction accuracy remained consistent for 10,
15, and 20 epochs.

Table 6: Result of LSTM deep neural network classifier with different batch sizes under 5 epochs in SWMF mode

Epoch =5 Loss Accuracy Val Loss Val_Accuracy Prediction_Accuracy
Batch_size = 32 0.0368 0.99280 0.0361 0.9929 0.992449995304723
Batch_size = 64 0.0359 0.99280 0.035 0.9929 0.992449995304723
Batch_size = 128 0.0348 0.99270 0.0342 0.9929 0.992449995304723
Batch_size = 256 0.0311 0.99280 0.0261 0.9929 0.992449995304723

Table 7: Result of LSTM deep neural network classifier with different batch sizes under 10 epochs in SWMF mode

Epoch =10 Loss Accuracy Val_Loss Val_Accuracy  Prediction_Accuracy
Batch_size = 32 0.000000000005016 1 0.000092612000000 1 0.999981218893792
Batch_size = 64 0.000000000004497 1 0.000096655000000 1 0.999981218893792
Batch_size = 128 0.000000000004279 1 0.000098509000000 1 0.999981218893792

Batch_size = 256 0.000000000004175 1 0.000099391000000 1 0.999981218893792

Table 8: Result of LSTM deep neural network classifier with different batch sizes under 15 epochs in SWMF mode

Epoch =15 Loss Accuracy Val_Loss Val_Accuracy Prediction_Accuracy
Batch_size = 32 0.000000000003319 1 0.000108100000000 1 0.999981218893792
Batch_size = 64 0.000000000002979 1 0.000111950000000 1 0.999981218893792
Batch_size =128 0.000000000002833 1 0.000113740000000 1 0.999981218893792
Batch_size = 256 0.000000000002767 1 0.000114590000000 1 0.999981218893792

Table 9: Result of LSTM deep neural network classifier with different batch sizes under 20 epochs in SWMF mode

Epoch =20 Loss Accuracy Val_Loss Val_Accuracy  Prediction_Accuracy
Batch_size = 32 0.000000000043753 1 0.000033966000000 1 0.999981218893792
Batch_size = 64 0.000000000010555 1 0.000057981000000 1 0.999981218893792
Batch_size = 128 0.000000000006840 1 0.000077499000000 1 0.999981218893792
Batch_size = 256 0.000000000006293 1 0.000081244000000 1 0.999981218893792

Table 10: Result of LSTM deep neural network classifier with batch size of 256 under different epochs in SWMF mode

Epochs Loss Accuracy Val_Loss Val_Accuracy Prediction_Accuracy
5 0.0311 0.9928 0.0261 0.9929 0.992449995304723
10 0.000000000004175 1 0.000099391000000 1 0.999981218893792
15 0.000000000002767 1 0.000114590000000 1 0.999981218893792

20 0.000000000006293 1 0.000081244000000 1 0.999981218893792
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Fig. 11a shows the training and validation accuracy, and Fig. 11b illustrates the prediction accuracy of
the LSTM classifier with a batch size of 256 across different epoch settings in SWMF Mode. Fig. 12 displays
the training loss and validation loss under the same conditions.
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Figure 11: (a) Train accuracy and validation accuracy (b) Prediction accuracy of LSTM classifier under batch size =
256 with different epochs in SWMF mode
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Figure 12: Train loss and validation loss of LSTM classifier under batch size = 256 with different epochs in SWMF
mode

Then, we implemented the same LSTM-based deep neural network classifier in Non-SWMF Mode,
using 5, 10, 15, and 20 epochs, and varying the batch size among 32, 64, 128, and 256. The results have been
illustrated in Tables 11-14, while Table 15 summarizes these results for a batch size of 256 across the four
epoch settings. The lowest loss was achieved at 15 epochs, while the prediction accuracy remained consistent
for 15 and 20 epochs. Fig. 13 depicts the prediction accuracy of the LSTM classifier under batch size = 256
with different epochs in Non-SWMF Mode. Fig. 14 shows the train loss and validation loss of the LSTM
classifier under batch size = 256 with different epochs in Non-SWMF Mode. The results of running the
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neural network classifier showed improvements in metrics, including loss, validation loss, training accuracy,
validation accuracy, and prediction accuracy, when SWMEF features were removed.

Table 11: Result of LSTM classifier with different batch sizes under 5 epochs in Non-SWMF Mode

Epoch =5 Loss Accuracy Val_Loss Val_Accuracy Prediction_Accuracy
Batch_size = 32 0.000827840000000 0.9998 0.001900000000000 0.9998 0.999924876
Batch_size = 64 0.000000000026986 1 0.000000000028101 1 0.999981219
Batch_size = 128 0.000000000026603 1 0.000000000027732 1 0.999981219
Batch_size = 256 0.000000000026424 1 0.000000000027557 1 0.999981219

Table 12: Result of LSTM classifier with different batch sizes under 10 epochs in Non-SWMF Mode

Epoch =10 Loss Accuracy Val_Loss Val_Accuracy  Prediction_Accuracy
Batch_size = 32 0.000000000845400 1 0.000000000186950 1 0.999981219
Batch_size = 64 0.000000000025283 1 0.000000000026285 1 0.999981219
Batch_size =128 0.000000000024741 1 0.000000000025732 1 0.999981219
Batch_size = 256 0.000000000024484 1 0.000000000025468 1 0.999981219

Table 13: Result of LSTM classifier with different batch sizes under 15 epochs in Non-SWMF Mode
Epoch =15 Loss Accuracy Val_Loss Val_Accuracy  Prediction_Accuracy
Batch_size = 32 0.000000000041088 1 0.000000000042682 1 0.999981219
Batch_size = 64 0.000005355700000 1 0.000003640900000 1 1
Batch_size = 128 0.000000026591000 1 0.000000022864000 1 1
Batch_size = 256 0.000000004099700 1 0.000000004231200 1 1

Table 14: Result of LSTM classifier with different batch sizes under 20 epochs in Non-SWMF Mode
Epoch =20 Loss Accuracy Val_Loss Val_Accuracy  Prediction_Accuracy
Batch_size = 32 0.000000000027839 1 0.000000000028922 1 0.999981219
Batch_size = 64 0.000000000355460 1 0.000000000414880 1 1
Batch_size = 128 0.000000000263050 1 0.000000000309770 1 1
Batch_size =256  0.000000000238620 1 0.000000000281580 1 1

Table 15: Result of LSTM classifier with batch size of 256 under different epochs in Non-SWMF Mode

Epochs Loss Accuracy Val_Loss Val_Accuracy Prediction_Accuracy
5 0.000000000026424 1 0.000000000027557 1 0.999981219
10 0.000000000024484 1 0.000000000025468 1 0.999981219
15 0.000000004099700 1 0.000000000281580 1 1
20 0.000000000238620 1 0.000000004231200 1 1

The result of LSTM model implementations shows a slight improvement in evaluation metrics in the
absence of SWMF features.
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Figure 13: Prediction accuracy of LSTM Classifier under batch size = 256 with different epochs in Non-SWMF Mode
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Figure14: Train loss and validation loss of LSTM Classifier under batch size = 256 with different epochs in Non-SWMF
Mode

5 Result

The result of training three classifiers with hyperparameter tuning in order to model the Trojan
classification problem shows that evaluation metrics—such as accuracy, Kappa, sensitivity, and specificity—
of the Random Forest model were positively affected by the presence of SWMF features. In contrast,
employing a neural network classifier showed improvements in metrics, including loss, validation loss,
training accuracy, validation accuracy, and prediction accuracy, when SWMF features were removed. A
similar trend was observed in the LSTM model, where a slight improvement in evaluation metrics was noted
in the absence of SWMEF features.

Random Forest classifier with 300 estimators in Non-SWMF mode yields the highest accuracy of
0.82251855 and the highest Kappa of 0.646722. Random Forest classifier with 300 estimators in SWMF mode
yields the highest accuracy of 0.992487558 and the highest Kappa of 0.985278422. This result proved that
SWMEF features are effective in boosting the performance of a Random Forest classifier.

With a neural network under the mentioned structure in Non-SWMF mode with 100 epochs and a
batch size of 256, the minimum loss value of 0.000000181970000 was achieved, while the prediction accuracy
was 100 percent and was the same under different batch sizes. With a neural network in SWMF mode with
100 epochs and a batch size of 128, the best prediction accuracy was achieved as 0.99291, while the loss value
of 0.02770 was the same under different batch sizes. According to these results, taking SWMF features into
account is not effective in boosting the model’s performance.
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Under the LSTM classifier with a batch size of 256 under 10 epochs in Non-SWMF mode, we reached
the prediction accuracy of 0.999981219 and the loss of 0.000000000024484. Although with more epochs, the
accuracy reached 100 percent but the loss value also increased. Under an LSTM classifier with a batch size
of 256 under 15 epochs in SWMF mode, we reached the prediction accuracy of 0.999981218893792 and the
loss value of 0.000000000002767. Modelling a dataset including SWMF features has a higher computation
time in comparison to a model based on the same dataset without the SWMF features, and these features
increase the size of the dataset. From these results, it is clear that including the SWMEF features—despite the
added input burden—does not significantly improve the performance of the LSTM classifier.

6 Ablation Study

In this study, we removed multiple non-SWMEF features, such as Subflow Fwd Packets, Subflow Fwd
Bytes, Subflow Bwd Packets, Subflow Bwd Bytes, Init_ Win_bytes_forward and Init_Win_bytes_backward in
order to investigate their impact on the overall performance of the classifiers. The experiments show that
they have a relatively similar impact on the performance of all three classifiers. Therefore, for the experiments
presented in this paper, we kept all of them in our feature set.

7 Conclusion

In this paper, we investigated modelling the Trojan binary classification problem using Random Forest,
neural network, and LSTM approaches. To this end, we employed these models on a Trojan dataset in two
configurations: with and without SWMF features. The aim is to assess the impact of SWMF features on
models’ performance. SWMF features are commonly found in cybersecurity datasets. To identify important
features, we used XGBoost, Random Forest, and Decision Tree models for feature importance analysis.
Among the top-selected features, multiple SWMF-related attributes were identified, including several that
represent similar concepts.

From the findings, we conclude that although some of the SWMEF features are rated high as the most
important features, their presence is important for enhancing the performance of the Random Forest model.
On the other side of the spectrum, SWMEF features are not essential for achieving competitive performance in
neural network and LSTM classifiers. The limitation of this study is the lack of access to other Trojan-centric
databases that include SWMEF features and were truly built on Trojan attack observations.

In future work, we plan to extend this research by applying dimensionality reduction techniques such as
Principal Component Analysis (PCA) and Autoencoder-based deep neural networks for feature reduction.
We aim to investigate and compare their effects on the performance of various models for the Trojan
identification problem.
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