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ABSTRACT: Federated learning (FL) enables collaborative model training across decentralized datasets, thus main-
taining the privacy of training data. However, FL remains vulnerable to malicious actors, posing significant risks
in privacy-sensitive domains like healthcare. Previous machine learning trust frameworks, while promising, often
rely on resource-intensive blockchain ledgers, introducing computational overhead and metadata leakage risks. To
address these limitations, this study presents a novel Decentralized Identity (DID) framework for mutual authentication
that establishes verifiable trust among participants in FL without dependence on centralized authorities or high-cost
blockchain ledgers. The proposed system leverages Decentralized Identifiers (DIDs) and Verifiable Credentials (VCs)
issued by a designated Regulator agent to create a lightweight, cryptographically secure identity management layer,
ensuring that only trusted, authorized participants contribute to model aggregation. The framework is empirically
evaluated against a severe model poisoning attack. Without the framework, the attack successfully compromised
model reliability, reducing overall accuracy to 0.68 and malignant recall to 0.51. With the proposed DID-based
framework, malicious clients were successfully excluded, and performance rebounded to near-baseline levels (accuracy
= 0.95, malignant recall = 0.99). Also, this system achieves significantly improved integrity protection with minimal
overhead: total trust overhead per FL round measured 75.5 ms, confirming its suitability for low-latency environments.
Furthermore, this latency is approximately 39.7 times faster when compared to the consensus step alone of an
optimized distributed ledger-based trust system, validating the framework as a scalable and highly efficient solution for
next-generation FL security.

KEYWORDS: Federated learning; decentralized identity; verifiable credentials (VCs); decentralized identifiers (DIDs);
privacy-preserving machine learning; model poisoning; off-chain

1 Introduction
1.1 Background

Federated Learning (FL) is a decentralized machine learning approach where multiple devices collab-
oratively train a shared model without exposing their raw data. Instead of transmitting personal datasets,
only model parameters or updates are exchanged within FL systems [1]. This ensures that sensitive user data
remains on local devices, thereby minimizing the likelihood of privacy violations [2,3]. Unlike conventional
machine learning, which often relies on centralized data collection which increases privacy risks, FL mitigates
this concern by keeping training data on individual devices [4].

Within an FL environment, clients train their data locally and only send model updates to the co-
ordinating server [5]. The iterative process begins when a central server distributes an initial global model to
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participating clients [6-8]. Each client then performs local training with its private data and returns only the
model updates rather than the raw data [9,10]. These updates are then aggregated by the server to improve
the global model [8]. Finally, in the update and distribution stage, the optimized model is disseminated back
to the clients, enabling further rounds of training [11].

1.1.1 Privacy-Preserving Machine Learning

Privacy-preserving machine learning (PPML) encompasses techniques and frameworks aimed at
building and deploying machine learning models while maintaining the confidentiality of sensitive data [12].
Its core objective is to integrate explicit privacy guarantees that protect training data during the learning
process [13].

PPML methodologies allow effective model development while ensuring that individual data remains
protected [14]. Several PPML techniques exist including:

« Federated Learning: Facilitates collaborative training by exchanging only model updates instead of raw
data [15].

 Differential Privacy: Injects carefully designed noise into data or model outputs to prevent leakage of
personal information [16].

« Homomorphic Encryption: A cryptographic method enabling computation directly on encrypted data
without decryption, thus maintaining confidentiality while allowing analysis [17].

« Secure Multi-Party Computation (SMPC): Permits multiple entities to jointly compute a function
while keeping each party’s input private [18].

1.1.2 Decentralized Identity Management

Decentralized Identity Management (DIDM) is the process of managing digital identities based on
the principle of Self-sovereign Identity (SSI). It involves the issuance, storage, and verification of verifiable
credentials without relying on a central authority [19,20]. DIDM gives individuals greater control over their
digital identity, allowing them to share only necessary information with specific entities [21].

SSI is a digital identity model that gives individuals control over their personal data and credentials,
removing the need for centralized authorities [22]. This decentralized approach protects privacy and security
while reducing the risk of identity theft [21].

Decentralized Identifiers (DIDs) are globally unique identifiers designed for digital entities, such
as people, organizations, or objects. Unlike traditional identifiers that are issued and controlled by a
central authority [21]. DIDs are self-owned and cryptographically verifiable. They are typically linked to
a cryptographic key pair and registered on a decentralized network or distributed ledger, which provides a
tamper-proof and trustless mechanism for their resolution [5]. This structure enables secure, peer-to-peer
authentication and identity verification without relying on intermediaries, thereby giving individuals and
organizations complete control over their digital identity and data [20].

Verifiable Credentials (VCs) are digital, tamper-proof representations of real-world documents such as
a driver’s license or academic degree [23]. Issued by trusted organizations, they can be securely shared and
verified by others. Verifiable credentials are provided by trusted issuers, stored by individuals in their digital
wallet, and presented as a claim to a verifier, who then confirms their validity [19].

1.2 Problem Statement and Motivation

FL has emerged as a powerful paradigm for distributed machine learning, enabling multiple clients to
collaboratively train models without directly sharing raw data [1]. While this approach addresses critical
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privacy concerns associated with centralized data collection, it introduces new vulnerabilities related to trust
and authentication among participating entities [2]. In FL ecosystems, multiple clients and servers often from
heterogeneous and potentially adversarial environments interact and exchange model updates [9]. Without
robust mechanisms for verifying the legitimacy of these entities, the entire system becomes susceptible to
poisoning attacks, data leakage, model manipulation, and unauthorized participation [5].

Existing PPML techniques, such as differential privacy, homomorphic encryption, and secure multi-
party computation, focus primarily on protecting data during training and transmission [16-18,24]. However,
they largely overlook the fundamental issue of mutual authentication, ensuring that both the server and
the clients can verify each other’s trustworthiness before engaging in collaborative learning. Weak or absent
authentication mechanisms erode trust among participants, create opportunities for malicious actors to
infiltrate the system, and ultimately compromise both the security and reliability of the global model [25].

Blockchain has been employed as a means of managing trust in FL. While its distributed ledger
provides accountability, it introduces significant limitations [26]. The transparency of blockchain transac-
tions can inadvertently leak metadata, exposing participation patterns or organizational relationships [27].
Furthermore, maintaining consensus across nodes increases computational and communication overhead,
hindering scalability and reducing efficiency in large-scale FL deployments [28].

To address these limitations, this study adopts an off-chain self-sovereign identity framework powered
by decentralized identifiers and verifiable credentials. Unlike blockchain-based trust management, this off-
chain SSI solution enables lightweight, peer-to-peer authentication, minimizes metadata exposure, and
enhances trust without imposing excessive overhead.

By leveraging DID-based identity management and verifiable credentials, this research aims to design
and implement an improved mutual authentication mechanism tailored for federated learning environments.
This approach will strengthen trust, preserve privacy, and protect against adversarial threats, thereby
advancing the security and reliability of FL in real-world applications.

1.3 Key Contributions

This research introduces an off-chain DID-based mutual authentication framework to address the
critical challenge of trust and adversarial resilience in federated learning. Unlike centralized or blockchain-
based trust management systems, the proposed solution leverages DIDs and VCs to establish lightweight,
off-chain, and verifiable trust among participants. The key contributions of this study are as follows:

«  Novel DID-Based Authentication Framework: We designed a novel trust architecture for FL that enables
mutual authentication between servers and clients using cryptographically signed credentials issued by
the Regulator agent.

o Lightweight, Off-Chain Identity Management: We eliminated reliance on resource-intensive blockchain
infrastructures by implementing an off-chain credentialing system that minimizes computational and
communication overhead, ensuring scalability for real-world FL deployments.

«  Mitigation of Model Poisoning Attacks: We demonstrated through experimental evaluation that the
proposed framework effectively prevents malicious clients from corrupting the global model. The system
identified and rejected falsified updates, preserving model accuracy and reliability.

o Empirical Validation in Healthcare FL: The framework was validated in a healthcare FL setting using
simulations with both honest and malicious hospitals. The evaluation tested its ability to preserve
model accuracy and robustness under adversarial conditions compared to a baseline FL system. This
demonstrated the role of decentralized identity in enabling secure collaboration and contributed new
insights on privacy-preserving trust management in healthcare.
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» Scalable and Practical Trust Management: We provided a secure and verifiable alternative to centralized
and blockchain-based authentication systems. The framework enhances trust, preserves privacy, and can
be seamlessly integrated into FL environments with minimal infrastructure changes.

The proposed DID-based authentication framework advances the state of the art in federated learning
security by offering a scalable and efficient solution to the long-standing challenge of mutual trust in
decentralized machine learning.

2 Related Works

Privacy-preserving machine learning has become an increasingly important research domain, partic-
ularly as machine learning applications expand into sensitive areas like healthcare, finance, and critical
infrastructures where data privacy is paramount [29]. Numerous approaches including differential privacy,
homomorphic encryption, and secure multi-party computation have been explored to protect training data
in federated learning [29]. While effective in safeguarding privacy, these methods face challenges such
as reduced model accuracy and high computational demands [30]. Trust management further remains
essential in privacy-sensitive settings, where blockchain-based frameworks have been proposed to ensure
transparency and integrity [25]. However, blockchain-based solutions introduce scalability concerns and
risks of metadata leakage [30]. This section reviews studies addressing these challenges and highlights
advances in privacy-preserving federated learning.

Liu et al. [31] proposed CAFL, a contribution-aware FL framework designed for smart healthcare
applications. CAFL tackles challenges of data quality, variability, and heterogeneous data distribution by
fairly evaluating each participants contribution to model performance without revealing private data. It
also improves training by distributing the best intermediate models to participants, enhancing overall
accuracy. However, trust guarantees were not considered to ensure that only trusted entities participate in
the FL process.

Silva et al. [32] proposed Fed-biomed, an open-source framework for FL in healthcare. Their study
addressed the challenges in healthcare data sharing through FL, providing a flexible framework for deploying
decentralized models across multiple sites. However, their solution lacks comprehensive trust management
and privacy guarantees tailored to diverse healthcare settings.

Yuan et al. [33] introduced Fedcomm, a privacy-efficient and enhanced protocol for FL. Their work
addresses privacy, authentication, and malicious participant detection in vehicular FL through pseudony-
mous identities and efficient protocols, focusing primarily on communication efficiency and anonymity
within a highly dynamic network. However, the study lacked a comprehensive trust management framework
to ensure only verified, trustworthy entities participate and did not address local data privacy at the
participant level.

Shayan et al. [34] proposed Biscotti, a decentralized peer-to-peer FL framework leveraging blockchain
and cryptographic primitives to eliminate reliance on centralized coordinators. While Biscotti enhances
privacy, scales under adversarial conditions, and mitigates poisoning attacks, it introduces blockchain
overhead and does not fully resolve efficiency challenges in large-scale real-time learning.

Manoj et al. [35] in their study on AgriFLChain, proposed a blockchain-based FL framework for smart
agriculture, focusing on crop yield prediction. While centralized models (ResNet-16, ResNet-28, CNN-DNN,
CNN-LSTM) showed strong predictive power, they highlighted risks of single-point failure and lack of trust.
Although AgriFLChain maintained efficiency and scalability comparable to centralized learning, it primarily
emphasized on-chain trust guarantees rather than lightweight, off-chain mechanisms.
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Mou et al. [36] in their work on distributed machine learning, proposed a system architecture integrat-
ing FAIR data principles (Findable, Accessible, Interoperable, and Reusable) to improve collaboration and
data management in federated learning. They introduced tailored metadata schemes and a decentralized
authentication mechanism using self-sovereign identity with policy-based access control. Their evaluation
through a fairness assessment and federated use case demonstrated improved data sharing and security.
However, while the framework ensures responsible data governance and interoperability, it emphasizes
structural and policy mechanisms rather than lightweight, model-level privacy protections.

Zeydan et al. [37], in their study on identity management for vehicular FL, proposed an alternative
to blockchain-based SSI. Their framework integrated SSI with FL to ensure confidentiality, authenticity,
and integrity of vehicle users identities and data exchanges with the aggregation server. Experimental
results showed that credential operations were generally efficient, though presentation, offer, connection
establishment, and revocation times slightly increased with request volume, suggesting minor performance
degradation at scale. However, their approach did not fully address the scalability and adaptability challenges
of SSI in broader FL contexts.

Zeydan et al. [38] proposed a blockchain-based SSI approach for managing vehicle user identities
and securing data exchanges with the aggregation server during FL iterations. The integration strengthens
authenticity, integrity, and trust in the FL process while maintaining decentralized control. Experimental
results show that while FL execution time increases with more clients and training rounds, the blockchain-
supported SSI system achieves significantly faster credential operations. However, the reliance on blockchain
introduces scalability and latency concerns.

Papadopoulos et al. [25] proposed a decentralized trust framework for FL using DIDs, leveraging
the Hyperledger Aries/Indy/Ursa ecosystem. Their prototype demonstrated how verifiable credentials can
authenticate entities before participating in privacy-sensitive FL workflows, such as training on mental
health data. While their work effectively addresses trust and authentication through SSI, it relies heavily
on blockchain-based infrastructure, which can introduce scalability and latency concerns in high-volume
FL environments.

Khan et al. [39] addressed the security and resource limitations hindering the wide integration of
Internet of Medical Things (IoMT) by proposing Fed-Inforce-Fusion, a novel privacy-preserving Intrusion
Detection System (IDS) based on FL. Specifically designed for resource-limited Smart Healthcare Systems
(SHS), the model first employs a reinforcement learning technique to accurately learn the complex, latent
relationships within sensitive medical data. The system then uses FL to enable distributed SHS nodes to
collaboratively train a comprehensive IDS without centralizing proprietary patient information, thereby
enhancing privacy and security. While effective at detecting attacks on the model’s integrity after they happen,
this approach does not provide a proactive barrier against unauthorized or malicious clients.

Shrestha et al. [40] introduced a privacy-preserving framework to identify anomalies in smart electric
grid data collected from substations, mitigating the risks of data misuse and privacy leakage inherent in
central data storage. The system couples an LSTM-Autoencoder model for anomaly detection validated using
the Mean Squared Deviation (MSD) and Median Absolute Deviation (MAD) approaches with FL to enable
cooperative, privacy-preserving model training among energy providers. Furthermore, the framework
integrates homomorphic encryption (Paillier algorithm) to enhance data security. However, their work
focuses heavily on mathematical privacy protection for the data and model parameters, which can be
computationally costly.

Jithish et al. [41] addressed the challenges of detecting anomalous behaviors in smart grids such as
power thefts or cyberattacks by proposing an FL-based anomaly detection scheme that resolves the issue of
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data security and user privacy raised by traditional centralized machine learning. By enabling local model
training on resource-constrained smart meters, the approach eliminates the need for sharing sensitive user
data with a central server, while also alleviating computational burdens and latency issues. Furthermore, the
model parameter updates are secured using Secure Socket Layer (SSL) and Transport Layer Security (TLS).
However, securing parameter updates using SSL/TLS ensures confidentiality during transit, but it does not
verify the trustworthiness or of the client (the source) sending the updates.

Mothukuri et al. [42] addressed the severe privacy leakage and data centralization challenges inherent
in applying classic machine learning to distributed IoT networks, where personally identifiable information
is constantly generated at the edge. To proactively recognize intrusion, they proposed an FL-based anomaly
detection approach that utilizes decentralized on-device data by training Gated Recurrent Units (GRUs)
models locally. This method secures user privacy by only sharing the learned model weights with the central
server, where an ensembler part aggregates updates from multiple sources to optimize the global model’s
accuracy. This solution attempts to optimize accuracy and perhaps implicitly mitigate poor updates through
clever aggregation (the ensembler). However, it relies on the hope that the ensembler can filter out large-scale,
coordinated model poisoning attacks.

Sahuetal. [43] addressed the limitations of traditional anomaly detection in distributed threat scenarios.
They proposed a novel Federated Long Short-Term Memory (Fed-LSTM) model tailored for analyzing cyber
security time-series data. The model utilizes FL to permit collaborative model training across decentralized
data sources without centralizing raw data, thereby preserving privacy, while leveraging LSTMs for their
effectiveness in identifying temporal correlations. However, no measure was put in place to protect the high-
performing Fed-LSTM from rogue participants.

Jeyasheela Rakkini et al. [44] addressed the need for improved cybersecurity in decentralized environ-
ments, they proposed a novel Transformer-Based Intrusion Detection System (IDS) integrated within a Deep
Federated Learning (DFL) framework. The model leverages the self-attention mechanisms of transformers
to capture complex temporal and spatial dependencies in network traffic for accurate attack detection, while
the DFL framework ensures strong privacy preservation by keeping sensitive data decentralized. However,
formal trust guarantees were not put in place to guarantee only legitimate participation.

Yang et al. [45], in their study, used highly compressed gradients for data reconstruction attacks. By
acknowledging that FL gradients can still be reconstructed to leak private data, they proposed the Highly
Compressed Gradient Leakage Attack (HCGLA). HCGLA is able to carry out data reconstruction with
three key techniques: redesigning the optimization objective for compression scenarios, introducing the
Init-Generation method to compensate for information loss in dummy data initialization, and employing
a denoising model for quality enhancement. Their study highlights a major privacy vulnerability in FL
(gradient reconstruction), which demonstrates that solely focusing on securing the aggregation process
is insufficient.

Khan et al. [46] presented a method for securing sensitive data at rest or in transit through quantum
image encryption. The scheme features a two-phase chaotic confusion-diffusion architecture that performs
simultaneous qubit and pixel-level encryption. The authors demonstrate strong resilience against statistical
and differential attacks as well as resistance to occlusion. Their study highlights the necessary advancements
in cryptographic privacy protection for massive image datasets, particularly in emerging quantum comput-
ing environments. However, its focus is strictly on securing the raw data contents via encryption. It does
not address the integrity risks associated with decentralized training, such as ensuring the encrypted data
is processed by an authorized node, nor does it address privacy risks (metadata leakage) that arise when
integrating trust management into a distributed machine learning architecture like FL.
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Umair et al. [47] addressed the challenge of deploying high-performing deep learning models for cyber-
attack detection on resource-constrained consumer devices. The authors utilize knowledge distillation to
train a significantly smaller student model from a larger teacher model, achieving impressive reductions
in model size and inference time with minimal loss in accuracy. Their study is critical to improving the
computational efficiency and scalability of security solutions at the edge, making on-device intelligence
feasible. While their work focuses on optimizing the model payload for lightweight operation, it does not
address the integrity of the training process itself. The optimized student model could still be targeted or
compromised during a decentralized training phase by an unauthorized client.

Mai et al. [48] presented a comprehensive survey of cybersecurity challenges in shipboard microgrids
(SHMGs), focusing on vulnerabilities in communication networks that connect sustainable energy resources,
energy storage systems, and loads. The review identifies key attack vectors, including denial-of-service, false
data injection, covert, and replay attacks, and surveys detection and mitigation mechanisms ranging from
observer-based methods (Kalman filter, Luenberger observer) to machine learning algorithms and control-
based strategies (active disturbance rejection control, model predictive control). The study emphasizes
safeguarding the stability and operational integrity of maritime power systems. While the paper provides
valuable insights into SHMG-specific cybersecurity threats and countermeasures, its scope is limited to the
detection and mitigation of attacks within the energy system context. It does not address trust establishment,
mutual authentication, or credential-based verification mechanisms that are central to federated learning
frameworks in privacy-sensitive domains such as healthcare.

2.1 Limitations in Existing Federated Trust Mechanisms

Existing trust mechanisms often introduce significant operational latency. For instance, highly opti-
mized Byzantine Fault Tolerance (BFT) protocols, as observed in Ren et al. [49], and Distributed Ledger
Technology (DLT) systems that integrate block mining and P2P consensus such as Nguyen et al. [50],
report a significant consensus latency per aggregation round. This reliance on resource-intensive consensus
creates a major overhead gap, as this delay is prohibitive for high-frequency FL training that requires mutual
authentication at the start of every round. Our work directly addresses this by departing from the on-chain
verification model, separating the high-latency consensus layer (used only for auditable record-keeping)
from our proposed low-latency runtime identity layer.

While some studies successfully target communication overhead, they fail to address the latency of the
security check itself. Liu et al. [51], for example, proposed the efficient Federated Stochastic Block Coordinate
Descent (FedBCD) approach, which mitigates communication overhead by reducing the frequency of
gradient updates. While this is important for bandwidth efficiency, it does not minimize the clock latency of
the security and identity checks that must occur when communication happens. Our work is architecturally
orthogonal: we specifically focus on minimizing the clock latency of the security layer, ensuring that mutual
authentication is nearly instantaneous, regardless of how frequently the models are exchanged.

Other security solutions introduce severe computational barriers. Lee et al. [52] proposed a Verifiable
Decentralized FL (VDFL) system that extends security via computationally intensive Zero-Knowledge
Proofs (ZKP) and blockchain anchoring. This VDFL approach focuses on complex computational integrity
tasks, but it does not prioritize a lightweight, sub-second mutual authentication protocol prior to its intensive
workflow. Our work is structurally distinct: we separate these concerns, utilizing simple credential validation
to achieve speed, ensuring the foundational act of secure communication is instant and non-blocking.

While the security strength of DIDs and VCs is established in human-centric applications like Single
Sign-On as observed in Hauck [53], these are inherently low-frequency. This creates a scope and specificity
gap, as DIDs/VCs are not typically applied to high-throughput, machine-to-machine (M2M) mutual
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authentication. Our work addresses this by successfully extending the robust DID/VC framework to meet the
high-speed demands of automated FL, making the framework applicable to continuous M2M collaboration.

An important advantage of our off-chain design is the direct mitigation of the metadata leakage
risk inherent to DLT solutions; Since ledger transactions including identity proofs, participation logs, and
timestamps are publicly visible and traceable, malicious actors can easily deduce sensitive operational details
like participation frequency, device type, and interaction patterns from the immutable public record. Our
framework deliberately utilizes a stateless, off-chain verifiable credential validation mechanism. This choice
completely eliminates the need to anchor authentication events to a public, traceable ledger, ensuring that the
entire mutual authentication process remains private and non-traceable, thereby addressing the fundamental
security vulnerability associated with DLT metadata leakage.

Motivated by these gaps, we present a novel DID/VC framework that strongly guarantees integrity and
authentication while providing the low-latency performance and enhanced privacy required for scalable,
real-time federated learning deployments.

2.2 Analysis of Existing System and this Paper’s Contribution
The existing system considered in this study is the Machine Learning Trust Framework of Papadopoulos

etal. [25]. Fig. 1 is a diagrammatic representation of the machine learning trust Framework.
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Papadopoulos et al. [25] proposed an FL framework that integrates decentralized identity management
using the Hyperledger ecosystem to enhance trust and security within collaborative machine learning envi-
ronments. The system ensures that all participating entities are authenticated and that secure communication
channels are established prior to engagement in the FL workflow. Their architecture incorporates a regulatory
authority, a hospital trust, a researcher, and multiple hospital clients, with each participant required to obtain
a verifiable credential to prove legitimacy. A mutual authentication process is then performed to guarantee
that only authorized entities can participate. Once authenticated, a vanilla FL process where hospitals and
the researcher exchange model updates ensuring data confidentiality in transit.

The Machine Learning Trust Framework proposed by [25] is composed of four agents namely:

o Regulatory Authority: Responsible for issuing verifiable credentials to validate the digital identities
of participants.

o Researcher: Responsible for global model distribution, and aggregation of the federated model.

«  Hospitals: Serve as FL clients that receive the global model, train it locally, and return updates following
successful authentication

o Agents & Controllers: Implemented in separate Docker containers to simulate real-world deployment
scenarios with isolated operational environments.

The workflow of communication and training proceeds as follows: (i) both hospitals and the researcher
first obtain VCs from the regulatory authority (ii) the researcher distributes the initial machine learning
model to authenticated hospitals; (iii) hospitals locally train the model on their private data and return the
updates; and (iv) the researcher validates the aggregated model against a trusted local dataset.

While the framework demonstrates an important advancement by embedding decentralized identity
management into federated learning, it still faces notable limitations. Specifically, its reliance on blockchain
infrastructure (e.g., Hyperledger Indy) introduces the risk of metadata leakage, scalability concerns,
and infrastructure overhead, which may hinder seamless adoption in large-scale, real-world healthcare
applications.

Our solution overcomes this limitation by moving mutual authentication off-chain, reducing blockchain
overhead and the possibility of metadata leakage while keeping strong trust guarantees. Verifiable credentials
are exchanged directly between participants, ensuring privacy and efficiency. Additionally, a credential
revocation endpoint allows regulators to invalidate compromised or outdated credentials, ensuring only
trusted entities participate in federated learning.

3 Methodology

This section outlines the methodology adopted to design an off-chain decentralized identity man-
agement solution leveraging DIDs and VCs, enabling efficient mutual authentication within the federated
learning network.

3.1 Research Design and Approach

This study applies a Design Science Research (DSR) methodology to develop, implement, and evaluate
a novel oft-chain decentralized identity management framework for FL in healthcare. DSR is particularly
appropriate here because it emphasizes both the creation of practical solutions and their rigorous evalua-
tion [54]. The research design unfolds across three main phases: design, implementation, and evaluation.
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3.1.1 Design Phase

To address the shortcomings of the existing system, this system design integrates (i) W3C-compliant
decentralized identity standards (DIDs and VCs) for trust and authentication, (ii) an off-chain approach
to identity management, avoiding blockchain-related overhead and privacy concerns, and (iii) a FastAPI-
based implementation, chosen for its speed, asynchronous capabilities, and easy integration with Python
machine learning libraries. The three entities, Regulator, Server, and Hospitals, were designed to be modular,
independently deployable, and to communicate over secure HT'TP interfaces.

3.1.2 Implementation Phase

The framework was implemented directly from the design blueprint with the following roles:

» Regulator: Issues decentralized identifiers and verifiable credentials, serving as the trusted creden-
tial authority.

« Server: Coordinates FL by aggregating hospital updates and validating credentials before interaction.

» Hospitals: Train local models on private data and engage in mutual credential verification before con-
tributing.

o Communication Layer: Built with FastAPI endpoints over HTTP, where identity verification relies on
cryptographically verifiable credentials rather than blockchain infrastructure.

The system was developed entirely with Python, integrating specialized libraries for FL and creden-
tial management.

3.1.3 Evaluation Phase

The framework will be tested through simulations using benchmark healthcare datasets. Evaluation
focused on trust assurance, determining the system’s ability to exclude uncredentialed or unauthorized
participants.

3.2 Architecture of Proposed System

Our proposed framework, shown in Fig. 2, creates a secure communication environment for FL. Its pur-
pose is to guarantee that private model updates are shared exclusively among verified, trusted participants.

The system’s design focused on authenticated and authorized participation for all involved entities:
hospitals (the data holders), the server (the aggregator), and the regulatory authority (the regulator). Before
any data or model exchange can begin, each participant must present a verifiable credential issued by the
regulator. This step ensures that only approved agents handle sensitive patient data during collaborative
model training.

To achieve this, the system uses a self-sovereign identity approach, allowing each participant to
independently manage their own identity. Unlike conventional identity systems that rely on centralized
authorities, our method utilizes off-chain decentralized identifiers and W3C verifiable credentials. These
credentials are both digitally signed and cryptographically verifiable, enabling secure mutual authentication
without the need for public blockchain registries or external resolvers.

The entire architecture is built on independent FastAPI applications for each entity: the regulator,
hospitals, and the server with all communication happening over HTTP. During an FL session, the regulator
first issues verifiable credentials to the server and all participating hospitals, confirming their identity and
role. The server then performs a mutual authentication check with each hospital before any communication
takes place. Only those with valid, verifiable credentials are permitted to join the training process.
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Figure 2: Architecture of the proposed framework

This design ensures that unauthorized entities are completely excluded, and all model updates are
exchanged within a trusted, authenticated network. Ultimately, this protects both data privacy and model
integrity in healthcare-focused FL systems.

3.3 Data Collection and Pre-Processing
3.3.1 Dataset Description

The dataset used in this study is the Breast Cancer Wisconsin (Diagnostic) dataset, originally provided
by the UCI Machine Learning Repository. This dataset contains 569 samples with 30 numerical features
that describe characteristics of cell nuclei computed from digitized images of fine needle aspirates (FNA)
of breast masses. Each instance is labeled as either malignant (cancerous) or benign (non-cancerous). The
dataset includes 212 malignant and 357 benign cases, making it a well-established benchmark for evaluating
classification models in medical diagnosis tasks.

3.3.2 Data Preprocessing

To get the data ready for a privacy-preserving FL environment, we used a thorough preprocessing
pipeline. This approach ensures the data’s integrity, usefulness, and suitability for our secure and robust
machine learning experiments, all while upholding strict privacy standards.

3.3.3 Data Preprocessing Steps

First, we cleaned the data by identifying and removing outliers. Using the Z-score method, we calculated
the distance of each data point from its feature’s mean. Any data point with a Z-score greater than
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+3 was considered an outlier and removed to ensure we were only training our model on statistically
consistent observations.

Next, we performed feature standardization using the Standard Scaler. This step is important because
it ensures that all features have a mean of zero and a standard deviation of one, preventing features with
larger numerical ranges from overpowering those with smaller ones during training [24]. This is especially
important for algorithms that rely on distance metrics or assume a normal distribution, like neural networks.

To minimize computational cost and reduce the risk of overfitting, we applied Principal Component
Analysis (PCA). This technique is a linear transformation that identifies the directions, or principal com-
ponents, that capture the most variance in the dataset [55]. We selected enough components to retain 95%
of the cumulative variance. This step not only makes the model more efficient but also enhances privacy by
obscuring the original feature details while preserving the data’s essential structure [55].

3.3.4 Data Partitioning and Preparation

After preprocessing, the dataset was split into training and testing sets using an 80:20 stratified sampling
strategy because because this ratio provides sufficient data for training to capture patterns while reserving
enough unseen data to reliably evaluate model performance and generalization.

To mimic a real-world FL setup, the training data was then partitioned among 10 different clients, with
each one representing an independent data holder, like a hospital. Each partition was saved separately and
loaded by a distinct agent during the training process. This guarantees that no raw data leaves its source,
which is fundamental to a privacy-focused FL system.

3.3.5 Data Coding and Categorization

To ensure consistency across all participants, we used a structured approach for data coding:

« Label Encoding: We converted binary target variables into numerical values (e.g., 0 and 1).

o Federated Metadata: Each local dataset was tagged with metadata, including a unique client ID and role
(e.g., hospital, server). This metadata was essential for simulating the credential verification and access
control features of our system.

« Secure Organization: We organized each client’s dataset with unique identifiers, like hospital A.csv, which
allowed for automated loading and tracking during the training sessions.

This standardized framework ensures the entire process is both traceable and reproducible, allowing for

efficient and secure federation across multiple healthcare agents.

3.4 Algorithm

Algorithm 1 shows the algorithm for the trust proposed decentralized identity framework for FL
in healthcare.

Algorithm 1: Algorithm for the decentralized identity framework for FL in healthcare

Input: Issuer (R), Server (S), Hospitals (H1, H2, H3, ..., HN)
Output: A trusted communication channel established between S and each hospital h e H
Secure bidirectional exchange of model updates and global model

(Continued)
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Algorithm 1 (continued)
START
R generates its public-private key pair (P_R, SK_R)
For each agentxe Hu {S}:

R creates a verifiable credential VC_x for x

R signs VC_x using SK_R to produce signed credential SVC_x

R sends SVC_x tox
Each hospital h € H performs the following:

Fetch the public key of R (P_R)

Request the signed credential of server (SVC_S) from S

if Verity (SVC_S, P_R) = True:

Hospital h accepts S as trusted
else:
Hospital h rejects SVC_S and terminates communication

Server S performs the following for each hospital h € H:

Fetch the public key of R (P_R)

Request the signed credential of hospital h (SVC_h)

if Verity (SVC_h, P_R) = True:

Server accepts h as trusted
else:
Server rejects SVC_h and denies access

END

Asshown in Algorithm 1, the credential-based verification process between the Regulator (R), the Server
(S), and the set of Hospitals (H = {h, hy, h;, ..., hy}) is as follows. The process begins with the Regulator
generating a cryptographic key pair consisting of a public key (P_R) and a private key (SK_R). Using the
private key, the Regulator issues and cryptographically signs a verifiable credential for each participating
agent. These signed credentials, denoted by SVCx, contain the agent’s identity and assigned role (e.g., hospital
or server).

Each hospital (h) first obtains the Regulator’s public key (P_R). It then fetches the Server’s signed
credential (SVC_S) and confirms its authenticity using a verification function. This function checks if the
digital signature on the Server’s credential can be validated using the Regulator’s public key. If this check
succeeds, the hospital trusts the Server. Similarly, the Server (S) performs the same verification for each
hospital by retrieving its signed credential (SVC_h) and checking its authenticity.

Only when both parties have successfully verified each other’s credentials does the system proceed with
the secure exchange of model updates.

3.5 Cryptographic and Identity Specification
3.5.1 Identity Standard

The system is built entirely on the W3C Verifiable Credentials Data Model v1.1 and the DID Core
Specification. The credentials issued are JSON-based and leverage a custom but W3C-compliant context.
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3.5.2 Key Methods and Proof Format

All digital signatures are created using RSA cryptography with a key size of 2048 bits. The payload is
hashed using SHA-256 and signed using PKCS1v15 padding. The resulting signature is encapsulated as a
JSON Web Signature (JWS), stored in the VC’s proof object, and referenced by the JsonWebSignature2018
proof type.

3.5.3 Credential Freshness and Replay Protection

i. The system utilizes a session-specific nonce (Number Once) mechanism to guarantee the freshness of
credentials and to prevent the replay of model updates and credentials.

ii. During mutual authentication, the Server issues a unique nonce to the Hospital, which the Hospital
must include in the submit update request payload. The Server then verifies the nonce’s validity (using
the Python secrets library for generation and server-side session tracking for single-use enforcement),
thereby binding the credential presentation to a specific, non-repeatable communication session.

3.5.4 Off-Chain Revocation

i. The Regulator maintains an internal revocation list indexed by the VC’s unique URN/UUID.

ii. A revocation request targets the /revoke/credential endpoint.

iii. During mutual authentication, the verification agent (Server or Hospital) performs an additional HTTP
GET request to the Regulator’s /check-revocation endpoint to confirm the credential’s status is not revoked
before accepting the model update.

4 Implementation

Our system is designed to establish trust between the three actors: the regulator, the server, and the
hospitals. It relies on a decentralized identity framework, using verifiable credentials to ensure that every
participant is verified and trustworthy. Each of these entities: the regulator, the server, and the hospitals, is a
separate FastAPI application.

4.1 The Regulator’s Role

The regulator acts as the central authority for managing trust in the FL process. Its main job is to issue
verifiable credentials to authorized participants. This credential confirms their identity and role in the system.
To allow others to verify these credentials, the regulator publicly shares its cryptographic key. The entire
process of how the regulator issues these credentials is shown in Fig. 3 below.

The regulator’s role in the system is to act as the central authority for issuing credentials. To do this, it
follows a strict, step-by-step process.

Phase 1: Handling a Credential Request

When an agent, a hospital or the server wants a credential, it sends a HTTP POST request to the
regulator’s API at the /request-credential endpoint. The regulator then performs two critical checks. First, it
makes sure the request is valid by checking it against a predefined format. The request must contain a unique
DID for the agent and their specific role. This ensures the request is well-formed. As Fig. 4 shows, the request
is a simple, structured message.

After this, the regulator performs a strict authorization check. It verifies that the requesting agent is
permitted to receive a credential. If the agent is authorized, the process continues; if not, the regulator
immediately rejects the request with a “Forbidden” error (HTTP 403).
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Figure 3: Credential issuance process of regulator

{
"subject_did": "did:example:hospitalA",
"subject_info": {
"role": "Hospital"
}
}

Figure 4: Credential request to regulator

Phase 2: Generating the Credential

Once a request is approved, the regulator begins creating the credential. It first generates a unique ID for
the credential using a Universally Unique Identifier (UUID), this UUID is generated using python’s uuid4()
function. This is used to uniquely identify a credential and is embedded as a Uniform Resource Name (URN)
in the id field of the credential (e.g., urn:uuid:xxxx). After this, the regulator adds a precise timestamp,
ensuring the credential’s creation time is globally consistent. Finally, it builds the core of the credential,
known as the credential subject, which contains the agent’s unique DID and assigned role.

Phase 3: Signing the Credential

The regulator prepares a cryptographic payload from the agent’s role information. Using its private key,
the regulator then creates a digital signature for this payload using RSA cryptography.
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To guarantee the signature is both secure and verifiable, the process follows these specifications:

« Padding: It uses PKCS1v15 padding, which adds a layer of structure to the data for secure signing.

« Hashing: It uses the SHA-256 hash function to create a unique fingerprint of the payload, ensuring the
data’s integrity.

« Encoding: The final signature is encoded into a URL-safe string using Base64, making it easy to embed
and transmit.

Finally, this digital signature is embedded into the proof section of the verifiable credential. This proof
includes all the necessary details for verification: the type of signature used, the timestamp it was created,
and a reference to the regulator’s public key. The actual signature itself is stored as a URL-safe Base64 string,
known as the JSON web signature (JWS). This completes the cryptographic proof that the credential is
authentic and was issued by the regulator.

Phase 4: Delivering the Credential

After the credential has been signed, it’s packaged into a JSON object and sent back to the request-
ing agent.
Supporting Trust Infrastructure

For the reliability of the system, the regulator maintains two key endpoints:

+ Credential Revocation: The regulator can revoke a credential at any time using its unique UUID. This
is essential for managing trust dynamically.

« Public Key Endpoint: The regulator exposes its public key so that other agents can retrieve it and
verify the digital signatures on their credentials. This establishes the regulator as a root of trust for the
entire system.

An example of a credential issued to a hospital agent is shown below in Fig. 5.

{

"@context": [
"https://www.w3.0rg/2018/credentials/v1"

1

"id": "urn:uuid:8a9cb039-367d-4011-b879-a822066398e2",

"type: [
"VerifiableCredential”

1,

"issuer": "did:example:regulator”,

"issuanceDate": "2025-07-08T11:46:30.877968+00:00",

"credentialSubject": {

"id": "did:example:hospitalA",
"role": "Hospital"
¥
"proof": {
"type": "RsaSignature2018",
"created": "2025-07-08T11:46:30.877968+00:00",
"proofPurpose": "assertionMethod",
"verificationMethod": "did:example:regulator#keys-1",
"jws": "jpDTI8msTjjomECImmdOTKtZMgQraiZpFfFh7Ts_43QnpHnlbdqOHY4TxmzODrHN4OplhhYP

Figure 5: Issued credential



J Cyber Secur. 2026;8 17

In this credential;

o @context: This field simply confirms that the credential is W3C-compliant and uses a standard
vocabulary, ensuring it can be easily understood by different systems.

o id: This serves as a unique identifier for the credential, much like a serial number.

o type: This field explicitly declares that the document is a Verifiable Credential, as defined by W3C spec-
ifications.

« issuer: This is the centralized identifier of the issuing entity, in this case, the regulator.

o issuanceDate: This provides the exact date and time the credential was created.

« credentialSubject: This defines the recipient of the credential by listing their DID and their assigned
role (e.g., Hospital).

The credential also includes an important proof section which contains all the cryptographic details
needed to verity its authenticity. Within this proof the following details are contained;

«  type: Specifies the cryptographic algorithm used for signing, which in this case is RSA.

o created: Marks the exact timestamp when the digital signature was generated.

o proofPurpose: Explains the reason for the signature to assert that the information in the credential
is true.

« verificationMethod: Points to the issuer’s public key, which is used by others to verify the signature.

o jws: Thisis the actual digital signature string itself. It's generated using the issuer’s private key and ensures
the integrity and authenticity of the entire credential.

4.2 Server and Hospitals (Credential Holders and Verifiers)

In our system, the server and hospitals are designed to be both credential holders and verifiers. This
means they not only possess their own verifiable credential issued by the regulator, but they also have the
responsibility of verifying each other’s credentials.

Before any data exchange begins, the server verifies the credential of each hospital to ensure they are
authorized participants. At the same time, each hospital will verify the server’s credential before sending
any model update. This process of two-way authentication is what ensures that all communication occurs
exclusively within a trusted network of authorized agents. The entire credential request and verification
process is illustrated in Fig. 6.

4.3 Credential Request and Verification Workflow of the Hospital

To ensure a secure training environment, each hospital follows a strict process to acquire its own
credentials and then verify the server’s identity. This process has two main phases: acquiring a credential
from the regulator and then verifying the server.

Phase 1: Credential Acquisition from Regulator
Firstly, each hospital needs to get the regulator’s public key. It does this by sending an HTTP POST

request to the regulator’s /public_key endpoint on the regulator’s API. This key is needed for validating any
credential issued by the regulator, and the hospital saves it securely for later use.

Next, the hospital makes a credential request to the regulator’s API by sending a HTTP POST request
to the /request-credential endpoint on the Regulator’s API as shown in Fig. 7.

This request prompts the regulator to issue a credential that confirms the hospital’s unique digital
identity and its role in the system. The regulator digitally signs this new credential with its private key before
sending it back.
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Figure 6: Credential request and verification process of server and hospitals

{
"subject_did": "did:example:hospitalA",
"subject_info": {
"role": "Hospital"
}
}

Figure 7: Credential request of hospital to regulator

Phase 2: Server Identity Verification before Sending Update

Before a hospital sends its model update, it must first verify the server’s identity. To do this, the
hospital requests a credential from the server’s API. In this process, the Server issues a unique, single-use
session_nonce for the current communication. Once it receives the server’s credential, the hospital uses the
regulator’s public key (which it got in Phase 1) to perform a series of security checks on the server’s credential.

These checks include:

« Signature Validity: Is the digital signature valid?

 Integrity: Has the credential been tampered with?

o Issuer Trust: Was the credential issued by the trusted regulator?

+  Subject Match: Does the credential correctly identify the server’s known digital identity?
« Revocation Status: Has the credential been revoked?

Only after the credential passes all these checks does the hospital send its model update to the server’s
API sending an HTTP POST request to the server’s /submit-update endpoint. The request payload includes
the required session_nonce to prevent replay attacks. The server then performs its own verification on the
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hospital’s credential, and if invalid, the model update is rejected, protecting the integrity of the FL model.
The request payload is of the form shown in Fig. 8.

{

"hospital_did": "string",

"credential"”: {

¥

"model_update"”: [

0

15

"session_nonce": "string"
}

Figure 8: Submit update request

4.4 Credential Request and Verification Workflow of the Server

To establish a trustworthy FL environment, the server follows a strict workflow. This process is divided
into two main phases: acquiring its own credential and then verifying the credentials of participating
hospitals.

Phase 1: Acquiring a Credential from the Regulator

The server’s first step is to get the regulator’s public key by sending an HTTP GET request to the
regulator’s /public-key endpoint on the regulator’s APIL. This key is essential for validating any credentials
the regulator issues. After obtaining the key, the server sends its own credential request to the regulator.
The server does this by sending an HTTP POST request to the /request-credential endpoint of the regulator.
This request prompts the regulator to issue a verifiable credential that confirms the server’s identity and
role. The credential is then digitally signed with the regulator’s private key before being sent back to the
server. The credential request is a JSON payload of the structure shown in Fig. 9.

{
"subject_did":"did:example:server",
"subject_info":{
"role":"Server"

}
}

Figure 9: Credential request of server to regulator

Phase 2: Hospital Identity Verification

Before the server accepts any model updates, it must verify the identity of the hospital sending the
request. When a hospital requests the Server’s credential or initiates submission, the Server uses Python’s
secrets module to generate and issue a unique session_nonce for the transaction. The server then uses the
regulator’s public key to perform a series of cryptographic checks on the hospital’s credential. It verifies
the digital signature, ensures the credential hasn't been tampered with, and confirms that it was issued by
the trusted regulator. The server also checks that the credential belongs to the correct hospital and that it
hasn’t been revoked. In addition, the server verifies the submitted payload contains the correct, single-use
session_nonce corresponding to the current transaction. Only after the credential passes all of these checks
does the server accept the model update for aggregation otherwise the update is rejected, and the nonce is
immediately invalidated.
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4.5 Model Training Process
Phase 1: Data Preparation and Partitioning

Following data collection, cleaning, and preprocessing, the dataset was randomized and divided into
80% for training and 20% for testing.

The training portion was partitioned using a Non-IID (Label Skew) scheme to better mirror the
heterogeneity of real-world multi-institutional medical data.

To simulate the natural variability in disease prevalence across institutions, we employed the Dirichlet
distribution («a = 0.5) to generate distinct label distributions for each client.

This approach ensures that each simulated hospital’s dataset contains a unique proportion of classes,
reflecting realistic diagnostic diversity.

We used 15 clients (hospitals) for the experimental setup representing a mix of heterogeneous data
volumes (Quantity Skew).

The server retained the test set for global model evaluation at the end of each communication round.
Phase 2: Local Model Training

Each hospital (client) independently trains a model on its private, non-IID dataset without sharing
raw data.

The Multilayer Perceptron (MLP), a feedforward Artificial Neural Network (ANN) was chosen because
it is well-suited for tabular healthcare data and capable of capturing complex non-linear feature interactions.

The consistent model architecture across clients ensures compatibility during federated aggregation.

Before training, each client performs feature scaling using sklearn.preprocessing.StandardScaler to
normalize input features and improve convergence stability.

At the beginning of each FL round, the client synchronizes its model with the global model parameters
received from the server, ensuring all clients begin from a shared baseline.

Local training is conducted for a fixed number of LOCAL_EPOCHS using mini-batches
(torch.utils.data.DataLoader, BATCH_SIZE = 32).

Training utilizes the binary cross-entropy with logits loss (torch.nn.BCEWithLogitsLoss()), which
integrates a sigmoid activation with cross-entropy loss.

Optimization is handled by Adam (torch.optim.Adam), chosen for its adaptive learning rate and
computational efficiency.

In each training iteration, gradients are zeroed, a forward pass is computed, loss is evaluated, and
parameters are updated via backpropagation (loss.backward() and optimizer.step()).

Upon completion, each client computes its local update as the difference between the trained local
parameters and the received global parameters.

This difference is flattened into a NumPy array (flattened_local_update), which constitutes the client’s
contribution to the global model aggregation phase.

Phase 3: Statistical Robustness and Evaluation

To ensure statistical rigor and reproducibility, all experimental configurations were executed with five
different random seeds.

Performance metrics: Accuracy, Precision, and Recall are reported as the Mean + and Standard Devia-
tion o across these runs, providing confidence intervals and reducing the impact of stochastic variations.
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5 Discussion of Findings
5.1 Analysis of the Proposed System

This section analyzes the trust management and mutual authentication process of the proposed
system and how the Regulator, Server, and Hospital agents utilize verifiable credentials, cryptographic
verification, and secure protocols to ensure identity assurance, mutual authentication, and policy-based trust
enforcement. Table | summarizes the main trust features.

Table 1: Trust management features of regulator, server, and hospital agents

Function Description Agent(s) Mechanism/Endpoint Trust benefit
_ Exposes public key
Public k th
ubic ey for credential Regulator GET/public_key S?rves as the
distribution e foundational trust anchor
verification
POST t-
Credential Provides digitally /.reques Confirms agent identities
. _ Regulator credential (from _
issuance signed VCs to agents and assigned roles
agents)
Obtains a VC f;
Credential ams a PO Server & POST/request- Ensures each agent starts
the regulator during _ . . . . .
request Lo Hospitals credential with a verifiable identity
initialization
Downloads I
Public ke regulator’s public ke Server & Allows cross-verification
X<y 8 pub Y _ GET/public_key of credentials among
retrieval for validating Hospitals acents
received VCs &
Credential Provides its own VC ., Builds mutual trust with
_ to peers for trust Server  GET/request_credential .
sharing _ hospital agents
establishment
Credential A d check
recentia ceesses an , € ecks . GET/request_credential Blocks communication if
validation the Server’s VC Hospitals _ .
. (from Server) server is unverified
request before collaboration
. Confirms
Credential . Server & Internal: Detects and prevents
verification authenticity of peer Hospitals verify_credential() forgery or impersonation
credentials P ¥ gety P
Accept
Credential- ceepes _
communications only ~ Server & . Guarantees authenticated
gated _ . POST/submit-update
_ when accompanied ~ Hospitals data exchange
messaging ) _
by valid credentials
Trust Re)ect§ messages HTTP 401/403 Protects the ne'twork
lacking valid Server from adversarial or
enforcement . response .
credentials unauthorized input
, Ensures freshness of ~ Server &  Internal generation & Blocks replayed
Session nonce . . _
credential Hospitals exchange credentials
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Table 1 above shows the trust anchors of all the agents, the Regulator anchors trust by issuing credentials
and publishing its public key, while the Server and Hospitals obtain these credentials and validate trust
through key retrieval. Agents establish mutual authentication by exchanging and verifying credentials before
interaction with communication strictly gated by credential checks. Any unauthorized or unverified requests
are blocked, maintaining a rigorous trust boundary across the system.

Table 2 below shows the cryptographic and trust tools used by all agents.

Table 2: Cryptographic and trust tools used by all agents

Purpose Library/Function Agent(s) Explanation
Credential uuid4() and Produces distinct, cryptographically
_ _ Regulator . . .
generation sign_payload() signed credentials using RSA/JWS
fi ial authenticity with th
Signature validation  verify_credential() Serve.r & Confirms credentla’ aut e‘nt1c1ty with the
Hospitals Regulator’s public key

Public key sharing ~ FastAPI endpoint Regulator Publishes the public key for use by all

network participants
Credential Server & Sends credential request messages to the
) requests.post() .
requesting Hospitals Regulator

JSON-based VC Maintains interoperability through

Credential exchange All agents

structure standardized JSON VCs
Communication FastAPI + CORS All agents Provides RESTful AP.IS. secured with
framework CORS policies
Session Honce Secrets library Server. and Prevent§ rePlay .attacks by ensuring each
hospitals credential is unique and used only once

In Table 2 above, the tools used to enforce trust are presented. The regulator uses cryptographic signing
together with the uuid4() function. The Regulator employs the uuid4() function along with cryptographic
signing to generate unique verifiable credentials, while Server and Hospital agents validate them through
the verify_credential() method using the Regulator’s public key. This key is shared via a designated FastAPI
endpoint. Servers and Hospitals initiate credential requests using requests.post(), with credentials exchanged
in a standardized JSON format. Agent communication is secured using FastAPI together with CORS policies,
ensuring reliable and interoperable interactions. Additionally, a session nonce is employed by both the Server
and Hospital agents to guarantee the freshness of each authentication or credential verification exchange,
preventing replay attacks by ensuring that every credential or message is unique and can only be used once.

Table 3 below summarizes the security features enforced by the system’s agents. Each agent authen-
ticates through verifiable credentials signed by the Regulator, ensuring trusted identities. Authorization is
maintained by restricting interactions to agents holding valid credentials, particularly at the Server and
Regulator. The use of RSA/JWS digital signatures, tied to a trusted issuer, guarantees credential integrity and
non-repudiation. Compliance with the W3C verifiable credential standard enables interoperability, while the
Regulator’s public key functions as the shared trust anchor across the system. Mutual verification between
the Server and Hospitals ensures that data exchanges occur solely between authenticated parties.
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Table 3: Security properties enforced by agents

Security property How it’s enforced Agent(s)
Authentication Veriﬁabltle crede.ntials is.sued and signed by the Regulator All agents
combined with session nonces to ensure freshness

Authorization Only agents holding valid credentials are permitted Server, Regulator
Credential integrity Protected through RSA/JWS digital signatures Regulator
Non-repudiation Credentials traceable to the trusted Regulator Regulator
Interoperability Use of W3C-compliant verifiable credential format All agents
Trust anchor Validation via the regulator’s public key All agents

Mutual verification Credential exchange and cross-verification among agents ~ Server & Hospitals

5.2 Security Analysis

For security analysis, an attack model was adopted to simulate potential strategies that an adversary
might employ to compromise the system. To demonstrate the strength of the proposed system in comparison
with the existing system, a model poisoning attack model was employed.

A model poisoning attack occurs when a malicious participant in federated learning intentionally
sends altered model updates to compromise the global model. The attacker’s aim may be to decrease
overall accuracy or implant hidden behaviors [29]. We evaluate our system’s resistance against such attacks,
demonstrating how the proposed enhanced oft-chain mutual authentication system can effectively mitigate
model poisoning in a federated learning environment.

5.2.1 Experimental Setup for the Model Poisoning Attack

To illustrate model poisoning and test the strength of our system, we poisoned the data of some clients.
The poisoning process converted every input in their datasets to 0. Training on such data produced biased
local models, whose updates were intended to significantly degrade performance. These malicious clients
aimed to submit corrupted updates to the server, skewing the aggregation toward class 0 predictions, thereby
compromising the global model, reducing accuracy, and increasing false negatives.

To ensure the stability of our results, all comparative scenarios were carried out using 5 different random
seeds. The mean p and standard deviation o of each scenario were used to provide statistical confidence
bounds to measure observed utility and resilience.

5.2.2 Experimental Results
To test the effectiveness of our framework, we carried out four runs across four scenarios.

For the first run, we carried out FL with the fifteen honest clients; this will serve as a baseline for
evaluating our proposed framework.

For the second run, we carried out FL without mutual authentication. During the second run, all 15
clients, 12 honest clients and 3 rogue clients carried out local training and sent updates to the server; the
server received and aggregated these updates.

In the third run, we carried out FL with the proposed decentralized identity framework. During the
third run, the 12 honest clients who possessed valid credentials were able to train their data and share model
updates with the server. However, updates from the 3 malicious clients were identified and dropped by the
server as they couldn’t present valid credentials.
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In the fourth run, we introduced malicious insiders using the 15 clients (12 honest and 3 rogue clients).
This fourth run is carried out with the assumption that a credentialed client possessing valid DID and VC
goes rogue. Fig. 10 is a comparative analysis of the performance of the model across the three runs.

Comparative Performance of FL Model Across Scenarios
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Figure 10: Comprehensive model performance across all scenarios

The performance metrics reported below represent the Mean u and Standard Deviation ¢ providing
statistical confidence bounds on the observed utility and resilience.

The first scenario establishes the baseline for model performance under normal conditions. In this
scenario 15 clients carried out model training and submitted updates for aggregation. The model achieves
consistently high overall accuracy with (g = 0.9439 ¢ + = 0.0100) with a malignant recall of (u = 0.9722 +
o = 0.0405). This high recall is essential in, oncology where missed cancers (false negatives) are the highly
risky. The low standard deviation across all metrics confirms the stability and reproducibility of the federated
learning process with trustworthy clients.

Introducing three malicious clients without the admission control of the trust management system
dropped the models reliability. The overall accuracy felled to (u = 0.6993 ¢ = +£0.0402), and the malignant
recall dropped severely to (1 = 0.5430, 0 = £0.0651) indicating that a good number of malignant cases were
missed. This is an indication of a model poisoning attack.

The third scenario demonstrates the effectiveness of the Trust Management System (TMS). The model’s
performance is fully restored to near-baseline levels, with minimal deviation: accuracy (u = 0.9526 o =
+0.0048) and malignant recall (u = 0.9917 ¢ = +£0.0124). The restoration of malignant recall proves that the
TMS effectively isolates and neutralizes the poisoning vector. The low standard deviations (e.g., 0 = £0.0048
for Accuracy) confirm the defence mechanism is robust and predictable across different runs.

The fourth experiment was done with the assumption that a trusted client goes rogue after being issued
a valid credential. In this scenario, the 15 clients were issued valid credentials (establishing digital identity
and provenance), yet the 3 malicious clients still carried out model poisoning attack, thus degrading model
performance. The results were statistically identical to the unprotected scenario: accuracy (p = 0.6808 o
= +0.0407) and malignant recall (u = 0.5118 o = £0.0694). This result is important as it demonstrates the
functional boundary of the identity layer; the DID/VC framework successfully establishes provenance and
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ensures updates originate from a credentialed source, yet it cannot infer or block malicious intent from a
validated participant. Consequently, simple identity-centric access control is inherently insufficient against
sophisticated, credentialed internal threats.

The gains from the third run do not come from regularization or robust aggregation; they arise from
identity-centric admission control that guarantees update provenance and prevents untrusted gradient
contributions from ever entering the aggregation path. This shrinks the attack surface, preserves the statistical
properties of honest updates, and stabilizes class-wise metrics. Table 4 shows the comparative performance
metrics across all scenarios showing results gotten from individual runs. Table 5 is the summary of results
showing the mean p and standard deviation o of performance metrics across scenarios.

Table 4: Comparative performance metrics

Scenario Run Accuracy  Precision Recall F1-Score
(Malignant) (Malignant)

Scenario I (Baseline) 1 0.9474 0.9231 1.0000 0.9600

2 0.9386 0.9333 0.9722 0.9524

3 0.9561 0.9351 1.0000 0.9664

4 0.9474 0.9342 0.9861 0.9595

5 0.9298 0.9848 0.9028 0.9420

Scenario II (Poisoned 1 0.7193 1.0000 0.5556 0.7143

without the TMS) 2 0.6316 0.9688 0.4306 0.5962

3 0.7018 0.9524 0.5556 0.7018

4 0.7368 0.9773 0.5972 0.7414

5 0.7071 0.9744 0.5758 0.7238

Scenario III (Poisoned 1 0.9474 0.9231 1.0000 0.9600

with TMS) 2 0.9561 0.9351 1.0000 0.9664

3 0.9561 0.9467 0.9861 0.9659

4 0.9474 0.9459 0.9722 0.9589

5 0.9561 0.9474 1.0000 0.9729

Scenario IV (Poisoned 1 0.7018 0.9900 0.5278 0.6900

by credentialed agents) 2 0.614 0.9524 0.3958 0.5598

3 0.6754 0.963 0.5139 0.6698

4 0.693 0.9902 0.5417 0.7018

5 0.7200 0.9900 0.5800 0.7300

Table 5: Summary of results
Metric Baseline Poisoned (No  Poisoned (With  Credentialed &
TMS) TMS) Poisoned

Accuracy 0.9439 + 0.0100 0.6993 + 0.0402  0.9526 + 0.0048  0.6808 + 0.0407
Precision 0.9421 + 0.0244 0.9746 + 0.0172 0.9396 + 0.0105 0.9771 + 0.0181
Recall (Malignant) 0.9722 + 0.0405 0.5430 + 0.0651 0.9917 + 0.0124 0.5118 + 0.0694

F1-Score (Malignant)

0.9561 + 0.0093

0.6955 + 0.0574

0.9648 + 0.0056

0.6703 + 0.0655
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5.3 Performance Evaluation

To empirically validate the architectural decision to utilize a Decentralized Identifier DID and VC
framework as a lightweight, off-chain trust mechanism, we quantify the cryptographic and communication
overhead introduced by the mutual authentication layer. This analysis directly addresses the scalability and
efficiency concerns typically associated with distributed trust systems. The key metrics measured are the
latency of credential issuance and the latency of verification, as these represent the one-time setup cost and
the per-round runtime cost, respectively.

5.3.1 Trust Establishment Latency Benchmarks

The performance measurements were carried out for both credential issuance and credential veri-
fication. Issuance involves the Regulator generating a JSON Web Signature (JWS) protected VC, while
verification involves JWS validation, session nonce checking, and an HTTP request to the Regulator for
revocation status. Table 6 shows the trust establishment latency for each operation.

Table 6: Latency of the trust management process

Operation Responsible agent ~ Average latency (ms) Time in seconds (s)
VC Issuance (Setup Cost) Regulator 25 0.0025
VC Verification (Runtime Cost) Hospital/Server 73.0 0.0730
Total trust overhead (Per FL Round) (Issuance + Verification) 75.5 0.0755

The results confirm that the cryptographic overhead introduced by the DID/VC layer is minimal and
highly conducive to a scalable, low-latency FL environment.

For credential issuance, the average issuance time recorded was 2.5 ms, this demonstrates that the
Regulator can process credential requests nearly instantaneously.

The credential verification process represents the critical runtime cost incurred by the communicating
agents during each FL round; this averaged 73 ms.

5.3.2 Comparative Analysis with Blockchain DLT

For comparative analysis, we compared the latency of our system with that of FLCoin reported in Ren
et al. [49]. The comparative result is presented below;

Performance latency of reported in Ren et al.(2024)
Performancee latencyof the Trust Management System

@

per formance Ratio =

Ren et al. [49] proposed an FLCoin approach which utilizes an optimized committee-based consensus
protocol designed specifically for FL. The reported latency was around 3 s or 3000 ms.

3000
~ 39. 2)
75.5

per formance Ratio =

Our entire mutual authentication overhead of 75.5 ms is approximately 39.7 times faster than the
consensus step alone in an optimized distributed ledger-based system.
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6 Summary, Conclusion and Suggestions for Future Research

6.1 Summary

This study presents a novel mutual authentication framework that directly addresses the challenge of
trust and security in FL for privacy-sensitive domains. While existing privacy-preserving techniques often
focus on protecting data during training, they largely overlook the fundamental issue of authenticating par-
ticipating entities. This gap has left FL systems vulnerable to malicious actors and model poisoning attacks.
Traditional blockchain-based trust solutions are often resource-intensive and prone to metadata leakage.

To overcome these limitations, the proposed solution leverages a lightweight, off-chain framework built
on DIDs and cryptographically signed VCs. The architecture comprises a designated Regulator agent that
issues unique VCs to authorized participants, enabling secure, peer-to-peer mutual authentication between
servers and clients. Session nonces were employed to guarantee freshness of credential exchanges and prevent
replay attacks.

The framework’s efficacy was rigorously evaluated in a simulated healthcare environment using the
Breast Cancer Wisconsin dataset. The experimental setup included 15 clients with heterogeneous, non-IID
data, including honest and malicious participants attempting to submit falsified model updates. To ensure
statistical robustness, each scenario was executed across five random seeds, with results reported as Mean +
Standard Deviation for key metrics.

The results confirmed the strength of the proposed system: unverified clients were automatically
rejected, preventing them from compromising the integrity of the global model. The final aggregated model,
built exclusively from verified contributions, achieved high accuracy (u ~ 0.95) and strong malignant recall
(4 ~ 0.99), while maintaining low trust management overhead (~75.5 ms per FL round). These results
indicate that while identity-centric admission control reliably ensures the provenance of model updates and
blocks untrusted participants, it cannot prevent malicious behavior from credentialed clients, highlighting a
functional boundary of the framework.

6.2 Conclusion

This study presents a scalable and efficient mutual authentication framework for FL in healthcare,
addressing a critical security gap in existing systems. By leveraging a lightweight, off-chain DID and
VC-based identity management approach, the framework enables secure, peer-to-peer mutual authentica-
tion among participants. Session nonces ensure freshness and prevent replay attacks, enhancing trust in
credential exchanges.

Experiments with 15 heterogeneous, non-IID clients across five random seeds demonstrate that the
framework effectively blocks unverified or untrusted clients from submitting poisoned updates, preserving
global model accuracy (u ~ 0.95) and malignant recall (u ~ 0.99) with minimal overhead (~75.5 ms per
FL round). These results confirm that identity-centric admission control reliably ensures provenance and
mitigates attacks from untrusted participants, while highlighting a limitation; credentialed clients acting
maliciously cannot be prevented by authentication alone, underscoring the need for complementary defences
like robust aggregation or anomaly detection.

6.3 Limitations and Suggestions for Future Research

While the proposed mutual authentication framework shows promising results for secure federated
learning in healthcare, it has some constraints. The Breast Cancer Wisconsin dataset is relatively small
and does not fully reflect real-world healthcare data, so larger and more diverse datasets are needed to
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evaluate scalability and robustness. Also, the identity-centric admission control blocks unverified partici-
pants; however, it cannot prevent malicious behaviours from credentialed clients, who could still submit
poisoned updates.

Future research could explore the integration of DID/VC-based authentication with additional
privacy-preserving techniques, such as differential privacy or secure aggregation to establish multi-layered
protection. Additionally, evaluating the framework against a broader range of adversarial attacks, including
backdoor and inference attacks would provide a more comprehensive security assessment.

Furthermore, testing the framework in large-scale, real-world environments with heterogeneous clients
and hardware would help quantify latency, scalability, and robustness under realistic conditions.

Finally, extending the framework to other domains and machine learning models, including finance,
IoT, natural language processing, and computer vision, would assess generalizability and applicability beyond
healthcare. Collectively, these directions aim to enhance the robustness, versatility, and practical adoption of
secure, identity-centric federated learning systems.
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