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ABSTRACT: As education continues to evolve alongside artificial intelligence, there is growing interest in how large
language models (LLMs) can support more personalized and intelligent learning experiences. This study focuses on
building a domain-specific question answering (QA) system tailored to computer science education, with a particular
emphasis on Java programming. While transformer-based models such as BERT, RoBERTa, and DistilBERT have
demonstrated strong performance on general-purpose datasets like SQuAD, they often struggle with technical educa-
tional content where annotated data is scarce. To address this challenge, we developed a custom dataset, JavaFactoidQA,
consisting of 1000 fact-based question–answer pairs derived from Java course materials and textbooks. A two-step fine-
tuning strategy was adopted, in which models were first fine-tuned on the SQuAD dataset to capture general language
understanding and subsequently fine-tuned on the Java-specific dataset to adapt to programming terminology and
structure. Experimental results show that RoBERTa-Base achieved the best performance, with an F1 score of 88.7% and
an Exact Match (EM) score of 82.4%, followed closely by BERT-Base and DistilBERT. The results were further compared
with domain-specific QA models from healthcare and finance, demonstrating that the proposed approach performs
competitively despite using a relatively small dataset. Overall, this study shows that careful dataset design combined
with sequential fine-tuning enables effective adaptation of transformer-based QA models for educational applications,
including automated assessment, intelligent tutoring, and interactive learning environments. Future work will explore
extending the approach to additional subjects, incorporating cognitive-level tagging, and evaluating performance on
broader educational QA benchmarks.

KEYWORDS: Question answering; transfer learning; factoid question finetuning; large language model; transformers;
BERT

1 Introduction
In today’s rapidly evolving educational landscape, artificial intelligence is playing an increasingly central

role in reshaping teaching and learning practices. One of the most promising developments in this area
is the use of large language models (LLMs) [1] such as BERT [2], RoBERTa [3], and DistilBERT [4] for
building intelligent question answering (QA) systems. These models have demonstrated strong performance
on benchmark datasets such as SQuAD [5], highlighting their ability to understand and respond to complex
natural language queries.

Despite their success in general domains, applying these models to specialized areas such as Java
programming remains challenging. Educational content in computer science is often characterized by
technical terminology, structured explanations, and strong conceptual dependencies, while well-annotated
domain-specific datasets are scarce. This gap limits the effectiveness of existing QA systems in supporting
learners in programming-related subjects, where accuracy and clarity are essential.
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To address this challenge, we adopt a sequential fine-tuning strategy in which models are first fine-
tuned on a general-purpose dataset such as SQuAD to learn broad language patterns and question–context
alignment, and are then further fine-tuned on a smaller domain-specific dataset to specialize in a particular
field. This approach has shown promising results in other domains including healthcare and finance, where
annotated data is limited but domain accuracy is critical [6–8].

In this study, we apply sequential fine-tuning [9,10] to three widely used transformer models, Dis-
tilBERT, BERT-Base, and RoBERTa-Base [3,11,12], to develop a QA system tailored for Java programming
education. To support this process, we construct a custom dataset named JavaFactoidQA [13], consisting of
1000 fact-based question-answer pairs derived from Java textbooks and lecture materials. The dataset was
annotated using the Haystack annotation tool [14] to ensure precise alignment between questions, contexts,
and answer spans.

Beyond technical performance, this work is motivated by its potential educational impact. A well-
adapted QA system can serve not only as a question-answering tool, but also as an intelligent tutor,
support personalized assessments, and assist both students and instructors in retrieving relevant information
efficiently. By adapting LLMs [7] to Java programming content, this study aims to bridge the gap between
powerful language models and practical classroom needs.

Through this research, we demonstrate that even with limited computational and annotation resources,
it is possible to build effective domain-specific QA systems that enhance learning, support educators, and
improve accessibility in programming education.

The primary contributions of this work are summarized as follows:

• We design an extractive question-answering framework that provides accurate answers from given
educational content using transformer-based language models.

• We create a domain-specific dataset, JavaFactoidQA, consisting of 1000 manually curated fact-based
question-answer pairs derived from Java programming textbooks and lecture materials.

• We adopt a two-stage sequential fine-tuning strategy in which models are first fine-tuned on the general-
purpose SQuAD dataset and subsequently adapted to the Java domain, improving performance in a
low-resource educational setting.

• We conduct a comparative evaluation of BERT, RoBERTa, and DistilBERT models using standard QA
metrics, demonstrating that strong performance can be achieved without specialized architectures or
large-scale domain-specific corpora.

Despite the success of transformer-based QA models, many existing domain-specific approaches rely
on large-scale domain corpora, specialized architectures, or extensive task-specific modifications. Such
requirements limit their applicability in educational environments where annotated data and computational
resources are constrained. The innovation of this work lies in demonstrating that a carefully curated small-
scale educational dataset combined with a simple two-stage sequential fine-tuning strategy is sufficient to
achieve competitive performance. By leveraging standard transformer-based QA models without architec-
tural changes, the proposed approach directly addresses challenges related to data scarcity and resource
limitations, making it practical for real-world educational applications.

2 Related Work
The rapid advancement of transformer-based language models like BERT, RoBERTa, and DistilBERT

has transformed the landscape of question answering (QA). Initially trained on vast text corpora, these
models have been fine-tuned on benchmark datasets such as SQuAD achieving state-of-the-art results and
setting a high standard for extractive QA tasks.
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Early contributions in this field, such as the work by Li and Pollett [15], demonstrated how a well-
structured dataset like SQuAD could guide the development of end-to-end neural QA systems. Their
research paved the way for broader adoption of fine-tuning techniques in QA pipelines.

To better understand the evolution of QA systems, Wang [16], Farea and Emmert-Streib [10] provided
an extensive survey that reviewed modern datasets and benchmark strategies. This overview clarified how
data structure and evaluation methodology impact the performance and reliability of QA models.

As QA systems moved from general domains to more specialized applications, the need for domain-
aware fine-tuning became more evident. Guo et al. [9] explored fine-tuning under limited annotation
budgets, proposing strategies like pseudo-labeling and dual-phase training to boost model accuracy
in domains such as finance. Similarly, in the medical domain, Anisuzzaman et al. [7] applied BERT
models to clinical records, achieving strong results by carefully adapting general-purpose models to
specialized datasets.

Jeong [17] expanded on this by examining fine-tuning techniques for domain-specific LLMs in legal
and multilingual contexts. His findings reinforced that thoughtful pretraining and adaptation strategies can
significantly enhance performance across diverse domains.

A different perspective was offered by Lalor et al. [18], who experimented with soft label memorization
to improve generalization in QA and natural language inference. This technique was especially beneficial
when training data was limited or uncertain.

Practical applications have also gained momentum. Sharma et al. [19] demonstrated how extractive QA
models can be successfully fine-tuned for clinical document analysis, employing robust preprocessing and
context handling strategies many of which are mirrored in our work on Java programming content.

In educational contexts, Bhattacharyya [20] emphasized the potential of transformer models in sup-
porting intelligent knowledge retrieval. His study pointed out how well-adapted QA systems can serve as
powerful tools in education, particularly for STEM and technical subjects.

Domain-specific datasets continue to play a critical role. For instance, Rachmawati and Yulianti [21]
introduced StatMetaQA, a QA dataset for Indonesian statistical metadata, showing the growing global
interest in building localized, purpose-driven QA systems. Likewise,

Together, these studies establish a strong foundation for domain-specific QA research. They validate
our approach of sequential fine-tuning starting with general-domain pretraining and gradually adapting
to a focused educational domain like Java programming. Our work builds on these ideas by providing
a well-structured dataset and evaluating three popular transformer models in the context of computer
science education.

3 Methodology

3.1 Dataset
The JavaFactoidQA dataset was constructed through a structured and manual curation process to

ensure domain relevance and annotation quality. Educational content was collected from standard Java
programming textbooks and undergraduate-level lecture notes, focusing on core topics such as object-
oriented concepts, exception handling, multithreading, inheritance, and interfaces. Each selected paragraph
was treated as an independent context passage for question generation.

For each context passage, a fact-based question was manually formulated to assess specific conceptual
knowledge present in the text. Answer spans were explicitly annotated by identifying the exact text segment
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within the context along with its starting character index, following the SQuAD v1.1 extractive question-
answering format. This ensured that each question could be answered strictly from the provided context and
that answers were continuous text spans suitable for extractive QA models.

The annotation process was carried out using the Haystack annotation tool, which provides a visual
interface for accurately aligning questions, contexts, and answer spans. Each question–answer pair was
manually reviewed to verify correctness, clarity, and consistency. Ambiguous or low-quality samples were
removed during validation to maintain dataset reliability.

The finalized dataset consists of 1000 high-quality question–answer pairs, which were split into 800
samples for training and 200 samples for validation, as summarized in Table 1.

Table 1: Dataset breakdown.

Number of QA Pairs Split
800 Training
200 Testing

1000 Total

A sample entry from the dataset illustrates how each instance contains a context passage, a fact-based
question, and the corresponding answer span with its starting position. This structured representation
enables the model to effectively learn how to locate and extract accurate answers from technical educational
content. As shown in Fig. 1, each dataset instance is organized into context field, a question field, and an
answer annotation containing the exact span and its starting index.

Figure 1: Sample entry from JavaFactoidQA dataset.

Overall, JavaFactoidQA provides a clean and focused benchmark for training and evaluating extractive
question-answering models in the educational domain. The dataset can also serve as a foundation for future
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extensions, such as expansion to other programming languages or categorization of questions based on
cognitive levels, for example Bloom’s Taxonomy [22].

3.2 Model Selection
To evaluate the effectiveness of transformer-based architectures for domain-specific question answer-

ing, we selected three widely used pre-trained language models as the foundation for our experiments:
DistilBERT, BERT-Base, and RoBERTa-Base [2]. These models were chosen due to their strong performance
on extractive QA benchmarks, availability of open-source implementations, and compatibility with the
SQuAD dataset format.

DistilBERT is a compact and efficient version of BERT that retains approximately 97% of BERT’s
language understanding capabilities while significantly reducing model size and inference time. This makes
it suitable for low-resource environments or scenarios where computational efficiency is a priority.

BERT-Base (uncased) is a standard 12-layer transformer model pre-trained on large-scale text corpora,
including BookCorpus and English Wikipedia. It serves as a strong baseline for a wide range of natural
language processing tasks, including extractive question answering, and has been extensively evaluated on
benchmark datasets such as SQuAD.

RoBERTa-Base is an optimized variant of BERT that employs improved pre-training strategies, such as
dynamic masking and training on larger datasets. These enhancements enable RoBERTa to achieve superior
performance across several downstream NLP tasks, including question answering, particularly in scenarios
requiring deeper contextual understanding.

All three models were obtained from the Hugging Face Transformers library and were fine-tuned using
a consistent two-stage sequential strategy. Each model was first fine-tuned on the general-purpose SQuAD
v1.1 dataset and subsequently fine-tuned on the proposed JavaFactoidQA dataset. This model selection and
training strategy enabled a comparative analysis across lightweight, standard, and optimized transformer
architectures, while assessing their adaptability to technical content in programming education.

3.3 Fine-Tuning and Inference Workflow
To adapt transformer-based language models for domain-specific question answering in Java program-

ming, we employed a two-step sequential fine-tuning approach. This strategy enables the models to first learn
general question answering patterns and then specialize in domain-specific technical content.

In the first stage, the pre-trained models, namely DistilBERT, BERT-Base, and RoBERTa-Base, were
fine-tuned on the SQuAD v1.1 dataset. This stage allows the models to learn generic language understanding,
question–context alignment, and answer span prediction. During training, the models learn to identify the
start and end positions of answers within a given context using large-scale and diverse question–answer
examples. Fine-tuning on SQuAD helps stabilize training and improves performance on extractive question
answering tasks.

In the second stage, the SQuAD-fine-tuned models were further fine-tuned on the proposed JavaFac-
toidQA dataset. This step adapts the learned representations to Java-specific terminology, programming
concepts, and structured educational explanations. The extractive QA formulation is retained across both
stages to ensure consistency. Initializing this phase with weights already optimized for question answering
enables faster convergence and reduces the risk of overfitting, despite the relatively small size of the
domain-specific dataset.
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For both fine-tuning stages, each input was formatted as a single token sequence using the following
structure:

[CLS]Question [SEP]Context [SEP]

This format enables the model to distinguish between the question and the context while predicting
the most probable start and end positions of the answer span within the context. The overall training and
inference workflow is illustrated in Fig. 2.

Figure 2: Overall system flow.
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Training was performed using the Hugging Face Trainer API with the AdamW optimizer. A learning
rate of 2e−5, a batch size of 8, and 2 training epochs were used for each fine-tuning stage. The maximum
sequence length was set to 384 tokens, and a sliding window approach with a stride of 128 tokens was applied
to handle longer context passages without losing relevant information. Model performance was evaluated
using a validation set, and checkpoints were saved after each epoch. Training loss was computed using a
cross-entropy objective that measures the difference between predicted and true answer span positions.

By separating general language learning from domain adaptation, the two-step fine-tuning strategy
improves answer extraction accuracy and enhances training stability in low-resource educational settings
such as Java programming.

3.4 Preprocessing the Data
Before training, a preprocessing step was applied to ensure that the dataset conformed to the input

requirements of transformer-based models. Each question–answer instance in the JavaFactoidQA dataset
consists of a context paragraph, a corresponding question, and an answer annotated with its exact starting
character index within the context.

Model-specific tokenizers, such as Bert-Tokenizer and Roberta-Tokenizer, were used to convert textual
input into token sequences. Token-to-character alignment was maintained using offset mappings, which
enabled accurate identification of the start and end token positions corresponding to the annotated
answer spans.

Since transformer models have a fixed maximum input length, the sequence length was capped at 384
tokens. For longer context passages, a sliding window strategy with an overlap of 128 tokens was employed
to ensure that important information was not truncated. Padding was applied to maintain uniform input
lengths, and attention masks were used to indicate valid tokens during training. The final preprocessed data
was stored using the Hugging Face dataset format to facilitate efficient model training.

3.5 Inference Procedure
During inference, the trained models were provided with a question and a relevant context paragraph,

and the objective was to identify the answer span within the given context. The input was formatted in the
same manner as during training, as shown below:

[CLS] Question [SEP] Context [SEP]

The model computes probability distributions over token positions and selects the most likely start
and end positions for the answer span. When the context exceeded the maximum sequence length, it was
divided into overlapping segments using the same sliding window approach applied during preprocessing.
Predictions were generated for each segment, and the answer span with the highest overall confidence score
was selected.

3.6 Working of the Fine-Tuned BERT-Based QA Model
BERT-based models are effective at understanding contextual relationships between words due to their

self-attention mechanism, which allows each token to attend to all other tokens in the input sequence. This
capability enables the model to capture both local and global contextual dependencies within a passage.

When a fine-tuned BERT-based QA model receives a question and its corresponding context, it gener-
ates contextualized embeddings for each token. A task-specific output layer then predicts the probability of
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each token being the start or end of the answer span. These predictions are optimized using a cross-entropy
loss function during training, and model parameters are updated through backpropagation.

The combination of large-scale pre-training, domain-specific fine-tuning on Java programming content,
and robust contextual modeling enables BERT and its variants to accurately identify answer spans in
structured and technical educational texts, such as programming documentation and lecture notes.

4 Results & Discussion
The objective of this study is to evaluate the effectiveness of transformer-based models, namely

DistilBERT, BERT-Base, and RoBERTa-Base, for domain-specific question answering in the context of
Java programming education. All models were trained using a two-stage sequential fine-tuning strategy,
with initial fine-tuning on the general-purpose SQuAD v1.1 dataset followed by domain adaptation on the
proposed JavaFactoidQA dataset.

Model performance was evaluated using standard extractive QA metrics, including F1 score and Exact
Match (EM). In addition, inference time and model size were considered to analyze the trade-off between
efficiency and accuracy.

4.1 Model Performance Analysis
DistilBERT demonstrated fast convergence and competitive performance despite having significantly

fewer parameters. It performed well on fact-based and definition-oriented questions but showed limitations
when handling questions that required deeper contextual reasoning. As shown in Table 2 DistilBERT
achieved an F1 score of 86.3% and an EM score of 80.1%, while offering the fastest inference time of 45 ms
per sample.

Table 2: Performance of the model.

Model Epochs F1 Score
(%) [23,24]

Exact Match
EM %) [23,25]

Inference Time
(ms/sample)

Model Size
(M params)

DistilBERT 2 86.3 80.1 45 66
BERT-Base 2 87.2 81.2 72 110

RoBERTa-Base 2 88.7 82.4 75 125

BERT-Base exhibited improved consistency and stronger contextual understanding compared to Dis-
tilBERT. It handled moderately complex queries related to inheritance, polymorphism, and synchronization
with higher reliability. According to Table 2 BERT-Base achieved an F1 score of 87.2% and an EM score of
81.2%, confirming its effectiveness as a robust baseline for domain adaptation.

RoBERTa-Base achieved the best overall performance among the evaluated models. It demonstrated
superior contextual alignment and robustness when answering complex questions involving subtle distinc-
tions within the context. RoBERTa-Base achieved an F1 score of 88.7% and an EM score of 82.4%, benefiting
from its optimized pre-training strategy.

Overall, the trade-off between model size and performance is evident. DistilBERT offers faster infer-
ence and lower memory usage, while RoBERTa-Base achieves higher accuracy at the cost of increased
computational complexity, as summarized in Table 2.
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4.2 Comparison with Domain-Specific QA Approaches
To assess the effectiveness of the proposed approach, the performance of the sequentially fine-tuned

RoBERTa-Base model was compared with existing domain-specific QA systems reported in the literature
across finance, clinical, and legal domains.

As shown in Table 3, the proposed RoBERTa-Base model achieved an F1 score of 88.7% and an EM score
of 82.4% on the Java educational domain dataset, using a consistent two-stage fine-tuning pipeline based on
SQuAD and JavaFactoidQA.

Table 3: Performance comparison of RoBERTa-based QA model with existing domain-specific question answering
approaches.

Study/Model Domain F1 Score (%) EM (%) Notes
This Work:

RoBERTa-Base Java (Edu) 88.7 82.4 2-stage fine-tuning on
SQuAD + JavaFactoidQA

Guo et al. (2023)—BERT
+ Pseudo-Labelling Finance 84.5 76.3

Low-resource
domain-specific QA with

pseudo-annotations

Anisuzzaman et al.
(2025)—BERT Clinical QA 86.2 78.9 Annotated electronic health

records (EHR)

Jeong 2024 RoBERTa
(Korean Legal) Legal/Korean 87.1 79.5 Multilingual domain model

with custom task heads

Lalor et al. (2017)
BiLSTM + Soft Labels QA/NLI 80.4 – Soft label memorization for

general QA

It should be noted that the baseline models listed in Table 3 were not Pre-trained using the SQuAD
and JavaFactoidQA datasets. Their reported results are taken directly from the respective publications, each
employing different datasets and training strategies. In contrast, all models evaluated in this study followed
a consistent two-stage fine-tuning pipeline.

4.3 Discussion and Limitations
The results demonstrate that sequential fine-tuning effectively adapts pre-trained transformer models

to domain-specific educational content, even when only a modest-sized dataset is available. The consistent
improvements observed across all three models indicate that the proposed training strategy generalizes well
across different model sizes and architectures.

It is important to emphasize that the goal of this study is not to introduce architectural innovations,
but to evaluate a practical and reproducible training strategy for educational question answering. By
leveraging standard transformer-based models and focusing on data quality and training methodology,
the proposed approach remains accessible to educational institutions with limited computational and
annotation resources.

A limitation of this study is that evaluation was conducted primarily on the JavaFactoidQA dataset.
While this dataset is representative of Java programming education, evaluating the proposed pipeline
on additional educational QA benchmarks, such as CQuAE, would further strengthen the assessment of
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generalizability. Differences in dataset structure and annotation schemes prevented direct inclusion of these
benchmarks in the current study, and their evaluation is left for future work.

5 Conclusion
In this work, we investigated how transformer-based language models can be effectively adapted for

domain-specific question answering using a sequential fine-tuning approach. By first fine-tuning the models
on the general-purpose SQuAD dataset and subsequently adapting them to the custom JavaFactoidQA
dataset, models such as DistilBERT, BERT-Base, and RoBERTa-Base achieved strong performance on
educational content related to Java programming.

Among the evaluated models, RoBERTa-Base achieved the best overall performance, demonstrating
strong contextual understanding and accurate answer extraction, even for complex and nuanced questions.
BERT-Base also performed reliably across most question types, while DistilBERT offered faster inference
with only a modest reduction in accuracy, making it a practical choice for real-time applications or
environments with limited computational resources. Future work will extend evaluation to educational
benchmarks such as CQuAE to further validate generalizability

To assess the impact of intermediate fine-tuning on a general-purpose dataset, an ablation study was
conducted by comparing models trained directly on the JavaFactoidQA dataset with models trained using a
two-stage sequential fine-tuning strategy, namely SQuAD followed by JavaFactoidQA. As shown in Table 4,
models incorporating the intermediate SQuAD fine-tuning stage consistently outperformed those trained
solely on the domain-specific dataset across all evaluation metrics.

Table 4: Ablation study on the effect of intermediate SQuAD fine-tuning.

Model Fine-Tuning Strategy F1 Score (%) Exact Match (%)
RoBERTa-Base JavaFactoidQA only 84.9 77.8
RoBERTa-Base SQuAD JavaFactoidQA 88.7 82.4

BERT-Base JavaFactoidQA only 83.6 76.5
BERT-Base SQuAD JavaFactoidQA 87.2 81.2
DistilBERT JavaFactoidQA only 82.1 74.9
DistilBERT SQuAD JavaFactoidQA 86.3 80.1

For RoBERTa-Base, intermediate SQuAD fine-tuning resulted in an improvement of 3.8% in F1 score
and 4.6% in Exact Match, indicating more accurate answer span prediction and improved contextual
alignment. Similar performance gains were observed for BERT-Base and DistilBERT. In addition to these
quantitative improvements, models trained without SQuAD fine-tuning exhibited slower convergence and
less stable answer boundary detection during training.

These findings demonstrate that intermediate fine-tuning on a large-scale general QA dataset plays a
crucial role in stabilizing training and enhancing performance when adapting transformer-based models to
low-resource educational domains. The results strongly justify the use of a two-stage sequential fine-tuning
pipeline for domain-specific question answering tasks in programming education.

Future work will extend the evaluation of the proposed framework to additional educational bench-
marks and advanced domain-specific QA models, including knowledge-aligned and preference-based
approaches, to further assess comparative performance and generalizability.
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