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ABSTRACT: With the large-scale deployment of the Internet of Things (IoT) devices, their weak security mechanisms
make them prime targets for malware attacks. Attackers often use Domain Generation Algorithm (DGA) to generate
random domain names, hiding the real IP of Command and Control (C&C) servers to build botnets. Due to the
randomness and dynamics of DGA, traditional methods struggle to detect them accurately, increasing the difficulty
of network defense. This paper proposes a lightweight DGA detection model based on knowledge distillation for
resource-constrained IoT environments. Specifically, a teacher model combining CharacterBERT, a bidirectional long
short-term memory (BiLSTM) network, and attention mechanism (ATT) is constructed: it extracts character-level
semantic features via CharacterBERT, captures sequence dependencies with the BiLSTM, and integrates the ATT for key
feature weighting, forming multi-granularity feature fusion. An improved knowledge distillation approach transfers the
teacher model’s learned knowledge to the simplified DistilBERT student model. Experimental results show the teacher
model achieves 98.68% detection accuracy. The student model maintains slightly improved accuracy while significantly
compressing parameters to approximately 38.4% of the teacher model’s scale, greatly reducing computational overhead
for IoT deployment.
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1 Introduction
With the rapid development of the Internet of Things (IoT) technology, billions of intelligent devices

have achieved widespread interconnection and deeply penetrated key fields such as smart homes, industrial
control, and intelligent transportation. However, IoT devices are generally designed with a focus on
performance over security, resulting in weak security mechanisms and making them highly vulnerable to
malware infections. Among various attack methods, the Domain Generation Algorithm (DGA) is employed
by malware to dynamically create malicious domains for launching attacks. In botnets, the DGA serves as a
key bridge to the zombie Command and Control (C&C) server, allowing attackers to remotely control a large
number of infected devices [1]. For example, the notorious Zeus Botnet, Conficker Worm and other malware
use DGA domains to communicate with control servers, then steal user data and launch Distributed Denial
of Service (DDoS) attacks. This DGA-based attack mode significantly extends the lifecycle of malicious
activities and poses a severe security threat to IoT infrastructure. DGA detection is more challenging to
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lightweight compared to other security tasks due to three unique characteristics: (1) DGA domains are
dynamically generated with numerous variants, requiring the model to retain strong feature representation
capabilities, and lightweighting is prone to reducing generalization; (2) DGA detection in IoT scenarios needs
to process DNS traffic in real-time, with stricter constraints on memory usage (usually <500 MB) and latency
(required <100 ms) [2], while other security tasks such as static malware detection can be processed offline;
(3) DGA domain features are sparse, and key distinguishing information is easily lost during lightweighting,
making it harder to balance performance and resource consumption compared to structured malware
features. To address these challenges, recent studies have made improvements in the following aspects:
(1) Developing high-precision new DGA detection models using advanced deep learning technologies;
(2) Optimizing the deployment efficiency of trained models through lightweight technical means such as
Knowledge Distillation, Embedding Dimensionality Reduction, and Quantization Compression. Thus, the
research proposed in this paper focuses on the design of lightweight deep learning DGA detection models for
IoT scenarios, striving to achieve efficient DGA detection on IoT devices with limited resource constraints
and providing a technically feasible solution for building a secure IoT ecosystem.

Current research on DGA detection algorithms can be primarily categorized into two types: methods
based on traditional machine learning and methods based on deep learning. In the research on DGA
malicious domain detection using traditional machine learning, researchers manually extract DGA features
and input them into classifiers. Yang et al. [3] adopt a strategy combining semantic analysis and an
ensemble classifier to improve the detection performance of phrase-based DGA domains; Selvi et al. [4]
and Cucchiarelli et al. [5] respectively extracted features from the perspectives of masked N-gram features
and Jaccard similarity, and combined classification models such as Random Forest and Support Vector
Machine (SVM) to achieve efficient and robust DGA domain detection. To tackle the challenges of real-time
performance and computational complexity, Ma et al. [6] designed an Rf-C5 model based on an improved
Relief algorithm and C5.0 decision tree, while Mao et al. [7] proposed a DNS defense model integrating multi-
features and multi-classification algorithms, both of which effectively improved detection performance.
Additionally, researchers have explored the classification of DGA domain families and the extraction of
information entropy features, further expanding the detection paradigm. However, these methods still suffer
from issues such as weak generalization performance for unknown domains, over-reliance on manual feature
engineering, and data privacy protection concerns.

Current research indicates that deep learning methods exhibit superior generalization capabilities when
dealing with new DGA variants [8]. In the research on DGA malicious domain detection using deep
learning, a variety of neural network-based models have been applied to enhance detection performance.
Yang et al. [9] proposed an improved Convolutional Neural Network (CNN) algorithm, which combines
a multi-branch convolution module and a focal loss function to strengthen the ability to identify DGA
domains; Woodbridge et al. [10] and Qiao et al. [11] respectively used long short-term memory (LSTM)
networks and attention mechanisms (ATT) to achieve real-time and efficient DGA domain detection, which
is particularly suitable for large-scale network environments without the need for additional information
support; Duc Tran et al. [12] developed the LSTM.MI algorithm, which effectively mitigates the class
imbalance problem in DGA multi-classification, while the framework proposed by Morbidoni et al. [13],
which integrates n-gram embedding and LSTM.MI, improves the classification accuracy and stability of the
model in data-scarce scenarios. Furthermore, to address challenges such as low-randomness DGA domains
and dictionary-generated DGA, research teams have explored innovative methods including the ATT-GRU
model, composite models, and the eXpose neural network structure. These deep learning models have
achieved remarkable results in improving detection accuracy and reducing false positive rates, but they still
face problems such as data privacy protection and cross-institutional data sharing.
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This study focuses on constructing a lightweight DGA detection framework suitable for IoT environ-
ments. Its main contributions include: (1) Proposing a CharacterBERT-BiLSTM-ATT hybrid model tailored
for DGA detection. The integration innovation lies in the cascaded architecture of “character-level encoding-
sequence modeling-dynamic weighting”: the character embedding output of CharacterBERT is used as the
input of BiLSTM to capture sequential dependencies of domain names, and the ATT layer performs cross-
layer weighted fusion of BiLSTM hidden states and CharacterBERT embeddings to emphasize discriminative
features. (2) Achieving an efficient model lightweight through an optimized feature-level knowledge distil-
lation strategy. We take the well-performing CharacterBERT-BiLSTM-ATT as the teacher model and the
lightweight DistilBERT as the student model. The distillation innovation lies in the “dual-modal input fusion”
design: the student model (DistilBERT) simultaneously receives two types of inputs—CharacterBERT-style
character-level indices and DistilBERT’s standard token-level inputs. A weighted fusion of hard labels and
the teacher model’s feature outputs is adopted for distillation loss, which is more adaptive to DGA detection
than distillation schemes tailored for general natural language processing (NLP) tasks. This strategy reduces
the model parameter size from 650 MB to 250 MB while maintaining comparable detection accuracy.

2 Related Work

2.1 Domain Generation Algorithm
As the core technology for malware to generate random domains to maintain C&C communication, the

Domain Generation Algorithm (DGA) dynamically generates a large number of domains through methods
such as pseudo-random number generation, vocabulary combination, or time seeds to evade static blacklist-
based detection mechanisms [14]. In the Internet of Things (IoT) environment, DGA attacks exhibit the
following characteristics: First, IoT devices are resource-constrained and cannot deploy complex detection
algorithms; Second, the wide distribution of devices leads to high data fragmentation; Third, botnets often
use IoT devices as springboards to launch large-scale DDoS attacks using DGA domains [15]. With the
continuous evolution of DGA technology, the difficulties in detecting such domains are concentrated in two
aspects: the random nature renders traditional rule-based matching methods ineffective, and the dynamic
generation feature requires detection models to achieve real-time updates [16].

2.2 CharacterBERT
CharacterBERT [17] is an innovative natural language processing model that integrates the dynamic

contextual representation mechanism of ELMo (Embeddings from Language Models) into the classic BERT
architecture. Through character-level modeling, it significantly enhances the contextual representation
ability of words. Unlike the traditional BERT model that relies on a fixed subword vocabulary, Character-
BERT uses a Convolutional Neural Network (CNN)-based character encoder as its core component, which
can dynamically generate semantic representations based on the character sequence of any input word.
This architecture effectively avoids the limitations of predefined vocabularies and demonstrates excellent
robustness when dealing with professional terms, domain-specific new words, and spelling errors, making
it particularly suitable for professional text analysis in fields such as medicine and law [18].

The technical innovations of this model include the following dual mechanisms: Architecture Level: It
extracts the morphological features of words through character-level convolution operations and integrates
the ATT to generate context-related word vectors, systematically alleviating the vocabulary fragmentation
problem caused by traditional word segmentation methods. Application Level: Its character-driven design
endows the model with strong cross-domain transfer capabilities—it can quickly adapt to new domain data
without reconstructing the vocabulary, and only requires a small amount of fine-tuning to improve the
performance of downstream tasks such as text classification and sequence labeling.
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2.3 Bidirectional Long Short-Term Memory Networks
A BiLSTM network [19,20] is an extended form of the standard LSTM network architecture. It improves

sequence modeling capabilities by introducing a bidirectional information flow mechanism. The traditional
LSTM model can only capture the historical information of the input sequence (i.e., past context), while
BiLSTM integrates two independent LSTM branches—a forward LSTM and a backward LSTM. At each time
step, it synchronously integrates the forward sequence information and backward sequence information of
the current morpheme, thereby significantly enhancing the model’s ability to represent the context of the
entire sequence.

Through the fusion of information in both forward and negative directions, BiLSTM can use the left and
right contexts when modeling language sequences, thereby enhancing the model’s ability to express complex
syntactic structures and long-distance dependencies, especially suitable for natural language processing tasks
that require fine semantic understanding, such as named entity recognition, sentiment classification, and
medical text analysis. The BiLSTM structure enables the model to obtain complete contextual information
for each position in the sequence simultaneously, a feature that is crucial in many tasks that require precise
contextual understanding. The bidirectional processing mechanism of BiLSTM provides an effective way
to solve this kind of problem. The advantage of BiLSTM over standard LSTM is the ability to perform
more accurate feature extraction with full contextual information, but at the cost of increased computational
complexity (nearly twice as much) and the inability to be used for real-time sequence prediction (because
the complete sequence is required as input).

2.4 Knowledge Distillation
Knowledge Distillation [21] is a model compression and knowledge transfer technology. Its core is to

transfer the knowledge learned by a high-performance but complex teacher model to a student model with
a simpler structure and higher computational efficiency, enabling the student model to significantly reduce
the number of parameters and computational overhead while maintaining performance close to that of the
teacher model.

The essence of Knowledge Distillation is imitation learning, which enables the student model to learn
the representation characteristics of the teacher model rather than just its final predictions. The specific
implementation process includes: first, training a high-precision but complex teacher model to achieve high
performance on the target task; then, designing a structurally simplified student model and training the
student model using the output of the teacher model as a supervision signal.

The student model has significantly fewer parameters and lower computational requirements, so it can
be deployed in resource-constrained environments such as mobile terminals and embedded devices. By
transferring the teacher’s knowledge, the performance of the student model often surpasses that of a directly
trained model of the same scale. Soft labels provide rich supervision information, promoting the student
model to learn the potential patterns of data and reducing the risk of overfitting. Knowledge from multiple
teacher models can be distilled into a single student model to achieve the effect of ensemble learning.

3 Proposed Method

3.1 Teacher Model
3.1.1 Overall Teacher Model Architecture

The malicious domain detection algorithm based on CharacterBERT-BiLSTM-ATT is a comprehensive
detection method that integrates the advantages of multiple deep neural network structures. In this structure,
the CharacterBERT module is first used to perform character-level encoding and semantic representation
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on the input domain name string, converting the original domain name text into a character-level vector
matrix rich in contextual semantics. Next, the BiLSTM-ATT module is used to further capture the semantic
relationships and feature dependencies before and after the domain name sequence and highlight important
features through the ATT to obtain more accurate feature expressions.

The combined structure of CharacterBERT-BiLSTM-ATT shows significant advantages in the Domain
Generation Algorithm (DGA) detection task. Malicious domains generated by DGA often have irregular
structures and strong randomness, making them difficult to effectively identify by traditional methods. The
CharacterBERT module can handle unknown characters and spelling variations, so that the model is no
longer limited to a predefined vocabulary and can efficiently process random, variant, or abnormal domain
name character combinations. Through the BiLSTM and the ATT of the BiLSTM-ATT module, the model’s
ability to perceive the context of characters before and after, and the global feature dependence can be further
improved. This enables the algorithm to effectively focus on the key abnormal signals in the malicious domain
name string and improve the recognition accuracy and robustness of new, unknown, and variant DGA
domains. This comprehensive architecture organically integrates the refined feature capture at the character
level, the pattern recognition ability of the convolutional neural network, and the dynamic weight assignment
of the ATT, thereby significantly improving the overall performance of malicious domain detection.

The integration innovation of the model lies in the cascaded architecture of “character encoding-
sequence modeling-dynamic weighting”: the output of CharacterBERT is used as the input of BiLSTM, and
the ATT layer performs cross-layer weighted fusion of BiLSTM output and CharacterBERT embedding
instead of simple concatenation. In the training strategy, DGA domain-specific corpus is introduced for
fine-tuning during CharacterBERT pre-training, and a “warm-up learning rate + early stopping” strategy
is adopted to avoid gradient vanishing. This integration method and training optimization make the model
more adaptive to DGA detection tasks.

3.1.2 CharacterBERT Encoding Module
In terms of architecture and training strategy, CharacterBERT is consistent with the traditional BERT

model—both use a Transformer structure to capture contextual semantics and adopt methods such as
masked language modeling and next-sentence prediction for pre-training. In addition, CharacterBERT
avoids reliance on a fixed vocabulary; when adapting to a new domain, it does not need to create a new
vocabulary or conduct additional training, thereby improving the flexibility and efficiency of cross-domain
transfer. The CharacterBERT component adopts the core module of the full architecture, including 12 layers
of Transformer encoders. Compared with token-level models such as BERT-base, CharacterBERT does not
rely on a predefined vocabulary and directly processes individual characters. In the test set, the detection
accuracy for variant DGA domains (such as domains containing typos and special symbols) reaches 98.9%,
which is higher than the 96.3% of token-level models. Taking the malicious domain “xqz92mdkf.net” as an
example, the token-level model splits it into meaningless subwords, while CharacterBERT can extract the
sequence features of random characters, providing effective support for subsequent detection. In domain
name processing tasks, CharacterBERT shows significant advantages compared with the traditional BERT
model. Since domain names often contain special characters, random combinations, and complex variations,
the fixed vocabulary mechanism of the traditional BERT model usually cannot fully characterize these
features and may lead to semantic fragmentation. As shown in Fig. 1, the CharacterBERT model achieves
effective feature extraction of domain name sequences through character-level embedding (Character
embedding) and finally converts the original character-level input into a numerical matrix that can be used
for downstream feature extraction. The following takes the domain name text “baidu.com” as an example to
elaborate on the entire data processing process in detail.

http://baidu.com
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Figure 1: CharacterBERT architecture diagram

At the beginning of the process, the domain name string “baidu.com” to be analyzed is regarded as the
minimum unit of the model input. According to the character-level embedding mechanism of the model,
the input string is split into a character sequence character by character, i.e., “b”, “a”, “i”, “d”, “u”, “.”, “c”, “o”,
“m”. The steps in the diagram show the splitting process using the word “baidu.com” as an example, while in
the preprocessing stage of this study, the domain name characters are split accordingly. The CharacterBERT
model performs character embedding on each split character. Specifically, each character is mapped to the
corresponding character embedding vector through a learnable embedding matrix. This step is marked as
“Character embeddings” in the diagram, and the generated character-level embedding vector is denoted as
→

e , for example, the character embedding vector corresponding to the character “e” in “baidu.com” can be
expressed as →e e .

Subsequently, these character embedding vectors are used as the input of the Convolutional Neural
Network (CNN) to capture local features and contextual information between characters. The main function
of the CNN layer is to extract feature combinations of different character subsequences in the domain name
string, such as local patterns or specific combination rules that may exist between characters. Assuming that
the i-th convolution kernel acts on the continuous character embedding subsequence →e j∶ j+k−1 of the domain
name, where k represents the size of the convolution kernel, the convolution operation can be formally
expressed as:

ci = f (W ⋅ →e j∶ j+k−1 + b) (1)

http://baidu.com
http://baidu.com
http://baidu.com
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In the formula, W represents the weight matrix of the convolution kernel, b represents the correspond-
ing bias term, f represents the activation function, and the rectified linear unit (ReLU) activation function
is usually selected, i.e.:

f (x) =max (0, x) (2)

After the convolution operation, the local features generated by each convolution kernel undergo feature
selection through the Max Pooling layer to retain the most significant feature representations. The feature
vectors extracted by the CNN layer are input into the Highway Network layer. The Highway Network is used
to smooth the feature expression output by the CNN, enhance the representativeness of features, and at the
same time alleviate the problems of gradient disappearance or gradient explosion that may occur during the
training of deep networks. The output features of the Highway Network can be calculated by the following
formula:
→

y = T (→x) ⊙H (→x) + (1 − T (→x)) ⊙ →x (3)

where,
→

x represents the output features of the CNN layer, H (→x) represents the nonlinear transformation of

the Highway Network, and T (→x) is the gate unit (Gate), which is calculated through the Sigmoid activation
function and used to adjust the degree of information flow.

After the steps of character embedding, convolution feature extraction, and feature fusion of the deep
network, the domain name “baidu.com” is converted into a fixed-dimensional vector representation→e domain .
This vector will be used as the input of the subsequent modules of the CharacterBERT model to perform
more complex and in-depth malicious domain name recognition and analysis tasks. Through the detailed
character-level feature extraction method, CharacterBERT enables the model to effectively capture spelling
variations, confusing characters, and other subtle structural features, thereby improving the accuracy and
robustness of malicious domain name recognition.

3.1.3 Bidirectional Long Short-Term Memory-Attention Feature Extraction Module
The BiLSTM-ATT [22,23] module proposed in this paper introduces an ATT based on BiLSTM. By

assigning different weights to different parts of the text sequence, it enhances the model’s ability to focus on
key features. In sequence feature extraction, the traditional LSTM or BiLSTM usually adopts a fixed feature
summarization method, which is difficult to dynamically highlight important information according to the
task. In contrast, the ATT allows the model to automatically and selectively focus on key features or segments
in the sequence by calculating the attention weight of each time step, thereby improving the pertinence of
feature extraction. The character-level semantic embeddings output by CharacterBERT (dimension: 768) are
fused with the sequence-dependent features generated by the BiLSTM layer through splicing. Specifically,
the output dimension of the BiLSTM layer (hidden size: 128, bidirectional) is 256, and the stitching operation
merges the two types of features along the feature dimension to generate a fusion feature vector with
dimension 1024. This fusion strategy preserves the integrity of character semantic features and sequence-
dependent features, providing sufficient information for subsequent the ATT to focus on key patterns of
DGA domain names. As shown in Fig. 2, this module includes an input layer, the BiLSTM layer, the ATT
layer, and the output layer.

http://baidu.com
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Figure 2: BiLSTM-ATT structure diagram

In BiLSTM, the input sequence is fed into two LSTM networks (forward and backward), respectively.
The forward LSTM processes the sequence from front to back and generates the forward hidden state

→

h t at
each time step:
→

h t = ForwardLSTM(xt ,
→

h t−1) (4)

Meanwhile, the backward LSTM processes the same sequence from back to front and generates the
backward hidden state

←

h t :
←

h t = BackwardLSTM(xt ,
←

h t+1) (5)

Finally, the hidden states of the two directions are concatenated to form the output representation at
this time step:

ht = [
→

h t ;
←

h t] (6)

where xt is the input at the current time step,
→

h t−1 and
←

h t+1 are the hidden states of the previous (or next)
time step in the forward and backward LSTMs, respectively, and [a; b] represents the vector concatenation
operation, forming a comprehensive representation containing bidirectional contextual information.

In order to further improve the model’s ability to express the features of text sequences, this study
introduces an ATT to dynamically pay attention to the key information in the sequence. The ATT adopted
in this paper is the Additive Attention (also known as Bahdanau Attention). The importance score ut for
each timestep feature is calculated by a single-level linear transformation and using the nonlinear activation
function tanh:

ut = tanh (Wa ht + ba) (7)

Then, the attention weight αt of each position feature is calculated by the Softmax function:
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αt = Softmax (vT
a ut) (8)

where, Wa , ba , and va are the learnable parameters in the model. According to the calculated attention
weight αt , the output features of Bi-LSTM are weighted and summed, and the final attention representation
is obtained:

Hatt =
T
∑
t=1

αt ht (9)

To prevent the model from overfitting, use Dropout regularization after the feature representation:

Hdro pout = Dropout (Hatt) (10)

BiLSTM-ATT better senses the semantic association of preceding and subsequent characters in the
domain name string with the help of a two-way structure, and further highlights the features of abnormal
characters or key character sequences through the ATT.

3.2 Student Model
DistilBERT [24] is obtained using knowledge distillation technology on the basis of CharacterBERT, and

the basic structure of the CharacterBERT model is the same as BERT, but the number of Transformer layers
has been adjusted, and the token-type embedding and pooler are removed. The model size of DistilBERT is
only 40% of the size of the original BERT model, and the model inference time is shortened to 60% of the
BERT model, with performance on downstream tasks similar to that of BERT. The selection of DistilBERT
as the student model in this study is based on three key considerations tailored to IoT DGA detection
requirements:

• Its structural compatibility with the teacher model ensures efficient knowledge transfer. Both DistilBERT
and CharacterBERT are derived from the BERT architecture and rely on Transformer encoders for
contextual feature extraction, avoiding structural mismatches that could hinder the distillation of
character-level semantic knowledge and sequence-dependent features learned by the teacher model. This
compatibility is critical for retaining the teacher model’s strong performance in detecting variant DGA
domains with random characters or spelling variations.

• Its lightweight design aligns with IoT resource constraints. DistilBERT reduces computational overhead
by pruning redundant Transformer layers and removing non-essential components, resulting in a
parameter size and memory footprint that meet the strict requirements of IoT edge devices. Compared
with other lightweight models such as TinyBERT, DistilBERT maintains a higher hidden layer dimen-
sion, which is conducive to preserving the fine-grained feature representation capability required for
DGA detection.

• Its proven effectiveness in text classification tasks provides a reliable foundation. DistilBERT has
demonstrated robust performance in natural language processing tasks involving short text and irregular
sequences—scenarios highly consistent with DGA domain detection. Unlike specialized lightweight
models that require task-specific fine-tuning, DistilBERT’s pre-trained generalizability reduces the risk
of overfitting to limited DGA datasets, ensuring better generalization to unseen malicious domain
variants.

The basic structure of the DistilBERT model is shown in Fig. 3. After inputting a text sequence into
the DistilBERT model, DistilBERT processes the input sequence to generate a text serialization vector.
DistilBERT segments sentences using “[CLS]” and “[SEP]”, and the segmented sentences are represented in
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the model as E, denoting a serialized vector representation of each token in the input text for subsequent
model training. Each word is transformed into a feature vector Tn rich in text semantic information after
a multi-layer Transformers Encoder structure, which serves as the final output of DistilBERT. DistilBERT
can dynamically represent word vectors at the sentence level based on the vocabulary itself and sentence
context information; when polysemy appears in the input text, the model combines the contextual language
environment of the word to obtain different word vector outputs. After pre-training, the DistilBERT model
can obtain the eigenvector T[CLS] containing the semantic information of the text context. In addition, the
DistilBERT model converts the word sequence E = [E1, E2, . . ., En] into the corresponding word vector T =
[T1, T2, . . ., Tn], enabling the model to further capture local features of the text.

Figure 3: DistilBERT structure diagram

3.3 Knowledge Distillation Module
The teacher model shows significant accuracy advantages over traditional methods in DGA detection.

However, due to the deployment target of the model is IoT devices, its memory and computing power
resources are limited, coupled with the need for real-time recognition, which puts forward high requirements
for the design of algorithm models. Therefore, this paper adopts the method of knowledge distillation to
transfer the knowledge learned in the high-precision teacher model to lightweight students through the
training process of offline distillation by reconstructing the combinatorial loss function model, as shown
in Fig. 4. This allows the student network to output as close as possible to the distribution of the teacher
network at a small network scale, thereby improving its convergence speed and performance, which is more
suitable for deployment on IoT devices.
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Figure 4: Knowledge distillation process diagram

In the training process of knowledge distillation, the loss function of the student network contains two
parts: hard loss Lhard and soft loss Lsoft. The soft label loss with a temperature parameter T and the hard label
classification loss are weighted and fused. The loss function is defined as:

L = α ⋅ Lsoft + (1 − α) ⋅ Lhard (11)

where α is the loss weight, Lsoft is the KL (Kullback-Leibler) divergence between the outputs of the teacher
and student models, and Lhard is the cross-entropy loss.

The soft loss and hard loss are specifically defined as follows:
Soft loss (Lsoft): Uses KL divergence to calculate the difference between the output probability distri-

butions of the teacher and student models, which can capture the potential feature patterns learned by the
teacher model. The formula is:

Lsoft = KL (pteacher (T) ∥ pstudent (T)) (12)

where p(T) = Softmax ( l o g i ts
T ), T is the distillation temperature, and logits are the model output before nor-

malization.
Hard loss (Lhard): Uses cross-entropy loss to constrain the classification accuracy of the student model

on real labels, avoiding deviation from the correct classification direction due to over-reliance on soft labels.
The formula is:

Lhard = −
→

y ⊙ log (pstudent) (13)

where y is the one-hot encoded real label, and pstudent is the probability output of the student model after
Softmax (T = 1).
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4 Experiments

4.1 Experimental Setting
To achieve the efficient deployment of the DGA malicious domain detection model in IoT devices,

this study applies Knowledge Distillation technology to lightweight the original CharacterBERT-BiLSTM-
ATT model. The original hybrid model is used as the teacher model, and DistilBERT and TinyBERT are
introduced as the student model architectures. Knowledge transfer is used to compress the model parameters,
significantly reducing the computational resource overhead while maintaining the same detection accuracy,
thereby adapting to the hardware limitations of IoT edge devices. To prove the reliability of our experimental
results, we have released the source code to https://github.com/CHEAMli/DGA_detect_ditilBERT.

4.1.1 Hardware Environment
The hardware environments used for model training and deployment testing are shown in Table 1,

including the configuration parameters of the training server and IoT edge device, which ensure the
feasibility of model training efficiency and edge deployment verification.

Table 1: Hardware environment configuration

Device type Parameter configuration Application scenario
Training server NVIDIA GeForce RTX4090 with 16 GB VRAM Model distillation and training

IoT edge device ARM Cortex-A53 Quad-Core Processor (1.5 GHz),
2 GB RAM, 16 GB Storage

Lightweight model deployment
testing

4.1.2 Parameter Configuration
Key parameter settings of each model component and training process are detailed in Table 2. These

parameters are determined through multiple pre-experiments to balance model performance and com-
putational efficiency, such as the hidden layer dimension of CharacterBERT and DistilBERT, the number
of Transformer layers, and hyperparameters related to knowledge distillation (temperature T and loss
weight α).

Table 2: Model parameter settings

Model components Parameter configuration

CharacterBERT

Hidden layer dimension 768, number of multi-head
attention heads 12, number of layers 12, CNN filter sizes

3/5/7, number of CNN filters 128, CNN activation
function ReLU, pooling window size 2

DistilBERT

Hidden layer dimension 768, number of multi-head
attention heads 12, number of layers 6, CNN filter sizes

3/5/7, number of CNN filters 128, CNN activation
function ReLU, pooling window size 2

(Continued)

https://github.com/CHEAMli/DGA_detect_ditilBERT
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Table 2 (continued)

Model components Parameter configuration

TinyBERT

Hidden layer dimension 384, number of multi-head
attention heads 6, number of layers 4, CNN filter sizes

3/5/7, number of CNN filters 64, CNN activation function
ReLU, pooling window size 2

Distillation
temperature
parameter

T = 5

Distillation loss
weight α = 0.7

Model training epochs 50 epochs

Local training batch
size 256

4.2 Datasets
In the field of DGA malicious domain detection, classic datasets such as the DGArchive Dataset, 360

DGA Dataset, Alexa Top 1 million, Tranco Dataset, and related private datasets are mainly used. These
datasets collect a large number of DGA malicious domains and are established to provide researchers with
diverse, authentic, and challenging samples, so as to promote the effective evaluation and improvement of
DGA malicious domain detection algorithms. The dataset categories used in this paper are as follows:

• DGArchive Dataset [15]: Maintained by Daniel Plohmann and supported by Fraunhofer FKIE, it is
a public dataset dedicated to DGA (Domain Generation Algorithm) research. The dataset contains
approximately 45.7 million malicious domains from 62 different DGA families and approximately
15.3 million benign Non-Existent Domain (NXDomain) domains, which can be used for comparative
analysis and model training. This data is widely used in security scenarios such as malicious domain
identification, botnet research, and DGA detection.

• 360 DGA Dataset [25]: Provided by the Qihoo 360 Netlab Open Data Platform, it covers DGA domains
generated by more than 50 types of malware, Exploit Kit domains, C2 control end addresses, etc., and is
suitable for model training, rule formulation, and threat intelligence research.

• Tranco Dataset [26]: Aims to provide a more stable, fair, and less manipulable domain ranking system.
It generates ranking results by integrating multiple sources (such as Crux, Umbrella, Majestic, etc.).
Compared with traditional website rankings, Tranco is more suitable for long-term trend analysis and
security research.

• Real Network Domain Dataset (RND): This dataset is a collection of domain name samples captured at
the network exit of a university in a certain province of China within a certain period of time, including
the ports and access volumes of the domains. The dataset contains a total of more than 1 million real
domain name instances.

For the normal domain dataset, we select a suitable number of normal domains, set the character length
of the real network domain dataset to less than 20, and select domains with relatively large access volumes
as normal domains.
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For the malicious domain dataset, this paper selects an appropriate number of 32 DGA categories
from 137 DGA categories in the latest DGArchive dataset and 12 DGA categories from 67 categories in the
360 DGA dataset. When the amount of data exceeds 20,000, we select the first 20,000 data items of the
DGA category to finally form the DGA malicious domain dataset. After preprocessing, the DGA malicious
domain dataset contains a total of approximately 650,000 pieces of data, and the normal dataset contains
approximately 630,000 pieces of data. When training the model, the cross-validation method is used to divide
the dataset, and the number of samples in the training set, validation set, and test set is divided in a ratio of
8:1:1.

4.3 Teacher Model Experiment
4.3.1 Teacher Model Ablation Experiment

In order to comprehensively verify the effectiveness of each module of the CharacterBERT-BiLSTM-
ATT proposed in this paper, an ablation experiment is designed to further clarify the contribution of each
module to the overall performance of the model. The results of the ablation experiment are shown in Table 3.

Table 3: Teacher model ablation experimental results

Model Accuracy% F1 Score% Precision% Recall%
CharacterBERT-

BiLSTM-ATT 98.68 98.64 99.09 98.2

BERT-BiLSTM-ATT 96.12 96.02 96.11 95.93
No BiLSTM 95.26 95.19 94.76 95.63

No ATT 98.23 98.19 98.4 97.98

The ablation experiments further confirmed the significant contribution of CharacterBERT, BiLSTM
and ATT modules in improving the overall classification performance, among which the performance of
CharacterBERT model and BiLSTM was the most significant, while the ATT further optimized the model
performance. This fully reflects the rationality and effectiveness of the model structure design in this paper.

4.3.2 Teacher Model Comparison Experiment
To more comprehensively verify the effectiveness of the teacher model proposed in this paper, several

current mainstream and representative models are selected for comparative analysis.

• APCNN-BiLSTM-ATT Model: This model combines APCNN and BiLSTM and uses an ATT to capture
multi-scale features of text, which is suitable for text classification tasks with rich semantics.

• CNN-BiGRU Model: This model performs word splitting and one-hot encoding, uses CNN to extract
local features, and uses BiGRU to extract rich feature information, which improves the model’s
understanding of text context and is suitable for classification tasks sensitive to sequence context.

• BERT-CNN-GRU-ATT Model: Combines BERT to provide contextual semantic representation, and
enhances the domain name category recognition ability through the parallel structure of CNN and
GRU, effectively extracts the relationships between domain names, and improves the accuracy of
text classification.

• CNN-BiLSTM Model: Uses Word2Vec and CNN to extract domain name features, and BiLSTM extracts
contextual features in a fine-grained manner, which effectively uses contextual information and improves
the delicacy and comprehensiveness of text feature capture.



Comput Mater Contin. 2026;87(1):85 15

The comparison experiment results are shown in Table 4. The teacher model proposed in this paper
performs best in accuracy, F1 score, and precision. Compared with the second-best APCNN-BiLSTM-
ATT model, it has accuracy improvement of 0.20%, F1 score improvement of 0.19%, and a significant
0.43% improvement in precision. In recall rate, the model in this paper reaches 98.2%, slightly lower
than the 98.25% of the APCNN-BiLSTM-ATT model, with a 0.05% difference. This shows the model can
effectively capture text semantic information and excel in relevant text identification. Although it has a
slight recall-rate deficiency, its overall performance advantage is obvious. Compared with other models, its
performance advantage is more prominent, verifying the effectiveness of BiLSTM-ATT mechanism in text
classification. Through comparison with mainstream models, it shows advantages in text feature extraction,
multi-scale information fusion, and classification accuracy, verifying the effectiveness and reliability of the
CharacterBERT-BiLSTM-ATT model.

Table 4: Binary classification experimental results

Model Accuracy% F1 Score% Precision% Recall%
APCNN-BiLSTM-ATT 98.48 98.45 98.66 98.25

CNN-BiGRU 97.47 97.42 97.48 97.37
BERT-CNN-GRU-ATT 97.65 97.6 97.64 97.57

CNN-BiLSTM-ATT 96.61 96.57 96.1 97.04
CharacterBERT-BiLSTM-

ATT(Ours) 98.68 98.64 99.09 98.2

4.4 Knowledge Distillation Experiments
In this paper, DistilBERT and TinyBERT are selected as student models in Knowledge Distillation to

learn from the pre-trained teacher model CharacterBERT. A comparative experiment is conducted to analyze
which student model is more applicable. The comparison experiment results are shown in Fig. 5.

Figure 5: Comparison diagram of experimental results of teacher model and student models
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4.4.1 Sensitivity Analysis of Knowledge Distillation Hyperparameter
To verify the effectiveness of the selected hyperparameters (distillation temperature T and loss weight

α), two groups of control experiments are designed:
Fix α = 0.7, test the model performance when T = 3, 4, 5, 6, 7. The results are shown in Table 5.

Table 5: Comparison experiment of temperature

Temperature T Accuracy%
3 98.76
4 99.21
5 99.53
6 99.35
7 99.02

When T = 5, the model achieves the best comprehensive performance. When T is too low (T < 5), the
soft label distribution is too concentrated, and the student model cannot fully learn the potential knowledge
of the teacher model; when T is too high (T > 5), the soft label distribution is too scattered, introducing
noise interference.

Fix T = 5, test the model performance when α = 0.5, 0.6, 0.7, 0.8, 0.9. The results are shown in Table 6.

Table 6: Comparison experiment of loss weight

Loss weight α Accuracy%
0.5 97.46
0.6 98.11
0.7 99.53
0.8 98.55
0.9 98.02

The results show that α = 0.7 achieves the optimal balance between soft loss and hard loss: when α <
0.7, the knowledge transfer is insufficient; when α > 0.7, the constraint of hard labels is weakened, leading to
a decrease in classification accuracy.

4.4.2 Model Size and Efficiency Metrics
To evaluate the lightweight effect of the student models after knowledge distillation, we tested the

parameter size, inference latency on IoT edge devices, and memory usage of the teacher model and student
models. The results are shown in Table 7.

Table 7: Model size and efficiency metrics experimental results

Model Parameter size Inference latency (IoT
edge device)

Memory usage

CharacterBERT
(Teacher)

650 MB 128 ms 890 MB

(Continued)
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Table 7 (continued)

Model Parameter size Inference latency (IoT
edge device)

Memory usage

DistilBERT (Student) 250 MB 45 ms 270 MB
TinyBERT (Student) 180 MB 38 ms 220 MB

4.4.3 Binary Classification Performance
The binary classification performance of the teacher model and student models is shown in Table 8.

Notably, the distilled DistilBERT model achieves an accuracy of 99.53%, which not only exceeds the
non-distilled DistilBERT (97.49%) but also outperforms the teacher model (98.87%). This indicates that
the knowledge distillation strategy effectively transfers the teacher model’s learning experience to the
student model.

Table 8: Binary classification experimental results of teacher model and student models

Model Accuracy% Precision% Recall% F1 Score%
CharacterBERT (Teacher) 98.87 98.92 98.76 98.84
DistilBERT (Not Distilled) 97.49 95.95 98.88 97.40

DistilBERT (Distilled) 99.53 99.48 99.57 99.52
TinyBERT (Distilled) 97.24 91.20 97.29 94.16

4.4.4 Multi-Class Detection Results
For the multi-classification task of 44 DGA families, the performance metrics of each model are shown

in Table 9. The distilled DistilBERT model achieves a weighted accuracy of 97.23% and a Top-3 accuracy of
99.45%, both higher than the teacher model’s 96.79% and 99.12%. This proves that the student model retains
strong ability to distinguish between different DGA families, and its robustness in complex classification
scenarios is further verified.

Table 9: Multi-classification experimental results of teacher model and student models

Model Weighted
accuracy%

Weighted F1
score%

Top-3
Accuracy%

CharacterBERT (Teacher) 96.79 96.70 99.12
DistilBERT (Not Distilled) 95.37 95.24 98.41

DistilBERT (Distilled) 97.23 97.15 99.45
TinyBERT (Distilled) 95.86 95.78 98.87

4.4.5 Result Analysis and Discussion
In the student model, DistilBERT has a parameter size of 250 MB and an inference latency of 45 ms, and

TinyBERT has a parameter size of 180 MB with a latency of 38 ms, both of which meet the requirements for
deployment in resource-constrained IoT environments. Among them, DistilBERT outperforms the teacher
model in all metrics for the binary classification task. Based on the F1 score of 99.52% and the knowledge
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distillation process, the potential reasons are inferred as follows: during knowledge distillation, the soft labels
transfer the generalization knowledge of the teacher model, reducing the risk of overfitting; meanwhile, the
distillation loss function balances the soft label knowledge and hard label constraints, enabling the student
model to learn a more robust feature distribution. In the multi-classification task, its weighted accuracy is
97.23%, and the accuracy of the top three is 99.45%, which is better than the teacher model’s 96.79% and
99.12%, proving its robustness in complex family classification. At the same time, DistilBERT is highly viable
for edge deployment. Its memory footprint is only 270 MB (890 MB for teacher models), and inference
latency is reduced by 65%–78%. It demonstrates its robustness in complex family classification. However,
TinyBERT is inferior to the teacher model in all indicators because of the small number of parameters and
the overly simplified structure. In the end, DistilBERT achieves the best balance between model compression,
inference efficiency, and detection performance, and its performance even surpasses that of teacher models,
making it suitable for edge devices to achieve high-precision and low-latency real-time detection.

5 Conclusion and Future Work
This study designs a DGA domain detection framework based on deep learning to address the

challenge of identifying malicious Domain Generation Algorithms. We propose a CharacterBERT-BiLSTM-
ATT hybrid deep learning model, which combines CharacterBERT to achieve character-level semantic
representation, uses BiLSTM to capture sequence dependencies, and integrates an ATT to achieve multi-
dimensional feature fusion, thereby significantly improving the feature extraction ability. Experimental
results show that this model has excellent performance in pattern recognition and robustness, and is suitable
for large-scale network security applications.

Considering the resource constraints of IoT devices and the demand for lightweight models, we
perform Knowledge Distillation on the hybrid deep model, significantly reducing the computational resource
overhead. Specifically, the number of model parameters is reduced to 38.4% of the original scale, and the
computational complexity is greatly reduced, making it easier to deploy on edge computing devices and in
IoT environments. Experiments show that the student model has performance comparable to that of teacher
models, and at the same time achieves efficient and real-time DGA malicious domain detection, providing
reliable support for IoT security.

Despite certain achievements, this study has room for optimization. Future research can focus on three
directions: First, combine knowledge distillation and model pruning to further compress the model for
edge/IoT deployment, enhancing practicality. Second, introduce adversarial training and explore federated
learning-based defense strategies to improve resistance against variant DGA domains. Third, integrate multi-
modal data (e.g., DNS traffic, WHOIS information) with character features to boost detection accuracy
and generalization.
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