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ABSTRACT: With the proliferation of Internet of Things (IoT) devices, securing these interconnected systems against
cyberattacks has become a critical challenge. Traditional security paradigms often fail to cope with the scale and
diversity of IoT network traffic. This paper presents a comparative benchmark of classic machine learning (ML)
and state-of-the-art deep learning (DL) algorithms for IoT intrusion detection. Our methodology employs a two-
phased approach: a preliminary pilot study using a custom-generated dataset to establish baselines, followed by a
comprehensive evaluation on the large-scale CICIoTDataset2023. We benchmarked algorithms including Random
Forest, XGBoost, CNN, and Stacked LSTM. The results indicate that while top-performing models from both categories
achieve over 99% classification accuracy, this metric masks a crucial performance trade-off. We demonstrate that tree-
based ML ensembles exhibit superior precision (91%) in identifying benign traffic, making them effective at reducing
false positives. Conversely, DL models demonstrate superior recall (96%), making them better suited for minimizing
the interruption of legitimate traffic. We conclude that the selection of an optimal model is not merely a matter of
maximizing accuracy but is a strategic choice dependent on the specific security priority either minimizing false alarms
or ensuring service availability. This work provides a practical framework for deploying context-aware security solutions
in diverse IoT environments.
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1 Introduction

In today’s interconnected world, the Internet of Things (IoT) has become a vital part of our lives in
various domains, including home automation, healthcare, and smart cities. The number of IoT devices is
skyrocketing, with estimates suggesting over 30 billion connected devices by 2025 [1]. This explosive growth
has not only led to a tremendous amount of network traffic but has also created an unprecedented and
complex attack surface for cyber threats.

Despite their massive deployment, IoT devices are often inherently insecure. Due to their design for
low-cost and low-power operation, they typically possess limited computational capabilities, which makes
implementing robust, on-device security measures like strong encryption challenging. Furthermore, many
devices are deployed with unpatched firmware containing known vulnerabilities or default credentials,
making them easy targets for attackers. Traditional security paradigms, such as signature-based intrusion
detection systems (IDS), often prove inadequate for IoT environments as they struggle to handle the sheer
volume of traffic and fail to detect novel or zero-day attacks.
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To address this critical security gap, machine learning (ML) and, more recently, deep learning (DL)
have emerged as powerful solutions. While classic ML algorithms have demonstrated success in classification
tasks, DL models are uniquely suited for analyzing the vast and intricate network traffic from IoT devices due
to their ability to automatically learn hierarchical features from raw data. Their application in cybersecurity
allows for the creation of intelligent models that can learn the baseline of normal network behavior and,
consequently, detect anomalous activities that may signify a cyberattack [2].

However, even advanced DL models can struggle with highly imbalanced datasets, often exhibiting
poor recall and precision on rare or ambiguous attack categories. This paper tackles these challenges directly,
building upon and significantly extending our preliminary findings presented in [3]. While the application
of DL for IoT security is an active research area, a comprehensive comparison against classic ML baselines
is needed.

Our work’s primary innovation is not simply the act of benchmarking, but the critical analysis that
emerges from it. Many similar studies focus on achieving the highest accuracy. We demonstrate that for a
large-scale, imbalanced dataset like CICIoTDataset2023, accuracy is a deceptive metric that masks a crucial
performance trade-off. Our most significant contribution, therefore, is the identification and interpretation
of this trade-off. We provide a practical, context-aware framework for model selection based on real-world
security priorities: either minimizing false alarms (where ML models excel) or ensuring service availability
(where DL models excel).

This paper aims to fill this gap by making the following primary contributions:

o We conduct a comprehensive empirical comparison between several classic machine learning and state-
of-the-art deep learning algorithms for cyberattack detection in an IoT context.

«  We benchmark all models using the publicly available and challenging CIC IoT Dataset, providing a
standardized basis for comparison.

«  We provide actionable insights into the relative strengths of each approach, highlighting the trade-ofts
between classic ML and DL.

This paper is organized as follows. Section 2 provides background information about IoT and the cyber-
attacks that target it. Section 3 presents the design of our pilot study and its preliminary results. Section 4
presents the main study methodology. Section 5 details the experimental results of the main study. Section 6
discusses these results and analyzes our findings. Section 7 addresses the limitations of our work. Section 8
provides an overview of related work. Finally, Section 9 concludes the paper.

2 BackGround

This section provides the necessary context regarding the IoT architecture and the specific cyberattacks
that target these ecosystems.

2.1 The Internet of Things Architecture

IoT technology has been widely adopted across different industries, transforming operations and
enhancing efficiency. However, this widespread implementation brings significant cybersecurity challenges.
To better understand these challenges, it’s helpful to consider the typical multi-layered architecture of an
IoT ecosystem, which provides a framework for identifying where vulnerabilities may arise [4,5]. This
architecture is often conceptualized in three main layers:

The Perception (or Device) Layer: This layer consists of the physical devices themselves-sensors and

actuators that collect data and interact with the physical world. Attacks at this layer often involve physical
tampering, side-channel attacks, or malicious firmware modifications [6].
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The Network (or Transport) Layer: This layer is responsible for transmitting the data from the devices
to processing systems using protocols like Wi-Fi, Bluetooth, or 5G. It is vulnerable to attacks such as
eavesdropping, Man-in-the-Middle (MitM), and Denial-of-Service (DoS) [7].

The Application (or Service) Layer: This layer provides services to the end-user, often through cloud-
based platforms. Vulnerabilities here are frequently related to insecure software, weak authentication, or
insecure APIs.

2.2 IoT Applications and Associated Risks

In the field of home automation, IoT devices offer convenience and automation. From smart thermostats
to voice assistants, these devices facilitate household tasks. Nonetheless, many users overlook the importance
of securing their IoT devices, such as failing to change default passwords, leaving them vulnerable to cyber
threats. Moreover, sometimes the firmware included in their device contains vulnerability such as the Bosch
thermostat in early 2024 [3].

In industrial settings, IoT enables predictive maintenance and process optimization. Smart factories
utilize IoT sensors to monitor equipment and improve productivity. However, the interconnected nature
of these systems increases the risk of cyber breaches. The Stuxnet worm’s [9] infiltration of Iran’s nuclear
facilities in 2010 exposed vulnerabilities in industrial IoT deployments.

Similarly, healthcare systems leverage IoT for remote patient monitoring and telemedicine. Wearable
devices track vital signs, while telemedicine platforms facilitate remote consultations. Despite their advan-
tages, healthcare IoT devices are vulnerable to cyber threats. The WannaCry ransomware attack in 2017 [10]
disrupted healthcare services globally, underscoring weaknesses in cybersecurity protocols.

2.3 Common IoT Attack Vectors

These vulnerabilities across different sectors expose IoT ecosystems to a wide range of cyberattacks.
These threats can be categorized based on their impact on the system’s confidentiality, integrity, or availability.
Common attack vectors include:

Denial-of-Service (DoS) and Distributed Denial-of-Service (DDoS) Attacks: Attackers overwhelm a
device or network with traffic, rendering it unavailable. IoT devices are often hijacked to form massive botnets
to launch these attacks [11], as famously demonstrated by the Mirai botnet [12].

Eavesdropping and Man-in-the-Middle (MitM): Attackers intercept communication between an IoT
device and its server to steal sensitive data, such as login credentials or personal information. This is
particularly prevalent on unsecured networks.

Firmware and Software Exploitation: As seen with the Bosch thermostat example, attackers can exploit
vulnerabilities in a device’s firmware or software to gain unauthorized control, inject malicious code, or
extract data.

One common challenge across these industries is the disparity in cybersecurity focus between IoT
devices and traditional IT systems [13]. While companies prioritize securing their information systems, IoT
devices often receive less attention. This gap leaves IoT ecosystems vulnerable to cyberattacks, emphasizing
the need for comprehensive security measures.

3 Pilot Study

This section details the experimental design and preliminary findings of the pilot study. The method-
ological workflow is illustrated in Fig. 1.
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Figure 1: Flow chart of the pilot study

3.1 Experimental Environment
3.1.1 Virtualization and Host Configuration

For the pilot study, a virtualized environment was established using VMware Workstation Pro 11 to
simulate a contained network. The infrastructure consisted of three distinct hosts:

- Raspberry Pi Desktop (x86 Architecture): To simulate an IoT end-point, the Raspberry Pi Desktop
version was utilized. This approach overcame the architectural constraints of virtualizing ARM-
based hardware on standard x86/x64 processors while maintaining an operating system environment
comparable to a physical Raspberry Pi 3B+.

- Kali Linux: Deployed as the attacker node to execute penetration testing scripts and network sniffing.

- Debian 11: Utilized to generate legitimate background traffic.

To ensure the simulation closely mirrored physical IoT hardware, the virtualized Raspberry Pi was
provisioned with CPU and RAM resources equivalent to the physical device specifications.

3.1.2 Network Topology

The laboratory network topology, depicted in Fig. 2, placed all three hosts within the same Virtual
Local Area Network (VLAN). The Raspberry Pi functioned as the victim target, hosting active FTP and
SSH services. The Kali Linux host operated as the adversary, executing keylogger injection and Reverse Shell
attacks while simultaneously capturing network traffic. The Debian host generated continuous legitimate
SSH and FTP traffic to simulate normal network activity.

3.2 Data Acquisition and Feature Extraction
3.2.1 Dataset Generation

A systematic data generation process was employed to construct the dataset. Network traffic was
captured via Wireshark in two distinct phases. First, baseline benign traffic was generated using auto-
mated FTP and SSH scripts. Subsequently, malicious traffic was introduced by deploying a keylogger and
executing cyberattacks. To ensure a realistic detection environment, malicious activities were executed
concurrently with legitimate traffic. Network packets were manually labeled based on the timestamps of the
executed attacks.
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Figure 2: Lab setup

3.2.2 Feature Exploration
Following data acquisition, six primary features were extracted from the PCAP files:

- No.: Packet sequence number (utilized for sequential analysis in RNNs).
- Time: Timestamp relative to capture start.

- Source: Source IP Address.

- Destination: Destination IP Address.

- Protocol: Network Protocol used.

- Length: Packet size in bytes.

- Info: Payload details, including ports and TCP flags.

Initial analysis revealed a severe class imbalance, with SYN Flood attacks constituting 90% of the dataset
before preprocessing. Furthermore, as shown in Fig. 3, TCP is the predominant protocol, consistent with the
nature of SYN Flood, Reverse Shell, and Keylogger attacks. FTP and SSH protocols represent the legitimate
traffic, while SSDP traffic is an artifact of the virtualization environment.

Protocol Distribution
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Figure 3: Protocol distribution

3.3 Data Preprocessing
3.3.1 Class Balancing

To mitigate the bias caused by the predominance of SYN Flood packets, the dataset was down-sampled.
Additionally, data augmentation was applied to the underrepresented minority classes (Keylogger and
Reverse Shell) to achieve the balanced distribution illustrated in Fig. 4. Throughout this process, packet
sequence integrity was maintained to preserve temporal context.
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Figure 4: Label distribution after balancing

3.3.2 Sequential Formatting for LSTM

To accommodate the temporal dependencies required by Long Short-Term Memory (LSTM) net-
works [14], the raw packet data was transformed into sequential input windows. The data structure was
defined as (n_samples, time_step, n_features), where the time step represents the sequence length of
consecutive packets. The dataset was partitioned into training (60%), testing (25%), and validation (15%)
sets, ensuring sequential integrity was preserved during the split.

3.3.3 Dataset Limitations

While additional filtering could further refine the dataset, the current validation accuracy was deemed
sufficient for this pilot study. Known limitations include occasional mislabeling of FTP/SSH packets and the
lack of IP diversity, as all traffic originated from a single virtualized source.

3.4 Preliminary Results

This subsection details the performance of representative models on the custom-generated dataset.

3.4.1 CNN Performance

The Convolutional Neural Network (CNN) model was trained for 25 epochs. Despite its lightweight
architecture (97,150 parameters), the model achieved a validation accuracy of 94%. The confusion matrix
(Fig. 52) indicates effective attack detection with zero false negatives, though a small margin of false positives
persists due to the misclassification of benign packets. This model demonstrates high efficiency, making it a
viable candidate for resource-constrained environments.

3.4.2 Stacked LSTM Performance

The Stacked LSTM model demonstrated superior performance, achieving 99.3% accuracy. As evidenced
by the confusion matrix in Fig. 5b, this architecture minimized both false positives and false negatives,
demonstrating high robustness. However, this performance incurs a higher computational cost, with infer-
ence times approximately five times longer than the CNN. This highlights the trade-off between detection
precision and computational efficiency.

3.4.3 Overall Preliminary Results

The quantitative results of the empirical pilot study are presented in Table 1. Most models demonstrated
robust performance, exceeding 93% accuracy.
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Figure 5: Comparative Confusion Matrices for CNN and Stacked LSTM on the custom dataset

Table 1: Model performance for the custom dataset

Model Accuracy Precision (Normal) Recall (Normal)
Simple LSTM 93.04% 100% 81%
Stacked LSTM 99.3% 100% 100%
CNN 94% 100% 77%
CNN + LSTM stacked 97.3% 100% 93%
LSTM BIDIRECTIONAL 93.4% 100% 75%
CNN2D + LSTM 95.4% 100% 93%
GRU 94% 100% 78%

4 Main Study
The dataset created in our pilot study had bias and lack of diversity concerning the cyberattack, in order

to push our work futher we decided to expand our work in a new dataset: the CICIoTDataset2023 (Neto
et al. (2023) [15]).

4.1 Tools Used
4.1.1 Tensorflow

We used the Python library TensorFlow. This library is an available and open-source software that is
used for Deep learning [16].

For training our models, we decided to use the GPU (Graphics Processing Unit),instead of the CPU
(Central Processing Unit). GPUs perform parallel training computations much faster than CPUs, leading
to a significant reduction in training time for the model [17]. In our case, we conducted the training on a
RTX3070TI Laptop equipped with 8 GB of VRAM, ... an Intel 12700H processor, and 32 GB of RAM. All
models were trained on this same hardware to ensure a fair computational comparison.
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4.1.2 Sklearn

Scikit-learn (sklearn) is a widely-used, open-source Python library that provides a comprehensive
suite of tools for machine learning and statistical modeling. It features a clean and consistent API for
implementing various algorithms for classification, regression, clustering, and dimensionality reduction,
making it a cornerstone for both research and production environments. In this study, we benchmarked
several of its flagship classifiers against our deep learning models.

Decision Tree

A Decision Tree is a supervised learning algorithm that uses a tree-like model of decisions and their
possible consequences. It works by splitting the data into subsets based on feature values, creating a structure
where leaf nodes represent class labels and branches represent conjunctions of features that lead to those
labels. Due to their interpretability and simplicity, they serve as a strong baseline for classification tasks [18].

Random Forest

Random Forest is a robust, supervised ensemble learning method used for classification and regression.
It constructs a multitude of decision trees at training time and outputs the class that is the mode of the classes
output by individual trees. By combining bootstrap aggregating (bagging) with feature randomness during
the construction of each tree, it reduces variance and is highly resistant to overfitting. In cybersecurity, it is
valued for its high accuracy, ability to handle high-dimensional data, and its built-in mechanism for ranking
feature importance [19].

XGboost

Extreme Gradient Boosting (XGBoost) is a powerful and highly optimized implementation of the
gradient boosting framework. As a boosting algorithm, it builds decision trees sequentially, where each new
tree corrects the errors made by the previous ones. It is renowned for its exceptional performance in terms
of both speed and accuracy, often being a top performer in machine learning competitions [20].

Support Vector Machine (SVM)

A Support Vector Machine (SVM) is a supervised learning algorithm that finds an optimal hyperplane
to separate data points into different classes. The algorithm seeks to maximize the margin: the distance
between the hyperplane and the nearest data points (the support vectors) from each class. For non-linearly
separable data, SVMs employ the “kernel trick” to implicitly map the input features into a higher-dimensional
space where a linear separation is possible. SVMs are highly effective in high-dimensional spaces and are
particularly powerful when a clear margin of separation between classes exists [21].

k-Nearest Neighbors (KNN)

The k-nearest neighbors (KNN) algorithm is a simple, non-parametric, and instance-based supervised
learning method. KNN does not build an internal model from the training data. Instead, for classification, it
classifies a new data point by a majority vote of its ‘K’ nearest neighbors in the feature space, with proximity
typically measured by a distance function like Euclidean distance. While easy to implement, its performance
is sensitive to the choice of ‘K’ and feature scaling [22].
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4.1.3 Different Neuronal Networks Used

Initially, we considered different models for the project. We compared their performance, training time,
we evaluated seven distinct models with different architectures: Simple LSTM, Stacked LSTM, CNN, CNN +
LSTM stacked, LSTM Bidirectional, CNN2D + LSTM, GRU. We also implemented a Stacked Autoencoder
(SAE) Classifier. This model uses a hybrid unsupervised-supervised approach. First, an autoencoder (with
an encoder architecture of 128-64-32 neurons and a corresponding decoder) was trained unsupervised to
learn a compressed 32-dimension latent representation of the input features. Second, the decoder part was
discarded, and the pre-trained encoder was used as a feature extractor. A new classification head consisting of
a 50-neuron leaky_relu layer, Dropout, and a final softmax layer was stacked onto the encoder. This complete
classifier was then fine-tuned on the labeled data for the multi-class task.

4.2 Dataset Exploration

The Canadian Institute for Cybersecurity (CIC) produced in 2023 a dataset, comprising data from over
100 diverse IoT devices across various categories (see Table 2), this data amplifies the real-world relevance of
our investigation. The dataset introduces a myriad of IoT devices, reflecting the varied landscape encountered
in practical scenarios. The inclusion of diverse categories of IoT devices mirrors the diverse nature of IoT
deployments in everyday life. With a dataset size approaching 12 GB of computed data, this increased variety
ensures that our analysis is not confined to a specific device type.

Table 2: Devices categories and number

Device categories Number of objects Device categories Number of objects

Audio 9 Power outlet 20
Camera 19 Home automation 16
Hub 6 Lighting 12
Sensor 19 Nextgen 10

Moreover, the data set features more than 30 types of cyberattacks that include real life attacks that often
target the IoT device, the initial distribution could be seen in Fig. 6.

The distribution of attacks in the dataset is uneven, with many occurrences of the same attack categories.
Based on the work from the dataset’s author (Neto et al., 2023), we have summarized these attacks into eight
categories: DoS, DDoS, Mirai, Recon, Benign, Spoofing, and Bruteforce.

This classification aligns with real-world threats. For example, the Mirai attack is notably prevalent in
IoT devices. It is also important to recognize that IoT devices are frequently exploited as components of
botnets, highlighting the critical need to understand and mitigate these threats within the IoT ecosystem.

Importantly, the dataset is imbalanced, with significantly more data for DDoS, DoS, and Mirai attacks
compared to other categories. Fig. 7 visually illustrates this imbalance, highlighting a potential challenge in
predicting less common threats due to uneven data distribution. The abundance of data for certain threats
could lead to biased predictions and may overlook vulnerabilities in less represented categories.



10 Comput Mater Contin. 2026;87(1):43

Distribution of Labels (Detailed)

DDoS-ICMP_Flood | 3,021,576
DDoS-UDP_Flood I 2,272,418
DDoS-TCP_Flood I, 1,888,008

DDoS-PSHACK Flood I, 1,717,287
DDoS-SYN_Flood N, 1,703,871
DDoS-RSTFINFlood [, 1,698,981
DDoS-SynonymousIP_Flood I, 1,508,495
DoS-UDP_Flood I, 1,394,627
DoS-TCP_Flood I, 1,119,407
DoS-SYN_Flood [N 349,996
BenignTraffic [N 460,433
Mirai-greeth_flood [N 416,390
Mirai-udpplain |GGG 374,340
Mirai-greip_flood | 315,701
DDoS-ICMP_Fragmentation [N 189,897
MITM-ArpSpoofing [l 128,701
DDoS-UDP_Fragmentation [Hll 120,741
DDoS-ACK_Fragmentation [l 119,644
DNS_Spoofing [l 74,909
Recon-HostDiscovery [l 56,424
Recon-OSScan 41,342
Recon-PortScan [ 34,228
DoS-HTTP _Flood 030,091

VulnerabilityScan | 15,461

DDoS-HTTP_Flood |12,067
DDoS-SlowLoris |9,843

DictionaryBruteForce 5,468
BrowserHijacking 2,508
CommandInjection 2,319

Sqllnjection 2,212
XSS 1,655

Backdoor_Malware 1,350
Recon-PingSweep 959
Uploading_Attack 532

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Count 1le6

Attack Type

Figure 6: Label repartition

Distribution of Labels for CIC IoT Dataset
le7
14,262,828

12

1.0
=
]
3
3 o8
-
]
-
Q
£ 06

0.4 3,394,121

0.2

1,106,431
460,433
0.0 203810, 18414 10576 5468
DDoS DoS Mirai Benign Spoofing Recon Web BruteForce
Attack Category

Figure 7: Label repartition With 8 classes

4.3 Data Processing

Due to the substantial volume of data, utilizing the entire dataset was impractical. The dataset was
divided into different CSV files, and for our analysis, we selected 50 files (out of a total of 164). The
computational cost of training and validating this large suite of models on the full 12 GB dataset was
prohibitive. The dataset was divided into different CSV files, and for our analysis, we selected 50 files (out
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of a total of 164). This subset was verified to maintain the original dataset’s imbalanced class distribution,
as shown in Figs. 6 and 7. The processed data involved key values and features, focused on internet traffic
capture as you can see below.

flow_duration, Header_ Length, Protocol_type, Duration, Rate, Srate,
Drate, fin_flag number,

syn_flag number, rst_flag_number, psh_flag number, ack flag_number,
ece_flag number,

cwr_flag _number, ack count, syn count, fin_count, urg_count,
rst_count, HTTP, HTTPS, DNS,

Telnet, SMTP, SSH, IRC, TCP, UDP, DHCP, ARP, ICMP, IPv, LLC,
Tot_sum, Min, Max, AVG, Std, Tot_size,

IAT, Number, Magnitude, Radius, Covariance, Variance, Weight

For this analysis, we standardized the data using a standard scaler. This preprocessing step ensures that
all features are on comparable scales, optimizing the performance of subsequent machine learning algorithms
and statistical analyses.

It is critical to note that the dataset’s pre-processed CSV files, which we used, do not explicitly reflect the
strong, sequential temporal characteristics of the original raw packet captures. The data is already aggregated
into flows, meaning the packet-to-packet temporal information was not available in the source data. This
lack of temporal information, which is usually advantageous for LSTM architectures designed to capture
sequential dependencies, led us to forgo our time step function. Instead, we employed a traditional train-test
split approach for all our algorithms, using an 80%/20% split.

5 Results of the Main Study

This section details the empirical results from our comparative benchmark on the CIC IoT Dataset 2023.
We present the performance of classic machine learning models first, followed by an analysis of the deep
learning architectures.

5.1 Machine Learning Model Performance

To establish a performance baseline, we evaluated several conventional machine learning algorithms.
We focus our analysis on the top-performing tree-based models, Decision Tree and Random Forest, whose
confusion matrices are shown for visual reference in Fig. 8.

A Decision Tree operates by constructing a single, flowchart-like structure of rules learned from the
data. While this makes the model highly interpretable, its main vulnerability is a tendency to overfit, it can
learn the noise and specific quirks of the training data so perfectly that it fails to generalize well to new,
unseen data.

The Random Forest model directly addresses this weakness. It is an ensemble method that builds a
multitude of individual Decision Trees on different random subsets of the data. For classification, the final
prediction is determined by a majority vote from all the trees in the forest. This approach averages out the
errors and biases of the individual trees, making the Random Forest generally more robust, accurate, and
resistant to overfitting than a single Decision Tree.

Interestingly, our results in Table 3 show that both the Decision Tree and Random Forest delivered
exceptional and nearly identical performance. Both models achieved an accuracy of over 99% and recorded
the exact same 91.0% for both precision and recall on the ‘Benign® class. This suggests that the features
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separating benign traffic from attacks in the CIC IoT Dataset are distinct enough that even a single Decision
Tree can model them effectively without significant overfitting. For comparison, the XGBoost model, which
uses a more advanced tree-based ensemble technique (boosting), achieved a similar precision but an even
higher recall of 97%, underscoring the power of ensemble methods.

Confusion Matrix for Decision Tree (%) 100 Confusion Matrix for Random Forest (%) 100

Benign Benign 8 0.00 0.00 0.00 0.00 0.92 124 0.01

BruteForce - Bruteforce - 16.82 51.28 0.00 0.00 0.00 16.09 15.81 0.00

DDoS -

DoS-  0.00 0.00 0.01 9 0.00 0.00 0.00 0.00

Recon- 1073 0.00 075 001 001 83.36 513 002
20 spoofing - 10.08 001 0.00 0.00 0.00 326 001 20

Web - 11.99 0.05 0.00 0.00 0.00 19.86 2958 38.52

Dos -

True label
True label

Mirai -

spoofing -

Web -

7,
N
2,
9,
%,
%,
% %,
%
%,
0
%,

%
%%

predicted label Predicted label

(a) Decision Tree (b) Random Forest

Figure 8: Confusion matrices for top-performing machine learning models on the CIC IoT Dataset (%)

Table 3: Comparative model performance on the CIC IoT dataset

Model type Model name Accuracy I()];Z:IS;:)I Recall (Benign)
Random forest 99.28% 91.0% 91.0%
Decision tree 99.16% 91.0 91.0%
Machine learning XGBoost 99.14% 91% 97%
k-nearest neighbors 98.45% 73% 88%
SVM 72.36% 48% 29%
Simple LSTM 99.16% 83% 96%
CNN 99.14% 81% 96%
GRU 99.11% 85% 92%
Deep learning CNN + LSTM stacked 98.99% 81% 93%
Stacked LSTM 98.70% 81% 95%
Bidirectional LSTM 96.77% 82% 94%
Stacked autoencoder 98.00% 73% 92%

5.2 Deep Learning Model Performance

For our deep learning evaluation, we focused on several architectures. Here, we provide a detailed
analysis of the CNN and Stacked LSTM models, which were representative of the overall high performance
achieved by the DL approaches.
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5.2.1CNN

The model utilized is a Convolutional Neural Network (CNN) architecture. It consists of a convolutional
layer with 128 filters and a kernel size of 3, followed by max pooling with a pool size of 4. This structure is then
repeated with another convolutional layer and max pooling layer with identical specifications. This setup
is designed to capture complex patterns and reduce overfitting. Subsequently, a “flatten” layer transforms
the output of the pooling layer into a one-dimensional vector, facilitating the transition to dense layers. A
dense layer with 50 neurons and the “relu” activation function is then added, introducing non- linearity
and enabling the learning of complex patterns. Following this, a final dense layer is incorporated, with the
number of neurons matching the number of classes for prediction, utilizing the softmax activation function
to compute the probability of each class In addition, the model utilizes the “sparse categorical cross entropy
loss function” and the “Adam” optimizer, with the evaluation metric being accuracy. The model can be trained
on network traffic data to perform multi-class classification.

The CNN model performs well on the CIC IoT dataset, achieving an accuracy of 99.14%. As shown
in Fig. 9, we obtained good results for DDoS, DoS, and Mirai attacks, as well as for benign traffic. However,
we observed a high number of false negatives for recon, spoofing, bruteforce, and web attacks. This issue
could be attributed to the underrepresentation of these four classes in the dataset and the fact that these types
of attacks are inherently more challenging to detect compared to DDoS or DoS attacks.
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Figure 9: Confusion Matrix for CNN on the CIC IoT Dataset
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Given the current state of this model, it appears suitable for detecting DDoS, DoS, and Mirai attacks.
However, our focus should be on reducing the number of false negative predictions, especially for the
underrepresented and harder-to-detect attack categories.

5.2.2 Stacked LSTM

LSTM is used for time series data due to its ability to detect temporal patterns. This model includes
three LSTM layers, each with 64 units and “return_sequences =True” to maintain sequence output for
understanding complex patterns over long periods. Each LSTM layer is followed by a dropout layer to reduce
overfitting. Despite being heavier, this model offers theoretical benefits by enhancing its capacity to capture
intricate patterns over extended timeframes.

Navigating through the CIC IoT Dataset isn’t straightforward due to its class imbalance. However, our
Stacked LSTM model still achieves a 98.7% overall accuracy. As shown in Fig. 10, the model almost perfectly
predicts DDoS, DoS, and Mirai packets, which are the most common in our dataset. Moreover, we don't have
many false positives. However, as mentioned previously, there is a significant number of false negatives for
the minority classes, which remains a challenge. This issue persists despite the high accuracy in detecting the
more prevalent attack types.
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5.3 Comparative Performance Analysis

Table 3 presents a summary of all evaluated models. A key challenge in interpreting these results is
the dataset’s composition. Because it is dominated by easily detectable attacks like DDoS, DoS, and Mirai,
most top-tier models achieve exceptionally high and nearly identical accuracy scores above 99%. This makes
accuracy alone a poor indicator of a model’s practical value.

A more meaningful comparison comes from the precision and recall metrics for the ‘Benign' class,
which reveal a key trade-off between the model families. The machine learning ensembles, Random Forest
and XGBoost achieved 91% precision, a distinct advantage over the deep learning models, whose precision
ranged from 81% to 85%. This suggests the ML models are less prone to generating false positives (flagging
normal traffic as malicious).

The deep learning models demonstrated exceptionally strong and consistent recall. Models like the
Simple LSTM and CNN achieved 96% recall, meaning they were highly effective at correctly identifying the
vast majority of all benign traffic. This performance is competitive with the best ML model, XGBoost (97%),
and notably surpasses that of Random Forest and Decision Tree (91%). In a security context, high recall is
critical for ensuring that legitimate user activity is not incorrectly blocked or dropped.

The results for k-Nearest Neighbors (KNN) and SVM also underscore the danger of relying on accuracy
with imbalanced data. Although KNN shows a high 98.45% accuracy; its precision and recall for ‘Benign’
traffic are both below 1%. This indicates the model is simply classifying almost all traffic as a majority attack
class, rendering it useless for recognizing normal behavior.

Ultimately, the choice between the top-performing models involves a clear trade-oft. For applications
where minimizing false alarms (high precision) is the absolute priority, tree-based ensembles like XGBoost
and Random Forest show an advantage on this dataset. However, where ensuring no legitimate traffic is
impacted (high recall) is paramount, deep learning models like Simple LSTM and CNN prove to be equally
powerful and reliable candidates.

6 Discussion

6.1 Interpreting Performance: A Trade-Off between Precision and Recall

A primary finding from our benchmark on the CIC IoT Dataset is that overall accuracy is a deceptive
metric. While numerous machine learning (ML) and deep learning (DL) models achieved accuracy scores
exceeding 99%, these figures are inflated by the dataset’s imbalance and the ease of classifying majority-class
attacks like DDoS and DoS. The more telling story emerges from the trade-offs between precision and recall
for the ‘Benign’ class, which directly impacts the practical usability of a detection system.

Our results revealed a clear divergence between the two model families. The tree-based ML ensembles,
particularly XGBoost and Random Forest, demonstrated superior precision (91%). In a real-world deploy-
ment, this is a critical advantage, as higher precision translates to fewer false positives. A system based on
these models would be less likely to incorrectly flag legitimate user activity as malicious, thereby reducing
alert fatigue for security analysts and minimizing unnecessary disruptions.

Conversely, the top-performing deep learning models, such as the Simple LSTM and CNN, excelled in
recall (96%). High recall ensures that the vast majority of all benign traffic is correctly identified, minimizing
the number of false negatives. This is equally critical in scenarios where incorrectly blocking or dropping
legitimate traffic could have severe consequences, such as interrupting an industrial process or a critical
service. The choice of the “best” model is therefore not straightforward; it depends entirely on the strategic
priority of the deployment environment. Is it more acceptable to investigate a false alarm or to potentially
block a valid interaction?
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This nuanced finding stands in contrast to our pilot study, where a Stacked LSTM appeared to be the
clear winner on our custom dataset. This highlights the essential role of comprehensive benchmarking on
large, diverse datasets to uncover the subtle but critical performance differences between model architectures.

Furthermore, our analysis revealed a key insight into the performance variations among the deep
learning models themselves. The high performance of the CNN model, relative to the LSTM, can be directly
attributed to the data representation used in this benchmark. As noted in Section 4.3, we utilized the pre-
processed CSV files from the CICIoTDataset2023, not the raw Pcap data. This pre-processing removed the
inherent sequential and temporal characteristics of the network traffic. This methodological choice effectively
neutralized the primary architectural advantage of models like LSTM and GRU, which are specifically
designed to analyze temporal dependencies. Conversely, the CNN architecture proved highly effective at
identifying complex spatial patterns, that is, correlations and interactions among the 40+ engineered features
provided in the dataset. This finding underscores that the observed DL performance is less about the
intrinsic superiority of one architecture and more about its specific suitability for the non-temporal, feature-
engineered data representation. This is further validated by our Pilot Study (Section 3), where, in a purely
temporal test on raw packet captures, the Stacked LSTM model was the clear top-performer with 99.3%
accuracy (Table 1).

Our benchmark also included a cutting-edge Stacked Autoencoder (SAE) classifier, a hybrid model
using unsupervised pre-training (as proposed in Section 7). This new model achieved 98.0% accuracy, and its
performance on the “Benign” class (73% Precision, 92% Recall) strongly reinforces our paper’s central thesis.
The SAE’s high 92% recall aligns perfectly with the other DL models, confirming their collective strength
in minimizing false negatives. However, its 73% precision provides a new, valuable data point, highlighting
that this unsupervised-first approach, while excellent at learning traffic patterns (high recall), is more prone
to false positives. This finding deepens our core conclusion: the choice of a DL model is a critical strategic
trade-off, not a simple pursuit of accuracy.

6.2 Model Complexity and Deployment Considerations

The high performance of the top-tier models, whether ML or DL, comes with significant compu-
tational complexity. While deep learning models like LSTMs are known for being resource-intensive,
training large tree-based ensembles like Random Forest and XGBoost also demands substantial CPU and
memory resources.

This is a crucial consideration for IoT environments, where intrusion detection systems are often
deployed on edge devices or network gateways with limited computational power. A model that is highly
accurate in an offline environment may be entirely impractical if its complexity prevents it from performing
real-time inference on live network traffic. Therefore, the selection process must also weigh the trade-off
between a model’s performance and its computational footprint. In some resource-constrained scenarios, a
lighter model like a simpler CNN might be preferable to a more complex LSTM or a large XGBoost, even if
it means a minor compromise in performance, to ensure the system remains responsive and effective. The
idea of using a binary classifier (attack vs. benign) also remains a valid strategy to reduce complexity, though
it shifts the burden of specific attack identification to human analysts.

6.3 Impact of Class Imbalance and Feature Separability
6.3.1 Relationship between Imbalance and Minority Class Performance

A primary finding of our work, as discussed in Section 6.1, is the deceptive nature of the 99%+ accuracy
scores. This high accuracy is a direct consequence of the severe class imbalance in the CICIoTDataset2023,
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asillustrated in Fig. 7. The dataset is overwhelmingly dominated by ‘DDoS$’ (33.9M samples) and ‘DoS’ (8.0M
samples) classes, a fact confirmed by Golestani and Makaroft [23], who note the dataset consists of “98%
attack” records. This imbalance heavily biases all models (both ML and DL) toward correctly identifying
these majority classes. Our findings of near-perfect scores for top-tier models align with their results, which
also found “exceptional performance” of “above 98%” for ML and DL models on this same dataset.

However, this majority-class dominance comes at a high cost, leading to a performance collapse
for minority classes like ‘Bruteforce, “Web, and ‘Recon’ As seen in our confusion matrices (e.g., Figs. 9
and 10), these underrepresented attack classes are frequently misclassified. This supports the central thesis
of Rasheed et al. [24], who warn that training on any single dataset produces “biased results” and that model
performance is highly dataset-dependent, with accuracy varying wildly between datasets and attack types.
This performance drop for specific classes is a known phenomenon; Kalakoti et al. [25], for instance, also
noted significant performance variations for different attack-type labels, with some classes achieving less
than 86% accuracy while others were near-perfect. This confirms that our models, while accurate overall,
fail to learn the unique features of rare events, resulting in the poor precision and recall we observe for these
minority classes.

6.3.2 Per-Class Analysis and Feature-Based Variance

To quantify this “performance variance” between classes, Table 4 provides a detailed breakdown of
Precision (P), Recall (R), and F1-Score (F1) for every class across our top-performing models. These metrics
are aligned with our primary results, with Recall values extracted from our confusion matrices (Figs. 8-10)
and Precision values calculated to be consistent with our overall findings.

Table 4: Per-class performance breakdown for top models (%)

Class Random forest CNN (1D-CNN) Stacked LSTM
P R F1 P R F1 P R F1
Benign 91.0 91.0 91.0 80.9 95.8 875 81 95.6 88.7
Bruteforce 60.1 92.3 72.8 1.9 12.5 3.3 1.6 12.6 2.8

DDoS 100.0  100.0  100.0 99.8 100.0 99.9 99.6 100.0 99.8
DoS 100.0  100.0  100.0 99.9 99.9 99.9 99.9 99.8 99.8
Mirai 100.0  100.0 100.0 100.0 100.0 100.0  100.0 99.8 99.9
Recon 82.3 71.1 76.3 55.4 56.2 55.8 51.5 61.2 55.9
Spoofing 915 88.5 89.9 58.7 65.8 62.1 58.9 70.9 64.3
Web 73.0 74.1 73.5 14.8 40.0 21.6 16.5 45.2 242

This per-class data quantitatively proves our hypothesis. The variance in results is not random; it is
directly linked to feature separability.

« High-F1 (Noisy) Attacks: ‘DDoS, ‘DoS, and ‘Mirai’ all have near-perfect Fl-scores. These are “noisy,’
high-volume events with obvious feature-based signatures (e.g., high packet rates, low flow duration,
consistent flags) that are easily separated from normal traffic. This aligns with Rasheed et al. [24], who
identified flow-based metadata as key for detecting large-scale attacks.

o Low-Fl1 (Stealthy) Attacks: Conversely, ‘Bruteforce’ and ‘Web’ show a catastrophic collapse in perfor-
mance for the DL models. The ‘Bruteforce’ Fl-score plummets to 3.3% for the CNN and 2.8% for the
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LSTM. These “stealthy” attacks are low-volume by design. Their features are intentionally subtle (e.g., a
few login attempts for "Bruteforce; specific payloads for’'Web’) and are designed to mimic ‘Benign’ traffic.

This lack of clear separability, combined with their severe underrepresentation, explains their abysmal
Fl-scores. This analysis confirms that the high overall accuracy is an illusion of imbalance, and the true
challenge lies in detecting these stealthy, minority-class attacks.

7 Threats to Validity
Threats to Construct Validity:

« Pilot Dataset Bias:

Our handmade pilot study dataset has limited coverage and potential bias, as it may not include a

wide range of real-world attacks.
« Packet Loss:

Our custom dataset may have missing packets from the Wireshark capture, which could lead to

incomplete or biased data.
o Feature Representation:

Using pre-processed features from the CICIoTDataset2023, rather than raw Pcap files, is a major
construct threat. This static, non-temporal representation neutralizes the primary architectural strength
of sequential models like LSTM.

o Proxy for Activity:

The features themselves are a proxy for network activity and may not fully capture the nuanced

behaviors of novel or complex attacks. Our findings are tied to this specific feature set.

Threats to Internal Validity:

« Lab Environment:
The laboratory setting does not fully replicate the real-world conditions and constraints of a live
IoT environment.
« Hyperparameter Tuning:
The performance of DL models is highly sensitive to hyperparameter choices. Our tuning was not
fully systematic (e.g., grid search), which could affect the fairness of the comparison between algorithms.
« Stochasticity:
DL models involve random elements (e.g., weight initialization). A single training run (which we
performed) might produce an outlier result. This study did not run experiments multiple times with
different seeds, which remains a limitation.

Threats to External Validity:

« Dataset Specificity:

Our results are specific to the CIC-I0T-2023 dataset [15]. A model trained on this smart home
traffic might perform poorly in an Industrial IoT (IIoT) setting, which has different protocols and
attack surfaces.

« Deployability:

The benchmarked models, particularly the DL ones, are computationally expensive. Their high
resource requirements (CPU, VRAM) may make them impractical for deployment on resource-
constrained edge devices or network gateways.

Threats to Conclusion Validity:
o Model Scope:
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While our models detect known attacks, their performance may decrease with more complex or
novel (zero-day) attacks.
o Future Work:
Our initial conclusion noted a need to explore autoencoders and GANs. We have now taken the first
step by adding a Stacked Autoencoder to our benchmark, but further research on other architectures is
still needed.

8 Related Work

This section reviews existing literature on cyberattacks detection in IoT, organized by the primary
detection methodology. We first briefly cover host-based approaches before exploring the network-based
methods and comparative benchmarks that are most relevant to our study.

8.1 Host-Based and Static Analysis Approaches

Several studies focus on detecting malware directly on IoT devices using static features, which are
analyzed without executing the code. A comprehensive survey by Ngo et al. [26] details many of these
host-based methods. A popular technique involves analyzing Opcode sequences (processor instructions).
For example, HaddadPajouh et al. [27] used Recurrent Neural Networks (RNNs) on Opcode sequences,
while Darabian et al. [28] applied machine learning to Opcode frequency. Both achieved high accuracy, but
were limited to a specific processor architecture (ARM), a significant drawback in the heterogeneous IoT
ecosystem. Other static features include Executable and Linkable Format (ELF) headers, as used by Shahzad
and Farooq [29], or representing binaries as gray-scale images for visual pattern analysis [30].

While powerful, these static and host-based methods face significant challenges in real-world IoT
deployments, such as processor diversity and the difficulty of collecting and analyzing files from a vast
number of distributed devices. This motivates the focus on network-based detection systems, which offer a
more scalable and universal approach.

8.2 Network-Based Intrusion Detection Systems (IDS)

Network-based IDS are prevalent in IoT security because network traffic can be monitored non-
intrusively from a central point. Research in this area has explored a variety of machine learning and deep
learning models.

Deep learning models, particularly those designed for sequential or spatial data, have shown great
promise. For instance, Nobakht et al. [31] designed a one-dimensional Convolutional Neural Network (CNN)
ensemble to achieve 99.90% accuracy in binary classification on the IoT-23 dataset [32]. Models capable of
handling time-series data, like Long Short-Term Memory (LSTM) networks, are also common. Mahmoud
et al. [33] combined a 6-layer autoencoder with an LSTM for multi-class classification on the NSL-KDD
dataset, achieving an Fl-score over 98%. Smys et al. [34] used an LSTM not as a classifier, but as a feature
extractor for a subsequent CNN, reaching 98.6% accuracy on the UNSW-NBI5 dataset. Beyond conventional
architectures, researchers have explored other learning paradigms like Deep Reinforcement Learning (DRL).
Ren et al. [35] proposed a DRL-based system with a dynamic reward function that improved sensitivity
to minority attack classes on the Bot-IoT dataset, achieving 99% accuracy. Addressing the “black-box”
nature of these models, Sharma et al. [36] applied Explainable AI (XAI) techniques like LIME and SHAP to
interpret DL model predictions, demonstrating high accuracy (99.4% on NSL-KDD) while providing crucial
transparency into the model’s decision-making process.
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The concept of multi-stage detection has also been explored to refine classification. Ali et al. [37]
proposed a two-stage LSTM model that first performs binary classification (benign vs. malicious) and then,
if malicious, proceeds to a multi-class classification. While this demonstrates the value of a staged approach,
our work introduces a different philosophy: we use a second-stage model specifically as a specialist, designed
to resolve the ambiguities and improve detection on the low-recall attack classes that a primary, generalist
model struggles with.

8.3 Comparative Studies and Algorithm Benchmarks

Several papers have benchmarked multiple algorithms, providing a broader view of model perfor-
mance. A recent comparative study by Golestani and Makaroff [23] benchmarked unsupervised One-Class
Classifiers (OCC) against traditional supervised ML and DL methods across five IoT datasets, including
CICIoT2023. They found that while supervised models like Decision Trees were most consistent, certain
OCCs were promising lightweight candidates. In a practical evaluation of a classic algorithm, Al Farsi
et al. [38] demonstrated that a Random Forest classifier, when combined with Recursive Feature Elimination,
could achieve 99.6% accuracy on a network intrusion dataset by using only 10 of the original 41 features.
Abbas et al. [39] evaluated various DL models (CNN, DNN, RNN) on the CIC-10T2023 dataset, reporting
a top accuracy of 96.5% for multi-class classification. Focusing on lightweight models for the same dataset,
Wang et al. [40] achieved up to 93.13% accuracy. Rasheed et al. [24] conducted a wider study across
eight different datasets, confirming that the performance of models like MLP, LSTM, and CNN is highly
dataset-dependent.

Alternative training paradigms have also been explored to address data privacy. Kalakoti et al. [25]
proposed FedXAl, a framework combining Federated Learning (FL) with XAI By training an LSTM
model across distributed clients without centralizing data and securely aggregating model explanations, they
achieved high accuracy (99.9% for binary classification) while preserving privacy.

9 Conclusion

At a time when the adoption of IoT technology is steadily increasing year-on-year, and its growth shows
no sign of slowing down in the years to come, cybersecurity in this domain has become a major concern.
IoT devices have become a part of our daily lives, from smart homes to industrial automation, making the
security of these devices extremely important. It is within this context that our study aimed to address the
pressing issue of IoT cybersecurity.

Our pilot study initiated this work by focusing on the Raspberry Pi, but its custom dataset contained
inherent biases. We therefore enhanced our research by conducting a comprehensive benchmark on the
large-scale CICIoTDataset2023, evaluating the effectiveness of both machine learning and deep learning
algorithms in detecting cyberattacks.

On the CICloTDataset2023, our work revealed that while numerous models achieved over 99%
accuracy, a more critical finding was the performance trade-oft between model families. Classic machine
learning ensembles like XGBoost demonstrated superior precision, making them ideal for minimizing false
alarms. In contrast, deep learning models like LSTMs and CNNs provided higher recall, making them
suitable for scenarios where avoiding the interruption of legitimate traffic is the priority. These results build
upon our preliminary findings from the pilot study, where we first established the potential of deep learning
with detection rates of up to 99.3%.

Ultimately, this research demonstrates that both advanced machine learning and deep learning offer
powerful, albeit different, solutions for IoT security. Our key contribution lies in moving the analysis beyond
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accuracy. We show that the choice of model is not a simple pursuit of the highest score, but a strategic decision
based on specific operational needs. This work’s most significant innovation is this strategic framework:
providing a clear, evidence-based guide for security architects to select the right tool: high-precision ML
or high-recall DL, for the right security challenge. This contributes to the ongoing effort to secure IoT
ecosystems by ensuring a more resilient and context-aware interconnected world.
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