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ABSTRACT: In recent years, ransomware attacks have become one of the most common and destructive types of
cyberattacks. Their impact is significant on the operations, finances and reputation of affected companies. Despite
the efforts of researchers and security experts to protect information systems from these attacks, the threat persists
and the proposed solutions are not able to significantly stop the spread of ransomware attacks. The latest remarkable
achievements of large language models (LLMs) in NLP tasks have caught the attention of cybersecurity researchers to
integrate these models into security threat detection. These models offer high embedding capabilities, able to extract rich
semantic representations and paving the way for more accurate and adaptive solutions. In this context, we propose a new
approach for ransomware detection based on an ensemble method that leverages three distinct LLM embedding models.
This ensemble strategy takes advantage of the variety of embedding methods and the strengths of each model. In the
proposed solution, each embedding model is associated with an independently trained MLP classifier. The predictions
obtained are then merged using a weighted voting technique, assigning each model an influence proportional to its
performance. This approach makes it possible to exploit the complementarity of representations, improve detection
accuracy and robustness, and offer a more reliable solution in the face of the growing diversity and complexity of
modern ransomware.
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1 Introduction
Ransomware is malicious software that blocks access to personal data by encrypting the data and then

asks the owner to send money in exchange for the key to decrypt it [1,2]. In recent years, ransomware has
topped the list of the most dangerous cyberattacks, a threat that has attracted a lot of attention from both the
general public and businesses. Several large commercial enterprises, healthcare facilities, and government
administrations have been targeted by ransomware attacks, resulting in service disruptions and significant
financial losses. According to a report published by Statista [3], ransomware actors received a total of $1.25
billion in 2023 and $813 million in 2024. These are very significant figures, demonstrating the major impact
of this type of attack.

WannaCry is one of the most notable ransomware attacks in the history of cyberattacks. It was launched
in May 2017 and spread rapidly worldwide by exploiting a vulnerability in Windows systems [4]. This attack
affected more than 230,000 computers in 150 countries, with total losses ranging from hundreds of millions
to billions of dollars. Several global organizations were affected by this attack, including the UK’s National
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Health Service (NHS), the Russian Interior Ministry, the Bank of China, the world’s largest delivery firm
FedEx, among others.

The detection of ransomwares presents a major challenge for security specialists due to the rapid
evolution of these malicious softwares and the use of advanced obfuscation and polymorphism techniques.
This makes their detection more difficult using traditional methods. In the literature, several works using
machine learning and deep learning techniques have been proposed to defend against this threat. These
studies generally deal with raw data and extracted features using techniques such as Opcode sequence
analysis [5], API call capture [6–9], PE header information analysis [10], and network traffic monitoring [11].
However, these techniques have not attempted to leverage the strength of Large Language Models (LLMs) and
the ability of their embedding models to capture the richness and diversity of textual information describing
ransomware behavior. In addition, existing techniques rely on a single model or representation space, which
reduces the generalization ability and robustness of the learned models. This observation reveals a research
gap in the development of ensemble methods based on multiple textual embeddings, which can combine
heterogeneous representations to enhance the accuracy, robustness, and generalization ability of ransomware
detection systems.

Large language models (LLMs) have revolutionized the field of natural language processing (NLP) with
their ability to generate rich, contextual, and semantic representations. Their use has rapidly expanded into
the field of cybersecurity thanks to their potential to improve threat analysis and detection techniques [12].
In recent years, researchers have started to employ LLMs in several areas of cybersecurity, such as intrusion
detection [13,14], cyber threat intelligence [15–17], malware detection and classification [18,19], and phishing
and spam detection [20,21]. These models enable researchers to design smarter and more adaptable detection
systems by giving them robust and generalizable text representations.

In this article, we propose a novel approach for detecting ransomware based on the text embedding
models of LLMs. These embedding models are useful for generating rich representations of textual features
extracted from executable files. To enhance the detection accuracy of our approach, we employed an
ensemble architecture encompassing three different embedding models. The approach involves designing
three base learners, each associated with one of the embedding models. Each base learner estimates its
prediction for the input instance individually. Then, an ensemble method based on weighted voting is applied
to aggregate the outputs of the base learners in an optimized way and make a final decision on the class
of the input instance. The weighted voting improves the performance of the ensemble approach by giving
more importance to the most reliable models, which allows for better exploitation of their complementarities
and reduces the influence of less accurate predictors on the final decision. To the best of our knowledge,
the proposed approach is the first to exploit both the embedding capabilities of LLMs and the robustness of
ensemble methods for ransomware detection.

The structure of the paper is organized as follows: Section 2 discusses related works. In Section 3, we
provide a detailed explanation of the proposed model. Section 4 presents the results of the experiments
conducted. Finally, Section 5 concludes the paper.

2 Related Work
To limit the damage caused by ransomware attacks, it is important to improve the ability to detect

ransomware as early as possible. Several ransomware detection techniques have been proposed in the
literature to address this problem. In this section, we will provide a brief overview of the key research
conducted on this topic.
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To detect and classify ransomware, Zhang et al. [5] proposed a static analysis of ransomware opcodes
using deep learning algorithms. The proposed solution involves extracting opcodes from ransomware files
and converting them into N-gram sequences. Then, a self-Attention based convolutional neural network and
a bidirectional self-attention network are applied to the obtained opcode sequences to assign the ransomware
to its family. The experimental evaluation of the approach was performed on a real dataset with eight
ransomware families.

To avoid the complicated process of dynamic analysis, Khammas [22] proposed the use of static analysis
to detect ransomware. The idea is to use frequent pattern mining to extract features from raw bytes and then
apply the gain ratio technique to select only relevant features. The next step is to use the Random Forest
algorithm to classify samples and detect ransomware. The experimental evaluation was performed on PE
files belonging to three ransomware families downloaded from VirusTotal. According to the authors, the
proposed method achieved a detection accuracy of 97.74%.

Another approach to ransomware detection proposed by Moreira et al. [10] involves converting portable
executable header files into color images in a sequential vector model and categorizing them using an
Xception Convolutional Neural Network model without transfer learning. Two datasets were used to evaluate
the suggested method. On the first dataset, the model achieved an accuracy of 93.73%. On the second it
achieved 98.20% accuracy.

Yamany et al. [23] considered a different method for analyzing ransomware. They proposed a system
scheme to track and classify ransomware based on static features to determine the similarity between
different ransomware samples. They used the Jaccard Index to calculate the similarity and performed
clustering on these samples to categorize them into classified groups.

In other research papers, the authors have opted for a more dynamic approach, which consists of
analyzing the behavior of the ransomware during execution and monitoring its activities. For example,
in [6], Al-rimy et al. proposed to analyze the evolution of crypto-ransomware behavior in the different
attack phases, applying an incremental bagging technique to create incremental subsets. They then apply
an enhanced semi-random subspace selection technique to select the most informative features for each
subspace and integrate both techniques into an ensemble-based model for ransomware detection. According
to the authors, experimental evaluation has shown that their approach can overcome the problem of delayed
ransomware detection and is able to detect crypto-ransomware in early stages of attacks.

Berrueta et al. [11] have proposed an approach for detecting crypto-ransomware in file-sharing environ-
ments. Their idea is to monitor the traffic exchanged between clients and file servers and capture activities
related to opening, closing and modifying files. The detection of ransomware is based on analyzing these
features using machine learning algorithms to distinguish between the activities of ransomware and those
of benign applications. According to the authors, the proposed approach can work with both plaintext and
encrypted file-sharing protocols.

Urooj et al. [7] proposed a method for weighting Generative Adversarial Networks (GANs) to detect
the behavior of ransomware attacks. They first used TF-IDF to capture API calls from a dynamic analysis
during the pre-encryption phase of the attack. Next, they employed GANs to increase the amount of data
collected by generating real-like synthetic data. Then, they integrated the mutual information method into
the GAN structure to estimate the importance of features, helping the detection model to handle ransomware
behavioral drift.

Similarly, Cen et al. [8] proposed analyzing ransomware API calls before the encryption attack begins.
They used NLP techniques to represent the features extracted from the API sequences and then employed a
Recurrent Neural Network (RNN) classifier to identify the ransomware.
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Regarding the use of LLM models in the field of cybersecurity, several studies have appeared in
recent years proposing LLM-based approaches for malware analysis and detection. For example, Hossain
et al. [24] employed the Mixtral LLM model to learn the patterns and characteristics that facilitate the
identification of malicious code in Java programs. In a recent article, Zhou et al. [25] introduced a framework
for ransomware detection and classification based on semantic analysis utilizing LLM-assisted pre-training.
Their idea involves enriching the dynamic traces of the program by rewriting them in a more understandable
linguistic form, then applying LLM-assisted pre-training based on the GPT-2 model, which is subsequently
fine-tuned for the tasks of detecting and classifying ransomware into families. In another article [26], Feng
et al. proposed a method for detecting Android malware based on LLMs. In their approach, they extracted
APK features (permissions, API calls, strings) and combined them into a textual representation, then adapted
the LLM through structured prompt engineering and dedicated fine-tuning to identify malicious behavior
and detect malware.

Table 1 provides a comparative overview of the various research discussed in this section. Previous works
on ransomware detection have explored different approaches, ranging from static analysis of opcodes and
PE files [5,22], to methods based on visual representations or similarity measures [10,23], as well as dynamic
approaches analyzing the behavior of malware during its execution [6–8,11]. Although these methods have
shown good performance, they are still limited in their ability to capture deeper semantic intent or to exploit
the rich contextual information embedded in execution traces. In this article, we look to propose a more
robust strategy that employs multiple LLM-based embedding models within an ensemble architecture. By
utilizing diverse and semantically rich representations generated by state-of-the-art LLMs, our approach can
effectively capture behavioral variations and high-level contextual cues that traditional feature engineering
methods or single-model techniques may overlook. This enhances our ability to detect the diversity and
complexity of malicious behaviors more effectively than conventional techniques.

Table 1: A comparative summary of the discussed related works.

Paper
Reference Year Approach

Objective
Features

Type Used Methods Dataset Type

Zhang
et al. [5] 2020

Detect and
classify

ransomware
Opcode

N-gram, TF-IDF,
self-Attention,

CNN

Ransomware
samples obtained
from VirusTotal

Khammas [22] 2020
Detect and

classify
ransomware

Byte-level

Frequent pattern
mining, gain
ratio, random

forest

Ransomware
samples obtained
from VirusTotal

Moreira
et al. [10] 2023

Detect and
classify

ransomware
PE header

Xception
Convolutional

Neural Network

Collected
ransomware

samples

Yamany
et al. [23] 2022

Ransomware
Classifica-
tion and

Clustering

Import
Address

Table

Jaccard Index,
k-means –

(Continued)
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Table 1 (continued)

Paper
Reference Year Approach

Objective
Features

Type Used Methods Dataset Type

Al-rimy
et al. [6] 2019 Ransomware

detection API calls

Incremental
bagging,

semi-random
subspace
selection,
ensemble
learning

Ransomware
samples obtained

from
virusshare.com

Berrueta
et al. [11] 2022 Ransomware

detection
network

traffic

Decision trees,
tree ensembles,

and neural
networks

Traffic traces from
more than 70

ransomwares [27]

Urooj
et al. [7] 2023

Detection of
ransomware
behavioral

drift

API calls

TF-IDF,
Generative
Adversarial

Networks, mutual
information

Ransomware
dynamic

pre-encryption
dataset [28]

Cen et al. [8] 2025

Early
ransomware

detection
before

encryption

API calls

Occurrence of
Words (OoW),
Bag of Words

(BoW), Sequence
of Words (SoW),
Recurrent Neural
Network (RNN)

Automated
dynamic analysis

of
ransomware [29]

Zhou
et al. [25] 2025

Ransomware
detection

using LLM-
assisted

pre-training

API calls,
Windows
registry

LLM-assisted
task-adaptive
pre-training

Automated
dynamic analysis

of
ransomware [29]

3 Proposed Model
In this section, we present the approach we propose in the current article. This methodology is based

on the integration of embedding functions from large language models (LLMs) and ensemble learning
techniques. The design and operating principle of the proposed model are illustrated in Fig. 1 and Algorithm
1. First, textual information is extracted from the PE file, such as header information, imported/exported
functions, and section information. From this extracted data, three distinct representations are then gen-
erated, each produced by a different embedding model. This diversity allows us to capture complementary
contextual and structural properties. Next, these vectors are used to train three neural network classifiers
independently. The predictions obtained from the three classifiers are then combined through an ensemble
voting method to make a final decision on whether the input sample is ransomware. This methodology
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simultaneously exploits the complementarity between embedding models and the high performance of the
ensemble method.

Figure 1: Architecture of the Ensemble detection model.

Algorithm 1: Ensemble embedding and classification of PE file
Input: PE file (x), embedding models (E1 , E2, E3), classification functions (h1 , h2, h3), voting weights

(W1 , W2, W3)
Output: sample class (0 or 1)
x′ = Text_Feature_Extraction(x)
foreach embedding model i 1 to 3 do

Generate an embedding vector: vi = Ei(x′)
end
foreach MLP classifier i 1 to 3 do

Calculate the predicted probability: pi = hi(vi)
end
Calculate the weighted probability of the ensemble: pag g =

∑
3
i=1 Wi pi

∑
3
i=1 Wi

Determine the final decision: ŷ =
⎧⎪⎪
⎨
⎪⎪⎩

1, if pag g ≥ τ,
0, otherwise.

3.1 Text Feature Extraction
Textual data extraction from PE files is a method that aims to identify and retrieve meaningful

information that is embedded directly in the file structure, without the need to execute it. This data can
provide crucial clues about a program’s functionality, dependencies, and potential behavior [30]. Several
types of information can be extracted from PE files. In our approach, we focused on the following data:
header information, section information, imported functions, and exported functions.

• Header information: The PE header is the first source of information to analyze. It contains a set
of data structures that define the properties of the file. Extracting text from this area can reveal
fundamental information, such as the target architecture of the program (e.g., x86 or x64), the list of
image characteristics, DLL characteristics, major and minor image versions, linker versions, and system
versions. In Fig. 2, we show an example of the textual information we extracted from the header section
of a PE file.

• Section information: More detailed information can be found in the section headers [31]. Each section of
the PE file, such as .text (executable code), .data (initialized data), or .rdata (read-only data), is described
by a header that contains its name, size, and location.
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• Imported functions: Imported functions are references to functions located in other modules (usually
DLLs) that the program needs to run. The import directory (IMAGE_DIRECTORY_ENTRY_IMPORT)
of the PE file lists the required DLLs and the names of the functions to be imported. Analyzing
these imports provides an accurate picture of a program’s potential functionality, which is essential for
assessing its malicious behavior [32].

• Exported functions: These functions are made available to other programs by the PE file. The export
directory (IMAGE_DIRECTORY_ENTRY_EXPORT) contains the names and addresses of these func-
tions. Extracting these names is crucial to understanding the role of a DLL and how other executables
can interact with it.

Figure 2: An example of header information extracted from a PE file.

3.2 Text Embedding
Text embedding is a process of converting text into digital representations helpful in building machine

learning models. Large language models (LLMs) have recently revolutionized this field by producing high-
quality embeddings. The embedding operation performed by LLMs involves projecting a sequence of
text x into a high-dimensional space R

d , while capturing semantic and context properties [33]. These
representations enable the measurement of similarity between texts, facilitate knowledge transfer, and serve
as input for supervised or unsupervised learning models.

In our approach, we aimed to take advantage of these revolutionary models to represent the textual
content of PE files. Our idea is to generate three vector representations from three different text embedding
models (OpenAI, VoyageAI, and Sentence Transformers). Using multiple text embedding models simulta-
neously allows us to benefit from the complementarity of their textual representations and leads to richer
and more robust representations. This idea improves the performance of classification tasks and promotes
better generalization, particularly in complex contexts such as malware detection.

The embedding operation in our approach can be represented by the following formula:

vi = Ei(x) ∈ Rdi (1)

where x is the input text, Ei is the ith embedding model used to convert the text, vi is the resulting numerical
representation, and di is the dimension of the corresponding vector.

3.2.1 OpenAI Text Embedding
After the success of its famous GPT model, OpenAI developed other models dedicated to text

embedding. These models use large-scale contrastive pre-training to build vector representations that can
show the semantic and contextual links between texts [34,35]. The architecture of the embedding model is
based on Transform Encoder E, which projects input text into a dense representation v = E(x) ∈ Rd of fixed
size that can be directly used for semantic search, classification, or clustering tasks. In our case, we used the
“text-embedding-3-small” model [35], which provides a representation vector of size 1536.
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3.2.2 VoyageAI Text Embedding
VoyageAI recently introduced a family of text embedding models [36] optimized for semantic search,

retrieval-augmented generation (RAG), and specialized domains (law, finance, code, etc.). VoyageAI models
are renowned for their high performance on benchmark tests such as MTEB (Massive Text Embedding
Benchmark). They are based on Transformer-type architectures capable of generating dense vectors of
configurable dimensions (256 to 2048) and processing extended contexts of up to 32,000 tokens, which is an
advantage for processing long documents. The model we use in our approach is called “voyage-3.5” [36] and
generates representation vectors of size 1024.

3.2.3 Sentence-Transformers Embedding
The Sentence-Transformers model, also known as Sentence-BERT (SBERT) [37], is a modified version

of BERT (Bidirectional Encoder Representations from Transformers), designed to make good sentence
embeddings for tasks like semantic similarity, information retrieval, and clustering. SBERT uses siamese
and triplet network architecture to generate semantically meaningful sentence embeddings to facilitate
comparisons via measures such as cosine similarity. Unlike standard BERT, SBERT utilizes a pooling strategy
(like mean pooling) on the output embeddings to produce a single vector representation for each sentence.
1024 is the size of the output vector we obtain from this embedding model.

3.3 MLP Classifier
Multilayer Perceptrons (MLP) are artificial neural networks composed of several layers of neurons: an

input layer, one or more hidden layers, and an output layer [38]. Multilayer perceptrons are constructed to
be fully interconnected, with each node linked to every node in adjacent layers. The outputs of the first layer
are used as inputs for the next layer, and so on until the output layer is reached.

In our case, we use an MLP for binary classification using a single hidden layer. The output of this hidden
layer, h, is a vector that can be calculated as follows:

h = g(W1x + b1) (2)

where x is an input vector, W1 is the weight matrix applied between the input layer and the hidden layer, b1
is the bias of the hidden layer, and g is a non-linear activation function (e.g., ReLU).

The output h becomes the input to the output layer, and the final output value will be calculated as
follows:

ŷ = σ(W2h + b2) (3)

where W2 is the weight matrix applied between the hidden layer and the output layer, b2 is the bias of the
output layer, σ is the Sigmoid activation function, defined as:

σ(z) = 1
1 + e−z (4)

This MLP classifier is applied to each vector representation issued from the three embedding models
described above. The objective is to calculate three separate predictions determining the probability that the
input sample is considered ransomware. This diversity helps reduce reliance on a single vector space and
limits biases associated with a particular model.
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3.4 Weighted Voting Ensemble
The previous step provided us with three different classification models, each generating predictions that

may be similar or different from the other models. To make a final decision about the prediction of the input
sample, we took advantage of ensemble learning techniques in our approach. Ensemble learning is a method
in machine learning based on training multiple models to predict a solution for a given problem [39]. An
ensemble model consists of several learners, commonly known as base learners. This approach is notable for
its ability to combine multiple weak learners, resulting in a strong learner that demonstrates greater accuracy
than any of the individual base learners.

To combine the results of the base models in an ensemble architecture and provide a single output
prediction, several methods have been proposed in the literature, including stacking, bagging, boosting, and
voting. In this approach, we chose the weighted voting method to aggregate the predictions of the three
models. The idea behind this method considers that base learners do not perform equally well, so it is more
appropriate to focus on the best-performing models. Weight-based voting consists of assigning different
weights to the base models according to specific criteria and voting on the results, taking their weights into
account. Generally, the best-performing model receives the highest weight [21,40].

To explain the weighted voting process, let us consider p1, p2, and p3 as the predictions obtained from
the three MLP classifiers h1, h2, and h3, respectively, and W1, W2, and W3 as the weights assigned to the three
MLP models. We begin by calculating the aggregate value of the three predictions, taking into account the
associated weights, using the following formula:

pag g =
∑

3
i=1 Wi pi

∑
3
i=1 Wi

(5)

Then, we determine the output value ŷ by voting on the final decision of the instance, which can be 0
or 1, using the following formula:

ŷ =
⎧⎪⎪
⎨
⎪⎪⎩

1, if pag g ≥ τ,
0, otherwise.

(6)

where τ is a decision threshold generally equal to 0.5.
The challenge we face with this voting method is how to find the optimal weight combination. This

choice is crucial to ensuring the best performance of the ensemble model. In our approach, we opted for
the Bayesian optimization method to select the right weights. Bayesian optimization is an effective method
for enhancing objective functions that are difficult to evaluate or require extensive analysis time [41]. The
fundamental goal of Bayesian optimization is to identify the global minimum (or maximum) of a function
f (x) by developing a probabilistic model, known as a surrogate model, that approximates f (x) and is refined
after each evaluation of f (x) [42]. Adopting this method in our approach leads us to solve the following
optimization problem:

x∗ = arg max
x∈χ

f (x) (7)

where x∗ represents the weights of the ensemble model that we aim to optimize. χ defines the search space
for the weights. The objective function f (x) refers to the performance of the ensemble model according to
the chosen weights. This performance is evaluated by calculating the accuracy measure. The solution to this
optimization problem consists of finding the optimal combination of weights x∗ that helps the function f (x)
achieve the best performance.



10 Comput Mater Contin. 2026;87(1):98

4 Experimental Evaluation
Experimental benchmarking is a crucial step in evaluating an approach. To this end, we have prepared

several experiments based on the model proposed in this article. For the comparative tests, we also tested
other baseline algorithms using vectorized features instead of text embedding. In this section, we present the
results of these experiments and analyze our findings.

4.1 Dataset Description
To train the proposed model, we used the Ember dataset to gather a collection of ransomware samples.

EMBER (Endgame Malware Benchmark for Research) [43] is a labeled dataset specifically designed to
benchmark machine learning models dedicated to the detection of malicious Windows portable executable
files. The dataset comprises information obtained from 1.1 million binary files. It contains several raw
characteristics extracted from PE files, including general file information, header information, imported
functions, exported functions, section information, and format-agnostic information. This dataset, which
originally contains several types of malwares, was useful for us to generate a more targeted dataset containing
only ransomware. The final dataset used in our experimental tests comprises 13,623 ransomware samples and
50,000 benign samples.

4.2 Results
4.2.1 Comparison with Base Embedding Models

To evaluate the performance of the proposed approach, we first assessed the three basic models
individually: (i) an OpenAI embedding combined with an MLP classifier, (ii) a VoyageAI embedding
with an MLP classifier, and (iii) an embedding with Sentence-Transformers followed by an MLP classifier.
Subsequently, we tested the Ensemble model, which applies weighted voting to the outputs of the three
individual models. The objective of these experiments is to determine whether the weighted voting method
can outperform the basic models.

To achieve a more robust comparative evaluation, we used 5-fold cross-validation to split the dataset. We
then calculated four evaluation metrics for each model: accuracy, precision, recall, and F1-score, and reported
the average value of the 5-fold tests for each metric. Additionally, to provide insight into the computation
duration, we included the training time for each model. Regarding the parameters of the MLP classifier, we
used a neural network with a single hidden layer and an input layer whose size varied depending on the
type of embedding: 1536 in the case of OpenAI and 1024 for both VoyageAI and Sentence-Transformers. The
results of these experiments are presented in Table 2.

Table 2: Comparison of results between ensemble method and base embedding models.

Model Accuracy Precision Recall F1-score Training Time
(second)

OpenAI embedding +
MLP 0.9788756 0.95328 0.9479512 0.9505264 209.04

VoyageAI embedding +
MLP 0.9807934 0.957177 0.9529868 0.9550372 117.86

Sentence-Transformers
embedding +MLP 0.9781524 0.952077 0.9456182 0.948786 198.78

Weighted Voting
Ensemble 0.98675 0.977733 0.9599914 0.968767 533.89
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By analyzing the results of the three base models, we conclude that the VoyageAI embedding
demonstrates superior performance in ransomware detection, achieving an average accuracy of 0.9808,
a precision of 0.9572, a recall of 0.953, and an F1 score of 0.955, while also requiring a faster training
time. The other embedding models also performed well, with OpenAI reaching an accuracy of 0.9789 and
Sentence-Transformers achieving an accuracy of 0.9782.

When examining the results of the Weighted Voting Ensemble model, we note a fairly significant
improvement in all evaluation metrics compared to the base models. The ensemble model achieved an
accuracy of 0.9868, a precision of 0.9777, a recall of 0.9600, and an F1 score of 0.9688. Fig. 3 illustrates
the percentage improvements of our ensemble model compared to the base models, indicating a positive
enhancement across the board, with improvements ranging from 0.6% to 2.6%. For instance, the ensemble
method showed an improvement over the OpenAI model of 0.8% in accuracy, 2.4% in precision, 1.2% in
recall, and 1.8% in F1 score.

Figure 3: Improvement of the weighted ensemble method.

4.2.2 Comparison with Algorithms Using Vectorized Features
Vectorized features are a numerical representation of the raw features of the PE file based on feature

hashing methods. This type of feature was designed by the creators of the Ember dataset to assist researchers
in training their models. To compare this technique with the approach we propose, we tested it in
combination with baseline classification algorithms, including KNN, Decision Tree, Logistic Regression,
Random Forest, XGBoost, AdaBoost, and MLP. The results of these experiments are presented in Table 3.
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Table 3: Comparison of results between our ensemble method and baseline classification algorithms.

Features Type Model Accuracy Precision Recall F1-score Training Time
(second)

Vectorized features

KNN 0.954592 0.917379 0.89095 0.866072 0.21
Decision tree 0.967811 0.92084 0.925206 0.929641 230.79

Logistic
regression 0.966977 0.929855 0.922205 0.914719 72.83

Random Forest 0.979379 0.993908 0.949692 0.909313 106.19
XGBoost 0.983015 0.977506 0.959365 0.941908 15.93
AdaBoost 0.940776 0.89487 0.855694 0.820261 257.33

MLP 0.980636 0.954521 0.954755 0.95502 225.69

Combined
Embeddings (OpenAI
+ VoyageAI + Sentence

Transformers)

KNN 0.974915 0.943942 0.941246 0.938582 0.41
Decision tree 0.956022 0.892163 0.897982 0.903908 1522.82

Logistic
Regression 0.962655 0.942265 0.909773 0.879531 22.05

Random Forest 0.977492 0.985496 0.945302 0.908312 578.74
XGBoost 0.982176 0.976628 0.957557 0.939276 133.77
AdaBoost 0.936438 0.868788 0.848019 0.828367 1532.22

MLP 0.977414 0.957133 0.946776 0.936887 425.64

Ensemble Embedding
(Our approach)

Weighted
voting

ensemble (Our
approach)

0.98675 0.977733 0.9599914 0.968767 533.89

Analysis of the results indicates that classification accuracy varies depending on the algorithm used.
Generally, algorithms based on decision trees such as XGBoost and Random Forest performed better than
the others. XGBoost was the best with an accuracy of 0.9830, a precision of 0.9775, a recall of 0.9594, and
an F1 score of 0.9419. The MLP classifier also showed comparable results, achieving an accuracy of 0.9806.
However, all these results were still inferior to those obtained by our Weighted Voting Ensemble model.

4.2.3 Comparison with Algorithms Using Combined Embeddings
The combination of the three generated embeddings provides a simple and important baseline by

merging all feature vectors into a single unified and rich representation, allowing a classifier to learn from the
full information space without relying on voting or fusion strategies. To assess the benefits of our weighted
voting ensemble method compared to this baseline strategy, we trained seven algorithms (KNN, Decision
Tree, Logistic Regression, Random Forest, XGBoost, AdaBoost, and MLP) on this concatenated feature
vector and reported their classification results in Table 3.

As in the previous experiment, the XGBoost, Random Forest, and MLP algorithms showed the best
results. However, none of these algorithms surpassed the effectiveness of our approach, which outperformed
all the methods and algorithms we tested during these experiments.
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4.3 Discussion
The experimental results demonstrated that integrating OpenAI, VoyageAI, and Sentence-Transformers

embeddings with MLP classifiers in an ensemble method based on weighted voting consistently improves
classification performance. In Table 4, we present a performance comparison between the model we
propose in the current paper and the results reported in previous studies. Despite the absence of a unified
benchmarking dataset for ransomware detection, this comparison remains highly informative. It allows us
to position our method relative to existing research and to assess whether it can effectively compete with
or surpass state-of-the-art techniques. The results clearly show that our approach demonstrates superior
performance, proving the strong robustness of our LLM-based ensemble strategy over traditional models,
even when contrasted with diverse methodologies evaluated on different datasets.

Table 4: Performance comparison with related works.

Paper Reference Year Used Methods Accuracy

Khammas [22] 2020 Frequent pattern mining, gain
ratio, random forest 97.74%

Moreira et al. [10] 2023 Xception Convolutional Neural
Network

93.73% and
98.20%

Al-rimy et al. [6] 2019
Incremental bagging,

semi-random subspace
selection, ensemble learning

97.89%

Urooj et al. [7] 2023 TF-IDF, Generative Adversarial
Networks, mutual information 97%

Cen et al. [8] 2025

Occurrence of Words (OoW),
Bag of Words (BoW), Sequence

of Words (SoW), Recurrent
Neural Network (RNN).

94.26%

Zhou et al. [25] 2025 LLM-assisted task-adaptive
pre-training 95.5%

Our approach 2025 LLM embedding, MLP,
Ensemble voting 98.67%

The analysis of Table 3 allowed us to conclude that VoyageAI performs better in terms of accuracy, recall,
and F1-score while OpenAI offers better precision. This explains why OpenAI produces fewer false positives
while VoyageAI produces fewer false negatives. These findings highlight the advantage of leveraging multiple
embedding models, as each representation encodes distinct semantic and contextual information about the
input data. By combining these complementary representations, the ensemble method will have the ability
to reduce dependence on a single embedding space and, as a result, mitigate the risk of systematic errors
inherent in a model. The weighted voting technique also contributed to improving the overall performance
of the approach by assigning greater influence to base models with higher predictive reliability.

Although this performance improvement may seem slight when compared to the base VoyageAI model
or the XGBoost model using vectorized features, it is still significant. This is very important in high-stakes
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domains such as ransomware detection, where even slight gains in recall and accuracy can have a significant
impact by reducing the risk of undetected threats.

Another characteristic that we identified during experimental testing of the proposed approach is the
high computational cost caused by the ensemble architecture. Deploying three learning models together
requires more hardware resources and can take more time to generate results. This aspect must be considered
in applications that demand real-time responses or when deploying on devices with limited resources. Future
work should investigate more efficient ensembling or embedding techniques to balance performance with
hardware utilization.

5 Conclusion
In this article, we proposed a new approach for ransomware detection based on ensemble learning

and cutting-edge language models (LLMs). Our first goal is to leverage the embedding capabilities of the
latest LLMs to generate rich and meaningful representations of executable files. The second goal is to create
a robust and accurate detection model based on ensemble learning techniques. The proposed approach
incorporates three base MLP classifiers associated with three different embedding models (OpenAI, Voy-
ageAI, and Sentence-Transformers) and an optimized weighted voting technique to make the right decision
regarding the input sample. Experimental results showed the effectiveness of our model, which exceeds the
performance of the individual base models, achieving an accuracy of 98.67%, a precision of 97.77%, a recall
of 96%, and an F1-score of 96.88%.

In the future, we plan to enrich the learning data by integrating more dynamic features that accurately
reflect the program’s behavior during execution. We also envisage streamlining the proposed system by
designing new embedding techniques that are both effective and less resource-intensive.
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