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ABSTRACT: This study presents a hybrid CNN-Transformer model for real-time recognition of affective tactile
biosignals. The proposed framework combines convolutional neural networks (CNNs) to extract spatial and local
temporal features with the Transformer encoder that captures long-range dependencies in time-series data through
multi-head attention. Model performance was evaluated on two widely used tactile biosignal datasets, HAART and
CoST, which contain diverse affective touch gestures recorded from pressure sensor arrays. The CNN-Transformer
model achieved recognition rates of 93.33% on HAART and 80.89% on CoST, outperforming existing methods on
both benchmarks. By incorporating temporal windowing, the model enables instantaneous prediction, improving
generalization across gestures of varying duration. These results highlight the effectiveness of deep learning for tactile
biosignal processing and demonstrate the potential of the CNN-Transformer approach for future applications in
wearable sensors, affective computing, and biomedical monitoring.

KEYWORDS: Tactile biosignals; affective touch recognition; wearable sensors; signal processing; human-machine
interaction

1 Introduction

Tactile interaction has been widely applied in various fields, including medical surgery [1], real-time
health monitoring [2], rehabilitation training [3], and remote control [4,5]. As an essential aspect of human-
machine interaction, tactile engagement allows machines to respond more effectively to human needs and
contributes to overall well-being [6]. In particular, affective touch gestures provide an important channel for
conveying emotions and intentions [7,8], and increasing attention has been given to their monitoring and
interpretation in recent years [9].

Early research on affective touch gesture recognition primarily relied on traditional machine learning
techniques applied to handcrafted features extracted from tactile biosignals. Typically, features were derived
from raw tactile data and then used to train models that learned input-output mappings for gesture
prediction. Cooney et al. [10] developed a skin sensor with a photo-interrupter to record tactile interaction
data between humans and humanoid robots, and used support vector machines and support vector
regression to recognize affective touch gestures. To provide more generalizable benchmarks, the Human-
Animal Affective Robot Touch (HAART) dataset [11] and the Corpus of Social Touch (CoST) dataset [12]
were introduced in the 2015 Social Touch Challenge. Building on these datasets, subsequent work explored
pressure-surface and kinematic features [13], as well as a range of statistical and temporal descriptors. Using
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these features with a Random Forest classifier, accuracies of 70.9% on the HAART and 61.3% on the CoST
dataset were obtained, representing the strongest affective touch gesture recognition performance of that
period [14,15]. Although these approaches improved interpretability and achieved moderate recognition
performance, they remained dependent on manual feature design and offered limited capacity to capture
complex spatiotemporal patterns.

With the rapid development of deep learning, the performance of affective touch gesture recogni-
tion has been substantially improved. Deep architectures originally developed for text [16], audio [17,18],
and vision [19,20] have been adapted to tactile biosignal classification, including deep neural networks
(DNNs) [21], CNNs [22], and recurrent neural networks (RNNs) [22]. For example, DNNs combined with
hidden Markov models and geometric moments have been applied to tactile robotic skin, but their accuracies
on the HAART and CoST datasets were relatively low at 67.73% and 47.17%, respectively [21]. CNN-based
models, including both 2D and 3D variants, have shown promising results [23] on the HAART dataset,
with the 3D CNNs achieving 76.1% accuracy, surpassing the top-ranked outcome of the 2015 Social Touch
Challenge. Similarly, Albawi et al. [24] improved performance on the CoST dataset using a CNN-based
model and the leave-one-subject-out cross-validation method, achieving 63.7% accuracy, which exceeded
earlier results. Considering the temporal nature of tactile biosignals, RNNs [22] and LSTM [23] models were
also explored, and hybrid CNN-LSTM models have demonstrated better performance by jointly modeling
spatial structure and temporal dynamics, achieving state-of-the-art accuracy on HAART and CoST in some
studies [25]. Recent studies have further demonstrated the effectiveness of CNN-LSTM architectures in
sequential biosignal analysis, such as emotion recognition from photoplethysmographic data [26], where
the hybrid design significantly improved temporal modeling. Although RNNs and LSTM are commonly
used for sequential data, their ability to capture long-term temporal dependencies is fundamentally limited
by their step-by-step processing and the gradual decay of information over time. As the sequence length
increases, these models often struggle to retain global contextual information due to vanishing gradients
and restricted memory capacity. The Transformer architecture [27] overcomes these limitations through its
multi-head self-attention mechanism, which computes relationships between all time steps in parallel. This
enables direct modeling of long-range temporal dependencies without iterative state propagation, making
Transformer particularly suitable for tactile biosignal sequences where meaningful temporal patterns may
span extended or non-local time intervals.

In previous studies on tactile biosignal classification using the HAART and CoST datasets, most
approaches relied on extracting features from complete sequences collected in each experiment. Such
methods require acquiring the full gesture from start to end before making a prediction, which limits
applicability in real-time scenarios. However, a touch biosignal recognition model should be capable of
making instantaneous predictions of real-time touch gestures in practical human-machine interaction
scenarios, rather than waiting until the entire gesture has been completed.

In response to these limitations, this paper proposes a hybrid approach that combines CNNs and
Transformer architecture. The CNN component is responsible for extracting local spatial features from
tactile biosignals, while the Transformer captures long-range temporal dependencies in sequential data,
allowing the two modules to complement one another. Recent developments have further extended this
paradigm to sequential text generation, audio processing [28] and physiological signal analysis [29,30],
where Transformer-based temporal modeling has demonstrated strong capabilities in capturing complex
temporal dynamics. Hybrid structures have also shown promising results in visual perception and biomedical
segmentation tasks, illustrating the broader applicability of combining local and global feature modeling.
These advances collectively indicate that hybrid CNN-Transformer architectures are well suited for affective
biosignal recognition, providing a solid foundation for extending such approaches to tactile biosignal
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analysis. The main objective of this study is not merely to adopt existing CNN-Transformer architectures,
but to adapt and re-purpose them for real-time affective tactile biosignal recognition under sliding-window
constraints. Specifically, this work investigates how Transformer-based temporal attention can be effectively
integrated into a CNN-dominated framework to refine short-term temporal dynamics in tactile signals,
rather than modeling long-range sequence dependencies. The contributions of this work include the design
and implementation of a lightweight CNN-Transformer model tailored to affective tactile biosignals. This
architectural design explicitly accounts for the characteristics of tactile array data and the low-latency
requirements of real-time gesture-based affect recognition. Experiments using the HAART and CoST
datasets were conducted to validate the framework, which was designed to output instantaneous gesture
predictions based on real-time tactile inputs.

2 Materials and Methods
2.1 Datasets

The performance of the proposed model was evaluated using two publicly available datasets,
HAART [11] and CoST [12]. These datasets were selected because of their reliability and their widespread use
in the affective touch gesture recognition field, which makes them suitable benchmarks for validating and
comparing models. By employing these well-established datasets, the performance of the proposed approach
can be directly compared with previous studies. An overview of the datasets used in this study is provided
in Table 1.

Table 1: Number of effective experiments in the two datasets.

Touch Gesture HAART CoST
No Touch 119 /

Grab / 558
Hit / 558
Massage / 557
Pat 119 557
Pinch / 558
Poke / 558
Constant/Press 117 558
Rub 117 557
Scratch 119 558
Slap / 558
Squeeze / 557
Stroke 119 556
Tap / 558
Tickle 119 557

HAART [11] is a publicly available dataset consisting of a grid of 10 x 10 pressure sensors, each of which
captures and reports pressure variations in response to contact. Data were gathered from 10 participants,
each performing 7 different touch postures, including no touch, constant, pat, rub, scratch, stroke, and tickle.
Data collection was conducted on three types of substrates and four different covers applied to the pressure
sensors. The substrates included None, Foam and Curve. The covers consisted of Fur, None, Long, and Short.
The various substrates and covers create 12 distinct data acquisition scenarios. Each gesture is captured at
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a frequency of 54 Hz and executed continuously for 10 s, obtaining uninterrupted test results for 8 s after
trimming the first and last seconds. Each frame is a snapshot of the entire grid at a specific moment. This
creates a dataset consisting of 432 frames per sequence.

The second dataset used in this study was the CoST dataset [12], which contains 7805 tactile biosignal
samples collected from human touch gestures performed on a grid of pressure sensors positioned around a
human hand. The dataset includes 14 distinct interaction types, namely grab, hit, massage, pat, pinch, poke,
press, rub, scratch, slap, squeeze, stroke, tap, and tickle, each recorded at three different intensity levels. These
gestures were carried out by 31 participants, with each subject repeating every gesture six times to ensure
consistency and variability across individuals. The CoST dataset records tactile signals across 64 sensor
channels at a sampling frequency of 135 Hz. Unlike the HAART dataset, where gestures were standardized
with uniform durations, the CoST dataset provides gesture sequences of variable lengths, ranging from as
many as 1747 frames to as few as 10 frames, which adds additional complexity to classification tasks.

2.2 Proposed Solutions

This paper presents a CNN-Transformer classifier developed for the recognition of tactile biosignals
using the HAART and CoST datasets. An overview of the proposed architecture is shown in Fig. la. The
touch gestures data were first preprocessed and then passed through the CNN block to extract local spatial
features from the tactile frames.
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Figure 1: (a) Overview of the proposed CNN-Transformer architecture, (b) the CNN block in CNN-Transformer
architecture.

2.2.1 CNN-Transformer Model

The CNN block and Transformer layers were integrated to capture long-range dependencies in tactile
biosignals for affective touch gesture recognition. Tactile sensor arrays in the HAART and CoST datasets
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produce spatially organized pressure measurements arranged in grid-like formats, specifically 10 x 10 for
HAART and 8 x 8 for CoST. These structured pressure maps are analogous to low-resolution images, where
adjacent taxels exhibit spatial correlations similar to neighboring pixels in vision tasks. As a result, CNNs are
well suited for processing this type of data, since convolutional kernels can effectively capture local spatial
patterns and pressure distributions across the tactile surface. In the CNN-Transformer architecture, the CNN
component consists of four 2D convolutional (Conv2D) layers. Each convolutional layer in the diagram
corresponds to a Conv2D operation followed by batch normalization and a ReLU activation, forming the
complete convolutional block illustrated in Fig. 1b. All Conv2D layers used a kernel size of 3 x 3, stride 1, and
padding 1. This standardized configuration facilitated stable convergence of the network and reduced the risk
of vanishing gradients. To enhance feature extraction, the outputs after normalization in Conv2 and Conv4
were further processed through a two-dimensional max-pooling layer. Following the final convolutional and
pooling operations, the resulting tensor had a spatial dimension of 2 x 2 with 512 channels and was then
flattened. Afterward, the flattened representation was routed through a dense layer with 256 units and a
dropout layer with a rate of 0.5, providing regularization by randomly ignoring half of the units to prevent
overfitting. Fig. 1b presents the complete architecture of the CNN block, in which the processed tensor is
subsequently routed through a dense layer with 256 units before being passed to a positional encoding layer
with 32 units.

To improve the model’s ability to capture complex dependencies, the Transformer encoder was inte-
grated with a multi-head attention mechanism. The Transformer consisted of two encoder layers, each
with four attention heads, a model dimension of 32, and a feedforward hidden dimension of 128. This
mechanism allowed the model to simultaneously attend to features extracted from different positions within
the temporal sequence, thereby enhancing representational capacity. Within each encoder layer, dropout
(rate = 0.5) was applied to both the multi-head attention output and the feedforward sublayer, followed
by layer normalization and ReLU activation in the feedforward network. These configurations further
stabilized training and improved feature refinement. The Transformer’s ability to parallelize computations
significantly accelerates the learning of long-term dependencies in tactile biosignals. By combining CNNs
and Transformer components, the hybrid framework achieved a more comprehensive understanding of the
temporal dynamics inherent in these tactile signals. For final classification, the output was passed through
fully connected and Softmax layers, and a dropout rate of 0.5 was applied within the Transformer encoder
to mitigate overfitting and improve generalization performance. In addition to its structural simplicity, the
proposed CNN-Transformer model remains relatively lightweight. The CNN front end contains roughly two
million trainable parameters, and the overall architecture requires only a modest amount of computation to
process each sliding window.

2.2.2 Preprocessing of Datasets

To guarantee fair evaluation and eliminate any possibility of data leakage, subject-independent data
splitting was applied to both datasets. All subsequent operations were then performed individually within
each subject partition.

Before being processed by the CNN block, the tactile biosignal data underwent a series of preprocessing
steps. To improve both computational efficiency and the convergence stability of the model, the data from
the two datasets were normalized through standardized scaling [25], as expressed in Formula (1).

y=(x-m)fs e

here, m and s denote the mean and standard deviation of the pressure data set x, respectively.
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To enable instantaneous touch gesture prediction, a sliding-window segmentation strategy was adopted
during data preprocessing. This approach not only provides the temporal context needed for instantaneous
prediction but also increases the number of training samples, thereby improving the model’s generalization
ability. Consistent with recent real-time gesture recognition systems that typically employ short temporal
windows of around 200-500 ms to balance latency and accuracy [31], a similar temporal scale was adopted. To
investigate how the temporal window and stride affect our model, a systematic ablation study was conducted
across a 3 x 3 set of window-stride configurations. Specifically, the window lengths of 18, 27, and 36 frames
(200-500 ms for the two datasets) were evaluated together with strides of 6, 9, and 12 frames. These window
lengths are consistent with the temporal intervals commonly used in recent real-time tactile and wearable
sensing literature [31], ensuring comparability with prior work. Within this range, the 3 x 3 design allows
us to systematically compare short windows, which increase sample count, against longer windows that
capture more stable temporal dynamics but reduce sample density. Importantly, to ensure fair and controlled
comparison without inflating computational cost, all model components (including architecture, optimizer,
learning rate, batch size, and data augmentation) were held constant across all experimental conditions. Only
the sliding-window hyperparameters were varied. To constrain the computational cost, the training schedule
was reduced from 750 epochs to 450. An early-stopping mechanism with a patience of 30 epochs was further
introduced, enabling training to halt automatically once the validation accuracy plateaued. Unlike the main
experiments, which relied on 10-fold cross-validation, the ablation employed only the first fold.

As summarized in Table 2, the configuration with a 27-frame window and 9-frame stride yielded the
highest validation accuracy and test accuracy for both datasets. Therefore, this setting was adopted as the
default configuration throughout this paper.

Table 2: Ablation results for different window-stride configurations.

Window  Stride Beilaﬂ;::;lon Test Accuracy f:it:it%g:;l'} Test Accuracy

Size Size (HAART Dataset) (HAART Dataset) Dataset) (CoST Dataset)
18 6 85.98% 85.69% 68.07% 65.86%
18 9 84.12% 83.49% 68.97% 67.86%
18 12 77.55% 77.46% 64.60% 63.35%
27 6 88.09% 85.70% 70.17% 69.74%
27 9 88.51% 87.50% 74.82% 72.50%
27 12 85.41% 84.80% 65.79% 64.93%
36 6 87.27% 86.21% 72.25% 71.85%
36 9 86.07% 74.70% 72.68% 71.70%
36 12 87.37% 86.11% 73.05% 72.32%

Considering the characteristics of the CoST dataset, where gesture durations vary widely, sliding-
window segmentation increases the number of samples in a gesture-dependent manner and therefore affects
the class distribution. Table 3 reports the number of data samples generated for each gesture class under the
selected window-stride configuration. Although this segmentation strategy substantially enlarges the dataset
and supports real-time modeling, differences in gesture duration naturally lead to unequal sample counts
across classes.
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Table 3: Sample counts for each gesture class after sliding-window segmentation on the CoST dataset.

Grab Hit Massage Pat Pinch Poke Press Rub Scratch Slap Squeeze Stroke
10,696 2026 28,756 5127 8677 4634 9069 17,329 17,640 1901 11,731 13,573

2.2.3 Experimental Settings

The experiments were performed on a system that includes a 13th Gen Intel® i9-13900KF CPU @
5.40 GHz, 32 GB RAM, and an NVIDIA RTX 4070Ti GPU. The proposed model was implemented using the
Python programming framework.

The batch size was set to 128, as it yielded optimal performance, and training was conducted using the
SGD optimizer with a learning rate of 0.001. The model was trained for 750 epochs. Model performance
was evaluated using a combination of subject-independent 10-fold cross-validation on the training set and
a separate subject-level hold-out test set, which is a standard and rigorous evaluation protocol for biosignal
recognition tasks. To support real-time applicability, inference efficiency was also assessed. When executed
on an NVIDIA RTX 4070Ti GPU, the model demonstrated an average inference latency of approximately
1.3 ms per tactile window, indicating sufficient computational margin for real-time deployment.

3 Results and Discussion

In the experiments, a subject-independent 10-fold cross-validation procedure was applied to the training
portion of each dataset. After subject-level splitting, approximately 10% of the subjects in each dataset were
reserved as a hold-out test set and were not involved in any training or validation steps. The remaining
subjects were used for cross-validation, where the training data were shuffled and divided into 10 nearly
equal subsets. In each fold, one subset was used for validation and the remaining nine subsets were used
for training. This process was repeated ten times, and the mean classification accuracy across all folds was
reported as the primary performance metric. The cross-validation results obtained from the validation sets
are summarized in Table 4.

Table 4: Performance results from 10-fold cross-validation across the two datasets.

Fold HAART CoST
1 89.25% 75.16%

2 88.81% 76.07%

3 89.02% 75.85%

4 89.35% 75.20%

5 89.34% 75.72%

6 89.58% 75.56%

7 89.17% 75.50%

8 89.53% 75.35%

9 89.27% 75.17%
10 88.85% 74.60%
Mean 89.22% 75.42%

The model trained on the HAART dataset achieved the highest recognition performance, with an
average cross-validation accuracy of 89.22%, as reported in Table 4. In comparison, the model obtained
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an average recognition accuracy of 75.42% on the CoST dataset. To further assess performance, the most
effective configuration identified for each dataset was subsequently employed to generate learning curves of
accuracy and loss, providing additional insight into training dynamics.

Fig. 2 presents the learning curves obtained for the HAART and CoST datasets. The curves indicate that
as the number of training iterations increased, the validation loss decreased while the validation accuracy
improved. However, both metrics tended to stabilize after approximately 400 epochs. Training the model
for 750 epochs, rather than stopping at 400, produced better overall performance, suggesting that extended
training contributes to improved accuracy and stability. This finding is consistent with previous work [32],
in which extending training to 750 epochs also resulted in superior outcomes compared with 300 epochs.

(a) (b)

18 Training Loss 100
1.6 F Validation Loss e
14 F 80 | ff
1.2 | o<°\
P > 60 |
§1.0 §
0.8 g
40 -
0.6 - .
04 20 Training Accuracy
02 F Validation Accuracy
oo b v v s oL v
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Epoch Epoch
(c) (d)
25 F T
Training Loss 100
Validation Loss
20
80 |-
& s
15 L < 7
2 g oor
g g
- 3
1.0 - é 40 -
05 | 20 Training Accuracy
Validation Accuracy
oo L v v e e e e ol vy ey
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Epoch Epoch

Figure 2: (a) Loss curves for the HAART dataset from fold 6, (b) accuracy curves for the HAART dataset from fold 6,
(c) loss curves for CoST dataset curve from fold 2, (d) accuracy curves for CoST dataset curve from fold 2.

Moreover, the model achieved higher accuracy on the hold-out test set compared with the average accu-
racy obtained during 10-fold cross-validation. This result indicates that the proposed framework performs
effectively in affective tactile gesture recognition and exhibits robustness against overfitting. To provide a
more detailed evaluation, confusion matrices were constructed to display the classification performance for
each dataset. In these matrices, rows correspond to the actual touch gestures and columns correspond to the
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predicted gestures, with the diagonal elements representing the proportion of correctly classified samples for
each gesture.

The confusion matrices for the HAART and CoST test sets are reported in Figs. 3 and 4, respec-
tively. Fig. 3 shows that the highest recognition rate in the HAART dataset was obtained for the “No
Touch” gesture, achieving 100% accuracy. Raw signal examination shows that “No Touch” segments produce
consistently low-intensity readings across all 100 channels, typically below a value of 10, resulting in a
highly compact region in the feature space. This behavior makes “No Touch” data substantially easier
to distinguish from active-gesture patterns, which display higher amplitude and greater spatiotemporal
variation. As a result, the signals are highly consistent and clearly separable from other active gestures,
making this class relatively straightforward for the model to learn and identify. When compared with models
proposed in previous studies, the present approach demonstrates superior recognition accuracy across all
gestures in the HAART dataset. Furthermore, the model most frequently misclassified “Rub” as “Stroke”,
with a misclassification rate of 7.8%. This confusion is expected because both gestures involve continuous
sliding contact across the surface, producing highly similar pressure distributions on the 100-channel tactile
array. Their frequency content is dominated by low-frequency components with minimal high-frequency
transitions, leading to similar temporal-spectral patterns. Fig. 4 indicates that the highest recognition
performance was achieved for the “Pinch” gesture in the CoST dataset, reaching 92.9% accuracy. In contrast,
the “Slap” gesture achieved a relatively low recognition rate of 67.4%. This discrepancy can be attributed to
the intrinsic temporal-spectral characteristics of the “Slap” gesture. Unlike gestures such as “Pinch”, which
produce stable, low-frequency pressure patterns, “Slap” generates a brief, high-intensity impulse with rapid
spectral transitions and limited temporal consistency. Such transient, broadband events are inherently harder
for the model to capture. In addition, the CoST dataset contains the fewest “Slap” samples compared with
other categories, further reducing the model’s ability to generalize. Consequently, both the gesture’s impulsive
spectral profile and its limited sample availability contribute to its lower recognition accuracy.

Constant 98.4% 0.9% 0.0% 0.4% 0.0% 0.2% 0.2%
No Touch 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Pat 0.4% 1.3% 95.9% 0.7% 0.5% 0.7% 0.5%
)
Q
=
<
2 Rub 0.2% 0.4% 0.7% 87.1% 1.1% 7.8% 2.7%
<
2
Q
<
Scratch 0.0% 1.1% 0.5% 1.8% 90.5% 0.7% 5.4%
Stroke 0.2% 1.4% 0.9% 5.5% 1.1% 89.8% 1.1%
Tickle 0.0% 0.9% 0.4% 2.0% 4.7% 0.5% 91.6%
Constant No Touch Pat Rub Scratch Stroke Tickle
Predicted Values

Figure 3: Confusion matrix on the HAART dataset.
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Grab [86.5% 0.1% 1.5% 0.2% 0.1% 0.1% 0.3% 0.4% 0.9% 0.2% 8.6% 0.5% 0.0% 0.7%
Hit | 0.3% 69.4% 0.3% 6.2% 0.7% 4.7% 3.0% 0.7% 1.2% 4.4% 0.0% 0.7% 5.9% 2.5%
Massage | 1.8% 0.1% 83.7% 0.2% 0.5% 0.1% 0.4% 3.2% 2.4% 0.1% 2.7% 2.6% 0.1% 2.2%
Pat | 0.1% 1.3% 0.3% 74.3% 0.0% 0.4% 2.5% 0.9% 1.4% 2.5% 0.3% 2.2% 12.0% 1.8%
Pinch | 0.1% 0.1% 0.9% 0.1% 92.9% 1.2% 0.4% 0.2% 0.4% 0.2% 1.4% 0.8% 0.3% 1.1%
Poke |0.1% 0.9% 0.1% 0.4% 2.3% 88.5% 1.1% 0.1% 0.7% 0.1% 0.2% 0.9% 2.8% 1.9%
Press |2.4% 0.8% 0.8% 1.3% 0.3% 1.5% 86.1% 0.8% 0.9% 0.4% 1.7% 1.0% 1.3% 0.9%

Rub [04% 0.1% 52% 0.5% 0.3% 0.1% 1.0% 67.7% 6.7% 0.1% 0.3% 14.2% 0.4% 3.1%

Actual Values

Scratch | 0.5% 0.2% 2.3% 0.3% 0.4% 0.1% 02% 2.5% 77.6% 0.2% 0.2% 2.5% 0.4% 12.4%
Slap |0.3% 4.5% 1.1% 7.6% 0.3% 1.6% 2.6% 1.1% 2.4% 67.4% 0.5% 2.6% 5.0% 3.2%
Squeeze [9.4% 0.0% 3.3% 02% 1.7% 0.2% 0.8% 0.2% 0.5% 0.1% 82.8% 0.5% 0.1% 0.3%
Stroke [0.0% 0.2% 3.4% 0.5% 0.3% 0.0% 0.4% 8.0% 2.8% 0.4% 0.4% 81.5% 0.3% 2.0%
Tap | 0.1% 1.5% 0.3% 12.2% 0.3% 1.4% 2.4% 0.8% 13% 1.9% 0.1% 0.8% 74.4% 2.6%

Tickle [ 0.2% 0.2% 2.2% 0.4% 0.4% 0.3% 0.1% 1.5% 9.2% 0.2% 0.2% 1.7% 0.8% 82.7%

Grab Hit Massage Pat Pinch Poke Press Rub Scratch Slap SqueezeStroke Tap Tickle
Predicted Values

Figure 4: Confusion matrix on the CoST dataset.

The experimental results were further compared with previously reported touch recognition models
using the same datasets to provide a comparative evaluation. It should be emphasized that these comparisons
are intended as indicative benchmarks rather than absolute performance rankings, since different studies
may rely on distinct methodologies, experimental protocols, feature representations, and classification
strategies. In particular, our use of sliding-window segmentation increases the number of training samples
and reduces temporal variability within each segment, which may offer an inherent advantage over earlier
approaches that operate on full sequences or hand-crafted features. As summarized in Tables 5 and 6, the
referenced literature includes commonly used sequence-modeling baselines such as CNN- and LSTM-
based architectures.

Table 5: Comparison of accuracy with other models for HAART dataset.

Authors Model Accuracy F1-Score

Hughes et al. [22] Autoencoder-RNN 55.78% 0.5193

Hughes et al. [22] CNN 56.10% 0.5538
Balli Altuglu and Altun [15] Random Forest 61.00% /

Hughes et al. [22] CNN-RNN 61.35% 0.6028

Darlan et al. [25] CNN-LSTM 65.30% 0.6498
Gaus et al. [13] Random Forest and Boosting 66.50% /
Hughes et al. [21] DNN 67.70% /

(Continued)
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Table 5 (continued)

Authors Model Accuracy F1-Score
Taetal. [14] Random Forest 70.90% /
Darlan et al. [25] CNN-LSTM (with class weights) 71.40% 0.7106
This paper CNN-Transformer 93.33% 0.9331

Table 6: Comparison of accuracy with other models for CoST dataset.

Authors Model Accuracy F1-Score
Balli Altuglu and Altun [15] Random Forest 26.00% /
Hughes et al. [22] Autoencoder-RNN 33.52% 0.3253
Hughes et al. [22] CNN 41.25% 0.4125
Hughes et al. [22] CNN-RNN 52.86% 0.4724
Gaus et al. [13] Random Forest and Boosting 58.70% /
Taetal. [14] Random Forest 61.30% /
Darlan et al. [25] CNN-LSTM 71.40% 0.6500
Darlan et al. [25] CNN-LSTM (with class weights) 77.60% 0.7224
This paper CNN-Transformer 80.89% 0.8090

Across both datasets, the proposed hybrid model achieved substantially higher accuracy than the CNN-
and LSTM-based baselines. On the HAART dataset, our method attained an accuracy of 93.33% with an F1-
score of 0.9331, outperforming the models developed by Darlan et al. [25], Ta et al. [14], and Hughes et al. [21].
On the CoST dataset, the proposed model achieved an accuracy of 80.89% with an Fl-score of 0.8090,
yielding clear improvements over the approaches of Darlan et al. [25], Ta et al. [14], and Gaus et al. [13]. These
results highlight the effectiveness of integrating convolutional feature extraction with Transformer attention
for long-sequence tactile biosignal recognition. In addition, the performance gap between the HAART and
CoST datasets can be partly attributed to differences in sensor resolution and dataset characteristics. The
higher spatial resolution and more structured contact patterns in HAART provide richer spatial information
for convolutional feature extraction, whereas CoST involves lower-resolution inputs and more variable
touch interactions, which likely increase intra-class variability and class overlap. Moreover, CoST exhibits
a more imbalanced class distribution than HAART, which may further contribute to the lower Fl-score
despite reasonably high overall accuracy. Taken together, these factors suggest that CoST constitutes a more
challenging recognition scenario, even though the proposed architecture remains effective on both datasets.

4 Conclusion and Future Work

This study introduces a hybrid framework for affective tactile biosignal classification that integrates
CNNs and Transformer architecture. The CNN component effectively extracts spatial information from
high-dimensional data, while the multi-head attention mechanism in the Transformer encoder captures
global temporal dependencies. The proposed model achieves robust performance in identifying affective
tactile biosignals and is capable of handling datasets containing both consistent and variable gesture dura-
tions. In contrast to existing hybrid models that were primarily designed for static spatial data, the present
approach is specifically tailored to sequential biosignals through the incorporation of temporal windowing,
thereby enabling real-time gesture prediction. Experimental evaluations confirm the effectiveness of the
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hybrid model, with assessments on the HAART and CoST datasets demonstrating notable improvements
over previously reported methods. In the HAART dataset, the model achieved 100% accuracy for the “No
Touch” gesture, a result consistent with the minimal and stable sensor activation associated with this class. For
the CoST dataset, the recognition rate increased by 3.29% compared with previous research [25]. Overall, the
CNN-Transformer framework achieved substantial improvements in recognizing affective tactile biosignals
across both benchmark datasets.

Future research may incorporate additional factors that influence affective tactile biosignal recognition.
For example, the impact of different covering materials in wearable devices should be further examined, as
material properties can strongly affect signal transmission quality and the robustness of tactile sensing. In the
design of interaction mechanisms for wearable systems, it is therefore essential to carefully consider material
selection to ensure reliable and consistent biosignal acquisition. Multimodal expansion also represents a
promising direction. Integrating pressure-based tactile signals with additional physiological inputs such as
electromyography (EMG) may provide richer complementary information by combining surface contact
patterns with underlying muscle activity. This type of fusion has the potential to improve robustness, reduce
gesture ambiguity, and enhance generalization in real-world interaction scenarios. Overall, the proposed
CNN-Transformer hybrid model provides a strong foundation for advancing tactile biosignal recognition
and offers multiple avenues for further development in future work.
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