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ABSTRACT: High-dimensional data causes difficulties in machine learning due to high time consumption and large
memory requirements. In particular, in a multi-label environment, higher complexity is required as much as the number
of labels. Moreover, an optimization problem that fully considers all dependencies between features and labels is
difficult to solve. In this study, we propose a novel regression-based multi-label feature selection method that integrates
mutual information to better exploit the underlying data structure. By incorporating mutual information into the
regression formulation, the model captures not only linear relationships but also complex non-linear dependencies. The
proposed objective function simultaneously considers three types of relationships: (1) feature redundancy, (2) feature-
label relevance, and (3) inter-label dependency. These three quantities are computed using mutual information, allowing
the proposed formulation to capture nonlinear dependencies among variables. These three types of relationships are
key factors in multi-label feature selection, and our method expresses them within a unified formulation, enabling
efficient optimization while simultaneously accounting for all of them. To efficiently solve the proposed optimization
problem under non-negativity constraints, we develop a gradient-based optimization algorithm with fast convergence.
The experimental results on seven multi-label datasets show that the proposed method outperforms existing multi-label
feature selection techniques.
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1 Introduction

Multi-label learning has attracted significant attention in recent years due to its ability to handle
scenarios where each instance may be associated with multiple semantic labels simultaneously. It has been
successfully applied across a wide range of domains and applications, including image classification [1],
text classification [2], emotion recognition [3], fault diagnosis [4], and privacy protection [5]. These diverse
applications demonstrate the growing importance of multi-label learning in addressing real-world problems
where data exhibit complex and overlapping label structures.

In the fields of machine learning and pattern recognition, it is often necessary to handle high-
dimensional data. Such data may contain redundant or irrelevant information that can interfere with
learning. Moreover, high-dimensional datasets typically require excessive processing time and a large
amount of memory consumption, making them challenging to work with [6]. These issues can degrade the
performance of learning algorithms and hinder practical applications. In particular, when the data involves
multiple labels per instance-commonly referred to as multi-label data-the complexity of learning grows
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substantially. In contrast to single-label scenarios, where each sample is associated with a single target, multi-
label learning must consider multiple, potentially interdependent targets simultaneously. This increased
dimensionality, coupled with inter-label dependency, leads to a combinatorial explosion in both the space
and the associated computational complexity [7]. To address these challenges, many studies have introduced
feature selection techniques in multi-label settings. Multi-label feature selection algorithms aim to identify
and retain the most relevant features while removing unnecessary ones, based on certain evaluation criteria.
The resulting feature subset can improve the accuracy of machine learning models, reduce training time, and
enhance the interpretability of the data. Moreover, it helps mitigate risks such as the curse of dimensionality
and overfitting [8].

Conventional feature selection approaches based on criteria that evaluate features independently of
any specific learning model can be broadly categorized into two main streams: information-theoretic
filter methods and regression-based embedded methods. The first stream, exemplified by methods such as
mRMR [9], evaluates the redundancy between features and relevance to the target using mutual information
to tackle the computational intractability of exhaustive subset search. These approaches can effectively
capture nonlinear dependencies and pairwise relationships. However, they typically rely on greedy selection
strategies, which may fail to consider global feature interactions and often lead to suboptimal solutions. The
second stream formulates feature selection as a regression optimization problem, typically minimizing an
objective of the form || XW — Y || where X and Y are input data and label set, W represents importance
of each feature [10]. This framework allows feature selection to be incorporated into a global optimization
procedure, thereby enhancing computational efficiency. However, such approaches inherently rely on the
assumption of linear dependencies between features and labels, which constrains their capacity to model
more complex relationships.

In this paper, we propose a unified feature selection framework that integrates information-
theoretic redundancy measures into a regression-based formulation. By unifying these two complementary
approaches, the proposed framework mitigates their respective limitations while leveraging their individual
strengths. Specifically, we encode the mutual information relationships between features, and between
features and labels into a matrix representation, which is then incorporated into the regression objective.
This enables the model to retain the nonlinear dependency awareness of mutual information-based methods
while benefiting from the efficient optimization capability of regression-based approaches.

The main contributions of this work are as follows:

»  Novel Objective Function: To overcome the limitations of traditional approaches in multi-label feature
selection, we introduce a new objective function that merges efficient regression-based approach and
mutual information-based criteria. The proposed function is designed to be simple yet capable of
capturing essential information for effective feature selection. Its formulation is described in detail
in Sections 3.1 and 3.2.

« Efficient Optimization Algorithm: We develop an efficient algorithm based on gradient descent to
optimize the proposed objective function. This algorithm emphasizes fast convergence and reduced
computational complexity compared to existing methods. The optimization algorithm is presented
in Section 3.3, the complexity analysis is provided in Section 3.4, and the convergence behavior of the
algorithm is illustrated in Section 4.3.

« Improved Classification Performance: Through experiments on seven multi-label datasets, we confirm
that the proposed method achieves superior classification performance compared to conventional fea-
ture selection techniques. Comprehensive comparison experiments and statistical analyses are reported
in Section 4.2, accompanied by extensive figures and tables.
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The remainder of this paper is organized as follows. Section 2 reviews background knowledge on multi-
label classification and feature selection methods. Section 3 provides a detailed description of the proposed
methodology, including the integration of mutual information and regression objectives. Section 4 presents
experimental results using seven benchmark multi-label datasets and compares the performance of the
proposed approach with existing methods. Finally, Section 5 concludes the study and discusses potential
future research directions.

2 Related Works

Feature selection has been widely investigated in single-label learning scenarios, where each instance
is associated with only one target. In contrast, multi-label learning, which involves multiple potentially
interdependent targets, introduces additional challenges due to increased dimensionality and complex label
dependencies. Approaches to handling multi-label data can be broadly classified into two categories: those
that transform the problem into a single-label format, and those that directly operate on the multi-label
structure [11]. Converting multi-label data into single-label format allows for the direct application of
traditional single-label feature selection techniques. However, this transformation often leads to information
loss. One common method for this transformation is the Label Powerset (LP) approach, which treats all
possible label combinations and treats each as a distinct class label [12]. While straightforward, LP suffers
from severe class imbalance, as the number of resulting classes can grow exponentially with the number of
labels. To address this, the Pruned Problem Transformation (PPT) method was introduced, which discards
infrequent label combinations to mitigate imbalance [13]. However, this pruning also results in the loss of
valuable label relationship information.

In contrast, two main feature selection approaches have been proposed to avoid the need for label
transformation. The first approach is information-theoretic feature filter. The pairwise multi-label utility
(PMU) method is one such approach, which evaluates label correlations using mutual information without
transformating labels [14]. However, PMU is easy to finding only locally optimal solutions, since its greedy
selection approach inherently constrains the search process and prevents the discovery of globally optimal
feature subsets. Lee and Kim conducted a theoretical analysis of feature selection based on interaction
information, demonstrating that lower-degree interaction information terms notably influence mutual
information under an incremental selection scheme [15]. They further derived the upper and lower bounds of
these terms to explain why score functions that consider lower-degree interactions can produce more effec-
tive feature subsets. The max-dependency and min-redundancy (MDMR) criterion has been proposed for
multi-label feature selection, where a candidate feature is considered beneficial if it exhibits strong relevance
to all class labels while remaining non-redundant with respect to other selected features across all labels [16].
However, MDMR is also easy to finding local optimal solution. The quadratic programming feature selection
(QPES) method reformulates mutual information-based evaluation as a numerical optimization problem to
escape local optima [7]. However, QPES requires the computation of a large number of mutual information
terms, which can be computationally intensive. Zhang et al. proposed an approach that allows a feature to
account for multiple labels by calculating mutual information across pairs of labels [17].

In another research direction, regression-based embedded methods integrate feature selection into the
model training process itself. For example, decision tree classifiers naturally perform feature selection during
their construction [18]. In multi-label scenarios, several embedded feature selection methods based on
regression analysis have been proposed. Fan et al. utilizes ridge regression to construct a selection matrix and
employs the [, ;-norm to develop a multi-label feature selection framework [19]. Li et al. introduces a flexible
approach that allows feature selection between the /;-norm and [;-norm criteria [20]. Fan et al. incorporates
spectral graph theory to capture label correlations while simultaneously addressing feature redundancy [21].
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Li et al. designed a matrix that accounts for higher-order label correlations and proposed a multi-label
feature selection method that handles feature redundancy using an [, ;-norm regularization term [22]. Hu
et al. proposed a method that encodes the mutual information between features and labels into a weight
matrix and constructs an objective function accordingly to perform multi-label feature selection [23]. Dai
et al. proposed a method that leverages fuzzy mutual information to emphasize strongly related labels and
applies conditional mutual information to guide the selection of relevant features [24]. Faraji et al. proposed
a method that considers both label correlations and label imbalance by designing an objective function
that identifies shared patterns between the feature and label matrices [25]. He et al. designed to capture
the variation in inter-label relationships by incorporating sample-wise correlations into the label space and
applying the information to a sparse linear regression model [26]. Yang et al. proposed a novel embedded
method that simultaneously considers inter-label correlations and label-specific features [27]. Their method
constrains the correlation search space, learns distinctive features for each label, and incorporates a robust
exploration strategy to reduce the impact of noise and outliers.

Another category is the wrapper approach, which identifies an optimal feature subset through iterative
evaluation guided by a learning algorithm. Wrapper methods utilize classification performance as a direct
evaluation metric to select the optimal feature subset. Optimization techniques such as boosting and
genetic algorithms have been employed to improve selection quality [28]. The genetic algorithm for feature
selection can be used for various applications [29,30]. Despite their effectiveness, wrapper methods are
computationally expensive due to repeated classifier evaluations. However, wrapper methods are beyond the
scope of this work and are therefore not considered here.

Recent studies have explored logic mining as an interpretable approach to feature selection and rule
extraction, primarily implemented through Discrete Hopfield Neural Networks (DHNNSs). A hybrid DHNN
framework with Random 2-Satisfiability rules was introduced [31], where hybrid differential evolution and
swarm mutation operators were incorporated to enhance the optimization of synaptic weights and diversify
neuron states during retrieval, leading to improved transparency in decision-making. Similarly, Romli et al.
proposed an optimized logic mining model using higher-order Random 3-Satisfiability representations in
DHNNS, designed to prevent overfitting and flexibly induce logical structures that capture the behavioral
characteristics of real-world datasets [32]. Beyond logic-mining-oriented formulations, recent work has
also advanced the theoretical foundations of discrete Hopfield architectures. In particular, a simplified
two-neuron discrete DHNN model was introduced, where bifurcation analysis, hyperchaotic attractor
characterization, and field-programmable gate array(FPGA)-based hardware implementation demonstrated
that even minimal DHNN structures can exhibit rich dynamical behaviors and robust randomness proper-
ties [33]. These findings highlight the broader modeling flexibility and dynamic expressiveness of DHNNG,
complementing logic-mining-based approaches by reinforcing the underlying stability and dynamical
mechanisms upon which interpretable feature-selection frameworks can be built.

3 Proposed Method

3.1 Preliminary

Feature selection methods can be broadly categorized into two major streams: mutual information (MI)-
based filter approaches and regression-based approaches.
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The first stream is represented by classical methods such as mRMR (minimum redundancy maximum
relevance) [9], which aim to maximize the relevance between features and labels while minimizing redun-
dancy among selected features. These approaches rely on information-theoretic criteria, particularly mutual
information, to measure pairwise dependencies between variables. They are straightforward and model-
agnostic, and they can capture nonlinear relationships that linear methods may overlook. Given the full
feature set F and the subset of features S that have already been selected, the next feature f; is chosen by
maximizing the trade-off between its relevance to the target and its redundancy with the selected features,
as follows:

1
5] 2 MU 1)) (1)

arg max MI(f;,y) —
g max (fj>»») 2

where MI(-,-) denotes the mutual information. However, they typically employ greedy search strategies,
selecting features sequentially based on local criteria. As a result, they may fail to consider global interactions
among features and often lead to suboptimal feature subsets.

The second stream is exemplified by regression-based methods such as efficient and robust feature
selection via joint I, ;-norms minimization [10], which formulate feature selection as an optimization
problem. The objective function follows:

mM1/n||XW_ Y||2)1 +y||W||2,1. (2)

where X is data matrix, Y is label matrix. These approaches aim to minimize reconstruction error, while
imposing structural regularization to induce sparsity across features. Such methods benefit from global
optimization and can naturally incorporate feature-label dependencies into a unified objective. However,
because they fundamentally rely on a linear regression model, they are often limited in capturing complex
or nonlinear relationships that are essential in many real-world datasets.

3.2 Objective Function

Given a dataset X € R"™*“ consisting of n patterns and d features, along with a multi-label set ¥
consisting of ¢ labels, the basic objective function of a regression-based feature selection method can be
formulated as:

in||XW - Y|
Qy” 13

(3)
st W>0

where W is a weight matrix that is subject to a non-negativity constraint. The non-negativity constraint
ensures that feature selection is represented by positive values, while unselected features are represented by
zeros. The larger the absolute value in W, the more reliable the corresponding feature is considered. After
solving this optimization problem, features corresponding to rows with larger norms in W are selected.

The objective function is designed to find features that minimize the difference between the data
projected by W and the multi-label targets. To construct this objective function, the Frobenius norm is used.
The function is convex with respect to W, allowing the optimization problem to be solved efficiently. The top
k features are selected based on the magnitude of each row in the optimized W.

Although Eq. (3) offers an efficient convex formulation, its modeling capacity is limited because it only
captures linear relationships between features and labels. In multi-label learning, however, three important
aspects are often overlooked in such regression-based approaches:
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1.  Feature redundancy: selecting highly correlated features reduces the generalization power [9].

2. Label dependencies: multi-label data often contains significant inter-label correlations that should be
preserved [34].

3. Non-linear dependencies: labels may exhibit complex, non-linear relationships with features.

To address these limitations, we incorporate mutual information into the objective function. Mutual
information captures the degree of statistical dependency between random variables and can reflect both
linear and non-linear relationships [9,19,24,27,35]. The mutual information between two arbitrary random
variables A and B is defined as follows:

MI(A, B) = ;bz;p(a b)log[ f(;plzl)?)] (4)

where P(a,b) represents the joint probability distribution function of A and B, while p(a) and p(b)
represent their marginal probability distribution functions. In the case of continuous random variables, this
summation is replaced by an integral:

p(a,b)
Mi(a5) = [ [ 1 [p( Y (b)]d‘””’ ®

When the i-th feature vector and the j-th label vector are denoted by x; and y;, respectively, the
relevance and redundancy using mutual information can be expressed as MI(x;, y;) and MI(x;,x;),
respectively. In a multi-label environment, the relationships between labels are additionally considered
as [15].

By calculating these associations, three matrices Q ¢ R4 R ¢ R*¢ and S € R¥*¢ can be constructed,
where each element in these matrices is defined as follows:

Qij = MI(x;,x;) (feature redundancy)
Rij = MI(y;,y;) (label dependency) ©)
Sij= MI(x;,y;) (feature-label relevance)

where Q;; refers to the (i, j)-th element of Q. The elements of these matrices represent the associations
between features and labels. When the data is binarized for calculating mutual information, the mutual
information is always greater than or equal to 0, and less than or equal to 1 when using a base-2 logarithm.
Therefore, every elements in the matrices Q, R and S lies in within the range [0, 1]. The matrix Q represents
feature redundancy, which should be minimized in order to eliminate redundant or highly correlated
features. The matrix R captures the relationships between labels; since features associated with strongly
correlated labels are desirable, the negative of this term is included in the objective to encourage their
selection under a minimization framework. Similarly, S quantifies the relevance between features and
individual labels. By incorporating mutual information into the regression formulation, the model is able
to capture not only simple linear relationships but also complex non-linear dependencies. To promote the
selection of highly relevant features, the negative of S is also incorporated into the objective function.

By combining these values with the regression Eq. (3), an objective function can be designed as follows:
min || XW - Y|)2 + aTe(WTQW)-BTr(RWTW)—yTr(STW)

(7)
st. W>0

where «, 8, and y are weights for redundancy, label correlation, and relevance, respectively, and are all
positive. The hyperparameters «, f3, y control the influence of each regularization term. In Tr(WTQW), the



Comput Mater Contin. 2026;87(1):51 7

i-th value represents the sum of the redundancies of the i-th feature with other features. Similarly, RW(T,.) w(i)

represents the sum of the associations between the i-th feature and the labels, and S” w(;) represents the sum
of the relevance of the i-th feature across all labels. The interpretation of each term is as follows:

+ Regression loss (|[XW - Y||%): encourages accurate label reconstruction via a linear regression model.
+ Redundancy penalty (Tr(WTQW)): discourages selecting mutually redundant features.

+ Label dependency penalty (Tr(RW T W)): promotes selecting features that explain correlated labels.

+  Relevance reward (Tr(STW)): favors features with stronger associations to multiple labels.

Optimizing the proposed objective function thus corresponds to selecting features that not only
minimize redundancy and maximize relevance and label association, but also contribute to accurately
reconstructing the label space through a linear regression model. In this formulation, the regression-based
loss captures the predictive structure in a supervised setting, while the mutual information-based terms guide
the selection toward features that exhibit strong statistical dependency with the labels and minimal overlap
with other features. This hybrid design enables the model to balance predictive accuracy with information-
theoretic feature quality. In the next subsection, we present an efficient optimization framework to solve the
proposed objective function under the non-negativity constraint.

3.3 Optimization

The convexity of the proposed objective function is primarily determined by the terms Tr(WTQW)
and Tr(RWTW). When the matrices Q and —R are positive definite, the objective function is convex, which
facilitates efficient optimization. However, since Q and —R are not guaranteed to be positive definite, we
enforce convexity by adding the absolute value of the minimum eigenvalue of each matrix to its diagonal
elements. This modification ensures that both Q and —R become positive definite. Importantly, because Q
and R originally have zero diagonal entries, adding a uniform scalar to the diagonal does not change the
mutual-information structure that drives feature relevance. This correction preserves the feature selection
behavior while ensuring positive definiteness for convex optimization.

To ensure the positive definiteness of the matrices Q and R, we adjust each matrix by adding the absolute
value of its minimum eigenvalue to its diagonal entries. This yields modified matrices Q and R, which are
guaranteed to be positive definite. The transformation is defined as follows:

Q=Q+ (Amin(Q)|+€)- Iy  R=R-(JAmax(R)|+€) - I (8)

where Ain(Q) and Ayax(R) denote the smallest and largest eigenvalues of Q and R, respectively, I, I, are
identity matrices of appropriate dimensions matching Q and R, and e is a small positive value to guarantee
strict positive definiteness. This adjustment preserves the relative structure of the feature space while ensuring
the convexity of the objective function. The optimization objective can be formulated as follows:

min || XW - Y|+ aTr(WTQW)-BTe(RWTW)—yTr(STW)
9)
st. W>0

To solve the modified convex objective function with a non-negativity constraint, we employ the
projected gradient descent (PGD) algorithm. This algorithm performs optimization based on the gradient
with respect to W, and any negative entries in W are projected to zero to enforce the non-negativity
constraint. The gradient of the objective function with respect to W is given by:

Vi =2XT(XW - Y) + 2aQW-2B8WR-yS. (10)
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Algorithm 1 presents the complete procedure of the proposed method. In Algorithm 1, the step
size 1 is provided as a user-defined input. In practice, a theoretically sound upper bound can be
derived from the Lipschitz constant of the gradient. For the proposed objective, the gradient is given by
V(W) =2X"(XW-Y)+2aQW - 2BWR +yS, and the Lipschitz constant can be estimated as L =
2| XTX |, + 2| Q|2 + 2B||R]|2- Thus, a stable choice is # = 1/L, which guarantees monotonic descent and
convergence under the projection constraint. Since the linear term yTr(S™ W) does not affect L, this bound
remains valid even for large y. In addition, a backtracking line search with Armijo condition is used to further
ensure stability in early iterations.

Algorithm 1: Projected gradient descent for solving the proposed objective

Require: Input data matrix X € R"™?, label matrix Y € R"*¢, parameters a, f8,y, matrices Q € R**4,
R e R°*¢, S e R**¢, step size 1, number of iterations T
Ensure: Optimized weight matrix W e R?*¢
1: Initialize W(?) € R**¢ with small non-negative random values
2:fort=0to T -1do
3:  Compute gradient:
vl < 2XT(XWO — ¥) + 2aQW O 28 W) R—yS
4:  Gradient descent update:
WD) W) _ gy v%)
5:  Project onto non-negative orthant:
W) maX(O, W(Hl))

6: end for
7: return W(T)

3.4 Computational Complexity Analysis

The overall computational complexity of the proposed algorithm consists of three main components:
(1) the computation of the mutual information-based matrices Q, R, and S; (2) the eigenvalue correction
required to ensure positive definiteness of Q and R; and (3) the iterative optimization procedure via projected
gradient descent (PGD).

Q e R¥*? encodes the pairwise mutual information between features, requiring O(d?) time.
R € R°*¢ encodes the mutual information between labels, requiring O (c?) time. S € R?*¢ encodes the mutual
information between features and labels, requiring O(dc) time. Thus, the total cost for constructing these
matrices is O(d? + ¢* + dc).

To ensure the convexity of the objective function, we modify Q and R by adding the absolute value of
their minimum eigenvalue to their diagonals: Computing the minimum eigenvalue of a symmetric matrix
(e.g., via power iteration or Lanczos methods) typically requires O(d?) for Qand O(c?) for R, assuming low-
rank approximations or a small number of iterations. Therefore, this step adds O(d?* + ¢?) to the complexity.

In each iteration of PGD, the gradient with respect to W € R*¢ is computed. The complexity of
computing each term is as follows: X" (XW): O(ndc), QW: O(d*c), WR: O(dc?). The term yS is
constant once computed: O(dc). Thus, the per-iteration cost of gradient computation is: O(ndc + d° + dc?).
Assuming the algorithm converges in T iterations (typically a small constant or logarithmic in practice), the
total optimization cost is O(ndc + d*c + dc?).
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Combining all components, the overall computational complexity is O(ndc + d*c + dc? + d* + ¢*). The
proposed algorithm is thus computationally efficient for moderate values of d and ¢, and scalable to larger
datasets when T is reasonably small.

The proposed method involves three hyperparameters, «, 8, and y, which control the contributions of
smoothness, redundancy penalization, and label-alignment terms, respectively. In practice, these parameters
are tuned over a coarse logarithmic grid, which keeps the computational cost manageable due to the
convexity of the objective and the low per-iteration complexity of the solver.

4 Experimental Results
4.1 Experimental Settings

This section presents the experimental results to evaluate the effectiveness of the proposed method
in improving classification performance. We compared classification performance using the Multi-label
k-Nearest Neighbors (MLANN) classifier [36], the Linear Support Vector Machine (LinSVM) classi-
fier [17,20,23], and the Multi-Label Decision Tree (MLDT) classifier [18]. In MLkANN, the value of k was set
to 5. MLANN has been widely used in previous studies to benchmark the performance of multi-label feature
selection methods [7,8,19]. The regularization parameter C of the LinSVM classifier was determined through
validation during the training phase. For each experiment, the training and test data were randomly split in
an 8:2 ratio, and the process was repeated 10 times to compute the average performance.

Seven datasets were used in the experiments. The cal500 dataset is a multi-label music annotation
dataset consisting of 500 Western popular songs, each annotated with multiple tags describing acoustic,
emotional, and semantic content [37]. The corel5k dataset is an image annotation dataset comprising 5000
images, each associated with one or more textual labels from a controlled vocabulary of 260 words. The
emotions dataset contains 593 music tracks with 72 audio features, each labeled with one or more of six
primary emotional categories [38]. The enron dataset is a text corpus derived from company emails [13].
The genbase dataset is a biological dataset for protein function classification, where each instance represents
a protein and each label corresponds to a specific function. The medical dataset consists of 978 clinical
free-text reports, each labeled with up to 45 disease codes [39]. The slashdot dataset is a relational graph
dataset representing a social network of users from the technology news site Slashdot. It includes directional
friend/foe relationships among users, making it suitable for multi-label classification and link prediction
tasks in networked data [40]. Detailed characteristics of each dataset are summarized in Table 1.

Table 1: Information about data sets

Data  No. of patterns No. of features No. of labels Label cardinality Label density = Type

cal500 502 68 174 26.0438 0.1497 Music
corel5k 5000 499 374 3.5220 0.0094 Images
emotions 593 72 6 1.8685 0.3114 Music

enron 1702 1001 53 3.3784 0.0637 Text
genbase 662 1185 27 1.2523 0.0464 Biology
medical 978 1494 45 1.2454 0.0277 Text
slashdot 3782 1079 22 1.1809 0.0537 Network

For evaluation, we used three metrics: Hamming Loss (hloss), Ranking Loss (rloss), and Multi-label
Accuracy (mlacc) [8]. Lower values of Hamming Loss and Ranking Loss indicate better classification
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performance, while higher values of Multi-label Accuracy reflect better performance. The number of selected
features was determined based on a proportion /7 of the total number n of feature patterns in each dataset
by referring to the methodology in [41]. To uniquely distinguish each sample in a dataset, at least log, n
independent binary features are theoretically required, where n denotes the number of samples. For example,
only three features are sufficient to perfectly differentiate eight samples. However, this number is often too
strict in real-world datasets, since features are typically not fully independent. Therefore, we adopt /7 as a
practical heuristic for the number of selected features, which provides a reasonably small yet representative
subset size.

To compare against the proposed method, we selected five existing approaches: AMI [42], MDMR [16],
FIMF [8], QPFS [7], and MFSJMI [17]. AMI selects features based on the first-order mutual information
between features and labels. MDMR introduces a new feature evaluation function that considers mutual
information between features and labels as well as among features. FIMF limits the number of labels
considered during evaluation to enable fast mutual information-based feature selection. QPFS reformulates
the mutual information problem into a quadratic programming framework to balance feature relevance and
redundancy. MESJMI selects features by considering label distribution and evaluating the relevance using
joint mutual information. For all compared methods, including the proposed one, the hyperparameters «,
B, and y were varied over the range 1073,107%,...,10°. The best-performing result from this grid search
was reported. To enable reliable mutual information estimation, continuous features are discretized using
the Label-Attribute Interdependence Maximization (LAIM) method [43], which is specifically designed for
multi-label learning.

4.2 Comparison Results

Tables 2—-4 summarize the classification performance of different multi-label feature selection methods
evaluated with the MLANN classifier. The best result for each dataset and metric is highlighted in bold. Table 2
presents the Hamming loss results. The proposed method achieves the lowest loss on six out of seven datasets,
clearly outperforming the existing approaches. In particular, substantial improvements are observed on the
emotions, enron, and medical datasets, demonstrating that the proposed formulation effectively reduces
label-wise prediction errors. Although FIMF performs slightly better on corel5k, the proposed method
achieves the overall best average performance across datasets. Table 3 reports the Ranking loss results. The
proposed approach again shows strong superiority, achieving the lowest ranking loss on six datasets. These
results indicate that the selected features enable the classifier to preserve the relative ranking of relevant
and irrelevant labels more effectively than competing methods. Notably, while AMI achieves the best result
on corel5k, the proposed method shows consistent improvements in more complex datasets where label
dependencies are pronounced. Table 4 presents the Multi-label accuracy results. The proposed method
outperforms all baselines on six datasets, achieving particularly large gains on corel5k, enron, and medical.
This confirms that the proposed approach can identify highly discriminative and non-redundant features that
generalize well across diverse label spaces. Although QPFS slightly exceeds the proposed method on slashdot,
the overall performance trend demonstrates the robustness and adaptability of the proposed method across
different data characteristics.
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Table 2: Experimental Hamming loss result of the MLANN classifier

Data AMI MDMR FIMF QPEFS MFSJMI Proposed

cal500 0.1537  0.1539  0.1541 0.1541 0.1545 0.1504
corel5k  0.0115 0.0115 0.0112 0.0115 0.0113 0.0117
emotions 0.2171  0.2172  0.2158 0.2154 0.2155 0.2065

enron 0.0620 0.0570  0.0530 0.0610  0.0585 0.0504
genbase  0.0040 0.0040 0.0043 0.0039  0.0043 0.0020
medical 0.0077 0.0076  0.0074 0.0085  0.0077 0.0026
slashdot  0.0520 0.0519  0.0521 0.0520  0.0490 0.0447

Table 3: Experimental Ranking loss result of the MLKNN classifier

Data AMI MDMR FIMF QPFS MEFSJMI Proposed

cal500 03772 03764 0.3789 03753  0.3779 0.3691
corelsk  0.7098 0.7127  0.7257 0.7107 0.7178 0.7210
emotions 0.2554  0.2517 0.2534 0.2536  0.2402 0.2299
enron 0.3113 0.2812  0.2831 0.2985  0.2988 0.2612
genbase  0.0445 0.0445 0.0445 0.0445 0.0466 0.0432
medical  0.1189 0.1127 0.1111  0.1251 0.1279 0.0550
slashdot  0.4914  0.4910 0.4841 0.4839 0.5127 0.4565

Table 4: Experimental Multi-label accuracy result of the MLANN classifier

Data AMI MDMR FIMF QPFS MFSJMI Proposed

cal500 0.2191  0.2161  0.2186 0.2186 0.2185 0.2269
corel5k  0.0408 0.0414 0.0358 0.0402  0.0361 0.0588
emotions  0.5178 0.5131  0.5231 0.5219 0.5270 0.5428
enron 0.2631  0.2992 0.3445 0.2793 0.2821 0.4051
genbase  0.9568 0.9564 0.9527 0.9577  0.9542 0.9790
medical 0.7746  0.7772  0.7816  0.7467 0.7615 0.9352
slashdot  0.3393  0.3404 0.2831 0.3477  0.2654 0.3469

Tables 5-7 present the classification results obtained using the LinSVM classifier. Table 5 summarizes
the Hamming loss results. The proposed method achieves the lowest loss on all datasets. These results show
that the selected features effectively reduce instance-level prediction errors even when evaluated with a
linear classifier. Table 6 presents the Ranking loss results. The proposed method achieves the best results
on four datasets-cal500, emotions, genbase, and medical-showing its ability to preserve the label ranking
order with minimal degradation. While FIMF slightly outperforms others on corel5k and MDMR performs
best on enron, the proposed approach remains highly competitive across datasets. The performance gain
on emotions and medical demonstrates that the proposed feature selection method can effectively model
label dependencies even under a linear decision boundary. Table 7 reports the Multi-label accuracy results.
The proposed method achieves the highest accuracy on six datasets, with particularly large gains on corel5k,
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enron, and medical. This demonstrates the strong discriminative capability of the selected features and their
ability to generalize across datasets with varying label sparsity. FIMF predicted all-zero label vectors in 9 out

of 10 runs on Corel5k, leading to nearly zero multi-label accuracy.

Table 5: Experimental Hamming loss result of the LinSVM classifier

Data AMI MDMR FIMF QPFS MFSJMI Proposed
cal500 0.1363 0.1364 0.1362 0.1364 0.1363 0.1360
corel5k  0.0094 0.0094 0.0094 0.0094 0.0094 0.0094
emotions 0.2133  0.2109  0.2126  0.2113 0.2117 0.2048
enron 0.0571 0.0535 0.0511 0.0562  0.0545 0.0478
genbase  0.0031  0.0031 0.0033 0.0030 0.0034 0.0013
medical 0.0054 0.0053 0.0050 0.0063  0.0053 0.0015
slashdot  0.0423  0.0423 0.0445 0.0423  0.0450 0.0423

Table 6: Experimental Ranking loss result of the LinSVM classifier

Data AMI MDMR FIMF QPFS MEFSJMI Proposed
cal500  0.2496  0.2479  0.2485 0.2473  0.2478 0.2415
corel5k  0.1950  0.1945 0.1849 0.1933 0.1924 0.2400

emotions 0.1918 01874  0.1943  0.1897 0.1844 0.1744

enron 0.1551 0.1348 0.1377 0.1465 0.1412 0.1350
genbase  0.0070 0.0067 0.0063 0.0072  0.0082 0.0042
medical  0.0393 0.0370 0.0365 0.0466  0.0461 0.0104

slashdot  0.2396 0.2398 0.2436 0.2381  0.2651 0.2385

Table 7: Experimental Multi-label accuracy result of the LinSVM classifier

Data AMI MDMR FIMF QPFS MEFSJMI Proposed
cal500 0.2007  0.2007  0.2013 0.2014 0.2014 0.2039
corelsk  0.0051 0.0046 0.0002 0.0050 0.0048 0.0233

emotions 0.4505 0.4548 0.4592 0.4560  0.4681 0.4917

enron 0.2270 0.2844 0.3411 0.2378  0.2360 0.4248
genbase  0.9650 0.9650 0.9624 0.9662  0.9631 0.9859
medical 0.8103 0.8156 0.8304 0.7912 0.8112 0.9552
slashdot  0.3527  0.3522  0.2868 0.3558  0.2844 0.3561

Tables 8-10 summarize the experimental results obtained using the MLDT classifier. Table 8 reports
the Hamming loss results. The proposed method achieves the lowest loss on all seven datasets, showing
remarkable consistency and robustness. In particular, the performance improvements on emotions, enron,
genbase, and medical are significant, indicating that the proposed feature selection strategy effectively
reduces label-wise prediction errors even for complex label spaces. Table 9 presents the Ranking loss results.
The proposed approach achieves the best performance on five datasets while remaining highly competitive
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on the others. These results suggest that the proposed method allows the MLDT classifier to better preserve
the relative ranking between relevant and irrelevant labels. Notably, the performance gain on corel5k and
medical is substantial, confirming that the proposed MI-guided optimization enhances feature selection
for both high-dimensional and label-dependent data. Table 10 shows the Multi-label accuracy results. The
proposed method achieves the highest accuracy on all seven datasets, highlighting its superiority in overall
predictive capability. The large gains on emotions, enron, and medical datasets illustrate that the proposed
formulation captures label correlations more effectively than existing feature selection methods.

Table 8: Experimental Hamming loss result of the MLDT classifier

Data AMI MDMR FIMF QPFS MEFSJMI Proposed
cal500 0.1964 0.1966 0.1968 0.1961 0.1949 0.1946
corelsk  0.0106 0.0107 0.0110 0.0106 0.0107 0.0096

emotions 0.2766  0.2734 0.2684 0.2743 0.2641 0.2561
enron 0.0619  0.0581 0.0589 0.0609  0.0595 0.0556
genbase  0.0034 0.0034 0.0036 0.0033  0.0036 0.0014
medical  0.0059 0.0059 0.0056 0.0068  0.0061 0.0015
slashdot  0.0442 0.0441 0.0488 0.0440 0.0473 0.0436

Table 9: Experimental Ranking loss result of the MLDT classifier

Data AMI MDMR FIMF QPFS MFSJMI Proposed
cal500 0.4318  0.4339 0.4300 0.4341 0.4284 0.4236
corelsk  0.2086  0.2107 0.2248 0.2100 0.2158 0.1714

emotions 0.3586 0.3534  0.3532  0.3530 0.3299 0.3283
enron 0.1453 0.1524 0.1844 0.1492 0.1608 0.1567
genbase  0.0382  0.0382  0.0383  0.0381 0.0399 0.0369
medical 0.0636  0.0605 0.0564 0.0617 0.0399 0.0358
slashdot  0.2439  0.2430  0.2838 0.2429 0.2711 0.2460

Table 10: Experimental Multi-label accuracy result of the MLDT classifier

Data AMI MDMR FIMF QPFS MFSJMI Proposed
cal500 02118  0.2092 0.2120 0.2103 0.2130 0.2138
corelsk  0.0383 0.0372 0.0350 0.0382  0.0363 0.0408

emotions 0.4181  0.4254 0.4202 0.4177 0.4352 0.4557
enron 0.2067 0338  0.3659 0.2643  0.2906 0.4029
genbase  0.9625 0.9622 0.9596 0.9636 0.9611 0.9854
medical  0.8194 0.8208 0.8305 0.8000 0.8117 0.9583
slashdot  0.3662 0.3668  0.3115 0.3691  0.2953 0.3713

Fig. 1 illustrates the MLKNN performance variation of the proposed and comparative feature selection
methods on the emotions dataset, where the number of selected features was gradually increased from
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3 to 30. Three evaluation metrics-Hamming loss, Ranking loss, and Multi-label accuracy-were employed to
analyze the behavior of each method under different feature subset sizes. As shown in the figures, all methods
generally improve as the number of selected features increases, but the rate and stability of improvement
differ substantially. For the Hamming loss, the proposed method consistently achieves the lowest values
across all feature subset sizes, indicating robust generalization and effective elimination of redundant or
noisy features. While MFSJMI and QPEFS also exhibit a decreasing trend, their performance fluctuates more
notably, suggesting less stability in feature selection. In terms of Ranking loss, the proposed method again
demonstrates superior performance, maintaining lower loss values over the entire range of feature counts.
This consistent improvement shows that the proposed formulation preserves the relative order between
relevant and irrelevant labels more effectively than other methods, particularly when the feature space is
limited. Finally, for Multi-label accuracy, the proposed method achieves the highest accuracy throughout the
experiment, with a steady upward trend as the number of features increases. Even with a small number of
features (e.g., fewer than 10), the proposed method already outperforms all baselines, highlighting its ability
to identify highly informative and label-discriminative features early in the selection process.

08 Multi-label K Nearest Neighbors Classifier 04 Multi-label K Nearest Neighbors Classifier 055 Multi-label K Nearest Neighbors Classifier
ar [ 55

3 6 9 1215 18 21 24 27 30 3 6 9 1215 18 21 24 27 30 3 6 9 1215 18 21 24 27 30
The number of selected features The number of selected features The number of selected features

(a) Hamming loss (b) Ranking loss (c) Multi-label accuracy

Figure 1: MLANN performance variation of the number of selected features on (a) Hamming loss, (b) Ranking loss,
and (c) Multi-label accuracy for the emotions dataset

To assess whether the observed MLDT performance differences among the compared feature selection
methods are statistically significant across the seven datasets, we performed the Friedman-Nemenyi non-
parametric statistical test at a significance level of & = 0.05. The Friedman test yielded p-values of 0.0069,
0.0897, and 0.0094 for Hamming loss, Ranking loss, and Multi-label accuracy, respectively. These results
indicate that, while Ranking loss exhibits only marginal significance, the differences in Hamming loss and
Multi-label accuracy are statistically significant, suggesting that the compared methods yield meaningfully
distinct performance under these measures. Fig. 2 presents the corresponding Critical Distance (CD)
diagrams obtained from the Nemenyi post-hoc analysis. The diagrams visualize the average ranks of the
six methods and the critical distance at which the rank differences become statistically significant [44]. As
shown in the figure, the proposed method consistently achieves the best rank for all three evaluation metrics,
demonstrating robust and stable performance. Complementary to these visual results, Table 11 reports the
complete average-rank matrix for each method and metric. The proposed method attains the lowest average
ranks (1.00, 1.86, and 1.0 for Hamming loss, Ranking loss, and Accuracy, respectively), confirming that
its improvements are systematic rather than dataset-specific. Overall, these findings validate the statistical
reliability of the proposed feature selection approach.
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Figure 2: Critical Distance diagrams for six compared methods across seven datasets based on (a) Hamming loss,
(b) Ranking loss, and (c) Multi-label accuracy. The diagrams are obtained from the Friedman-Nemenyi statistical test
with « = 0.05. The Friedman test yielded p-values of 0.0069, 0.0897, and 0.0094 for each metric, respectively

Table 11: Average ranks of compared feature selection methods across seven datasets for three evaluation metrics

Measure AMI MDMR FIMF QPFS MEFSJMI Proposed
Hamming loss 4.00 3.71 4.57 3.71 4.00 1.00
Ranking loss 3.57 3.71 457  3.00 4.29 1.86
Multi-label accuracy  4.00 3.71 400 414 4.14 1.00
Average (Overall)  3.86 3.71 438  3.62 414 1.29

The computational efficiency of each feature selection method was evaluated in terms of total execution
time, as summarized in Table 12. All experiments were conducted using MATLAB R2021b on a desktop
equipped with an Intel Core i7-11700 CPU (2.5 GHz) and 32 GB of RAM. The maximum number of
iterations for the proposed method was set to 100. The proposed method demonstrates competitive or
superior computational efficiency compared to most baselines. In particular, it consistently outperforms
AMI, MDMR, and MFSJMI, which incur substantial computational overhead due to repeated mutual
information estimation or graph construction processes. While the proposed approach is slightly slower
than FIMF-whose operations are relatively lightweight-it achieves significantly faster convergence than other
information-theoretic methods such as QPFS and MFSJMI, especially on large-scale datasets like enron,
genbase, and medical. These results indicate that the proposed optimization framework maintains high
scalability without sacrificing selection quality, balancing effectiveness and computational cost efficiently
across diverse multi-label datasets.
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Table 12: Comparison of the execution time (in seconds) for different feature selection methods

Data AMI MDMR FIMF QPFS MESJMI Proposed

cal500 0.49 2.51 0.01 0.09 14.83 0.21
emotions  0.57 0.12 0.00 0.03 0.04 0.03
enron 43.4 62.63 0.02 7.28 48.89 7.95
genbase  12.23 13.82 0.01 5.17 11.98 5.72
medical  25.38 42.61 0.01 10.46 42.70 11.62
slashdot 249.75 104.46 0.03 19.57 39.38 21.62

4.3 Analysis of the Proposed Method

Figs. 3-5 illustrate the sensitivity of the proposed method to its three hyperparameters, «, 3, and y,
across the cal500, emotions, and enron datasets, using multi-label accuracy with the MLANN classifier as the
evaluation metric. Each figure contains two subplots: (a) fixes & = 0.1 and varies 8 and y; (b) fixes f = 0.1and
varies a and y. All surfaces are presented in 3D to visualize the joint effect of the remaining two parameters
on classification performance. Overall, the results demonstrate that the proposed method is highly robust
to variations in hyperparameters, as long as their values are not excessively large or small. This indicates
that the method does not require fine-grained hyperparameter tuning to achieve strong performance. In
the Fig. 3, the accuracy remains consistently stable across all combinations of «, 8, and y, suggesting that
the method is largely insensitive to hyperparameter changes on this dataset. In the Fig. 4, similar to cal500,
the classification accuracy is stable across all hyperparameter settings, confirming the method’s consistent
behavior regardless of parameter choice. In the Fig. 5, a minor performance decrease is observed when
a = 10%, while the remaining parameter settings yield stable and strong results. This suggests that overly large
values of a—which weights the Q term—may introduce redundancy in this dataset. Empirically, we find
that effective values typically lie in the ranges a, 8 € [107,10'] and y € [1072,10?]. We therefore recommend
performing grid search in a modest neighborhood around these intervals. For larger-scale problems or time-
sensitive applications, alternative search strategies such as random search or Bayesian optimization may be
employed to further reduce tuning overhead. These guidelines ensure a balance between computational cost
and performance while maintaining robustness across datasets.
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Figure 3: Comparison Multi-label accuracy of MLANN classification based on parameters change in the cal500
data set
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Figure 4: Comparison Multi-label accuracy of MLANN classification based on parameters change in the emotions
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Figure 5: Comparison Multi-label accuracy of MLKNN classification based on parameters change in the enron
data set

Fig. 6 displays the convergence behavior of the proposed method for all used datasets. The horizontal
axis represents the number of iterations of the proposed algorithm, and the vertical axis shows the value of
the objective function. The objective function value drops sharply within the first three iterations and appears
to converge before the tenth iteration. This indicates that the proposed algorithm operates efficiently.
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Figure 6: (Continued)
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Figure 6: Convergence rate of the proposed method

5 Conclusions

In this study, we proposed a novel regression-based objective function for multi-label feature selection
that explicitly incorporates mutual information between features and labels. By integrating a mutual
information-aware structure into a convex regression formulation, the proposed method enables efficient
optimization via projected gradient descent while preserving important statistical dependencies in the data.
Empirical evaluations across multiple benchmark datasets and classifiers demonstrate that our approach
consistently achieves superior or competitive performance compared to existing methods, confirming its
effectiveness and robustness in various multi-label learning scenarios.

Despite its strong performance, the proposed method has several limitations. First, computing mutual
information for all feature—feature and label—label pairs can be computationally expensive, especially
for high-dimensional datasets. Exploring approximation techniques or sparse estimation strategies may
significantly reduce this overhead. Second, the method involves several hyperparameters whose tuning can
impact performance and requires careful consideration. Future work will focus on developing adaptive or
data-driven hyperparameter selection mechanisms to further enhance usability and generalization.
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