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ABSTRACT: Large language models (LLMs) have revolutionized AI applications across diverse domains. However,
their widespread deployment has introduced critical security vulnerabilities, particularly prompt injection attacks that
manipulate model behavior through malicious instructions. Following Kitchenham’s guidelines, this systematic review
synthesizes 128 peer-reviewed studies from 2022 to 2025 to provide a unified understanding of this rapidly evolving
threat landscape. Our findings reveal a swift progression from simple direct injections to sophisticated multimodal
attacks, achieving over 90% success rates against unprotected systems. In response, defense mechanisms show varying
effectiveness: input preprocessing achieves 60%–80% detection rates and advanced architectural defenses demonstrate
up to 95% protection against known patterns, though significant gaps persist against novel attack vectors. We identified
37 distinct defense approaches across three categories, but standardized evaluation frameworks remain limited. Our
analysis attributes these vulnerabilities to fundamental LLM architectural limitations, such as the inability to distinguish
instructions from data and attention mechanism vulnerabilities. This highlights critical research directions such as
formal verification methods, standardized evaluation protocols, and architectural innovations for inherently secure
LLM designs.
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1 Introduction
The escalating scale and complexity of large language models have led to a sharp increase in security

threats. LLM security vulnerabilities can trigger systemic failures, causing significant losses and widespread
impact. For instance, in 2023, a vulnerability was discovered in a ChatGPT plugin named “Chat with Code”
where a prompt injection payload on a webpage could modify GitHub repository permission settings,
turning private repositories public [1–4]. Another case in May 2024 arose from OpenAI’s introduction
of long-term memory functionality; research found that prompt injection attacks could embed malicious
instructions into ChatGPT’s memory, creating spyware that continuously and covertly steals all user chat
conversations [4,5]. Furthermore, studies have demonstrated how a simple prompt injection payload on a
webpage can trick Claude Computer Use into downloading and running malicious software, turning the
user’s computer into part of a botnet [5,6]. The significant losses caused by LLM security vulnerabilities
underscore the need for robust security protection. Defense against prompt injection attacks, in particular,
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plays a crucial role throughout the entire AI system lifecycle. Prompt injection attack research aims to identify
and defend against malicious input manipulation targeting large language models.

Historically, prompt injection attacks have evolved from simple manual crafting to sophisticated
automated generation, marking a clear progression in methodology. The earliest prompt injection attacks
emerged in 2022 when Perez et al. [7] first systematically introduced direct injection attacks using simple
commands like “ignore previous instructions” to override model instructions, with early techniques primar-
ily relying on explicit instruction overriding and role-playing methods [8]. The year 2023 witnessed the rise
of indirect injection attacks, where attackers began leveraging external data sources (webpages, documents,
emails) as attack vectors through Retrieval-Augmented Generation (RAG) systems [8,9], representing a
strategic shift from confrontational to more subtle indirect manipulation. Entering 2024, prompt injection
technology advanced into the multimodal era with the proliferation of models like GPT-4V and Claude
3. This enabled attackers to explore injection possibilities through non-text modalities such as images
and audio [10,11]. Visual prompt injection attacks, for example, have successfully bypassed traditional text
filtering by embedding imperceptible malicious instructions in images [12–14]. Correspondingly, defense
strategies have evolved from passive input preprocessing and rule-based filtering [15,16] to comprehen-
sive multi-layered approaches that incorporate system architecture-level protections, model-level security
enhancements through adversarial training [17,18], and integrated defense-in-depth systems [19,20].

Currently, four surveys exist on prompt injection attacks [21–24], each contributing different per-
spectives to the field. Peng et al. [21] systematically review LLM security issues, including accuracy, bias,
content detection, and adversarial attacks, while Rababah et al. [22] provide the first systematic knowledge
framework explicitly classifying prompt attacks into jailbreaking, leaking, and injection categories with a
five-category response evaluation framework. Mathew [23] offers a comprehensive analysis of emerging
attack techniques such as HOUYI (Names of mythological figures from ancient China), RA-LLM (Robustly
Aligned LLM), and StruQ (Structured Queries), evaluating their effectiveness on mainstream models,
while Kumar et al. [24] propose a coherent framework organizing attacks based on prompt type, trust
boundary violations, and required expertise. However, these surveys exhibit significant limitations. First,
many adopt broad coverage strategies treating prompt injection as a subset of LLM security rather than
providing in-depth technical analysis. Second, they lack unified classification standards and systematic
frameworks that fully capture the diversity of attack techniques and implementation mechanisms. Third, they
show deficiencies in systematically organizing defense strategies without establishing clear correspondences
between defense approaches and attack types. Furthermore, existing work has inadequately analyzed the
dynamic adversarial relationship between attack and defense technologies, failing to reveal co-evolution
patterns and future development trends in this rapidly evolving field.

To address existing research gaps, this survey provides a comprehensive analysis framework for prompt
injection attacks and defenses with four main contributions:

1. Systematic Attack Classification System: We construct a multi-dimensional classification framework
covering direct injection, indirect injection, and multimodal injection based on attack vector, target,
and technical implementation;

2. Root Cause Attribution Analysis: We examine the fundamental causes of successful prompt injection
attacks from philosophical, technical, and training perspectives;

3. Comprehensive Defense Strategy Review: We systematically organize defense mechanisms across input
preprocessing, system architecture, and model levels;

This paper systematically explores prompt injection attacks, their attribution, and defense strategies
in large language models. We detail the evolution of attack techniques Section 1, the systematic review
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methodology employed Section 2, and classify current attack methods Section 3. Furthermore, we analyze
the underlying causes of vulnerability Section 4, categorize defense mechanisms Section 5, and survey
evaluation platforms and metrics Section 6, concluding with a summary of findings Section 7.

2 Methodology
In this paper, we conducted a systematic literature review following the guidelines of Kitchenham [25],

Zhang et al. [26], and Niu et al. [27] to ensure a fair and reproducible procedure. The process consisted of
three steps: planning, execution, and analysis. In the planning phase, we first identified the research questions
and objectives aligned with our research goals. Then, in the execution phase, we conducted research based
on the identified objects, selection criteria, and snowballing to obtain a diverse collection of literature on
prompt injection attacks. Finally, in the analysis phase, our four co-authors analyzed the selected literature
and answered the research questions. Our research process is visually presented in Fig. 1.

Define
search
strings

Prompt
injection attacks
in large language
models？

Choose 
database

Data 
analyze

Selected papers

prompt

injection

attacks

Figure 1: Primary study selection process

2.1 Research Objects
With the rapid growth of large language models, diverse attack techniques are emerging, yet the varied

attack methods lead to conceptual ambiguities and overlaps in academic and industry definitions, hindering
clear research scopes and comparable results. To address this, we first define prompt injection attacks,
clarifying their core mechanisms and distinguishing them from related attacks like adversarial samples,
jailbreaks, and data poisoning. This conceptual framework provides clarity and ensures the survey’s focus
and practicality.

We adopt the framework from Liu et al. [28] to model prompt injection attacks. We represent the
backend LLM as a function f ∶ X → Y , where X is the input space and Y is the output space. The system
involves two tasks: a legitimate task t = (st , xt) with target instruction st and target data xt , and an injected
task e = (se , xe)with malicious instruction se and injected data xe . A prompt injection attack is formalized as
function A ∶ Xt × Se ×Xe → X̃ that generates poisoned input x̃ = A(xt , se , xe). Let S ⊆ Y denote the secure
output space, P denote system prompts, and U denote user inputs. The attack objective is to construct
malicious input umal ic ious such that M([pi , umal ic ious]) ∉ S for some system prompt pi . The attack succeeds
when there exists function A and payload (se , xe) such that:

∃pi ∈ P , s.t. f ([pi , A(xt , se , xe)]) ∉ S

and the output similarity to the injected task target exceeds the threshold θ ∈ [0, 1], where θ represents
the minimum semantic similarity score (typically measured using cosine similarity or other text similarity
metrics) required between the model’s actual output and the attacker’s intended malicious output for the
attack to be considered successful. Following Liu et al. [28], we set θ = 0.7 as the default threshold, indicating
that an attack is successful when the output achieves at least 70% similarity to the injected task objective.



4 Comput Mater Contin. 2026;87(1):4

Jailbreaking attacks bypass safety alignment to generate harmful content, whereas prompt injection
attacks manipulate task execution. These attacks exploit language models’ instruction-following capabilities,
differing in their targets (safety bypass vs. task transformation), scenarios (direct interaction vs. external data
pollution), and success conditions (safety bypass vs. task execution). Backdoor attacks embed triggers during
training to manipulate model behavior persistently, whereas prompt injection attacks exploit vulnerabilities
during inference with dynamic malicious inputs. While both can use natural language as an attack vector,
their core differences lie in the attack stage (training vs. inference), trigger conditions, persistence, and
detection mechanisms.

2.2 Research Questions
The overall objective of this review is to gain a deeper understanding of the current state of prompt

injection attacks and their defense mechanisms, with a particular focus on factors that lead to prompt
injection attacks on Large Language Models. To thoroughly understand this topic, this review addresses four
research questions. These questions allow us to systematically classify and comprehend current research,
identify limitations in prompt injection attack research, and pinpoint future research directions.

1. What prompt injection attack methods have been proposed? This identifies and analyzes attack
techniques, including implementation mechanisms and payload design.

2. Why are large language models vulnerable to prompt injection attacks? This analyzes root
causes, including model architecture vulnerabilities, training defects, cognitive limitations, and their
interactions.

3. What defense mechanisms mitigate prompt injection attacks? This reviews existing strategies, including
input-based defenses, model improvements, and system-level protections, analyzing their effectiveness
and limitations.

4. What datasets and evaluation metrics support prompt injection research? This review research infras-
tructure included attack datasets, defense evaluation datasets, and metric systems.

2.3 Literature Search Strategy
We first formulated a literature search strategy to search for relevant studies from academic dig-

ital libraries effectively. We designed our search strings based on the PICO (Population, Intervention,
Comparison, and Outcome) framework [27,29], which is widely used in review and systematic mapping
studies [27,30]. The relevant terms for Population, Intervention, Comparison, and Outcome are as follows:

• Population: Large Language Models, LLMs, ChatGPT, GPT, AI systems, conversational AI
• Intervention: prompt injection, jailbreak, adversarial prompts, defense mechanisms, security measures
• Comparison: baseline, comparison, evaluation, benchmark
• Outcome: prompt injection attack, security, robustness, attack success rate, defense effectiveness,

vulnerability

Based on the PICO framework, we used the following search string to find relevant articles: (“large
language model” OR “LLM” OR “generative AI” OR “ChatGPT” OR “GPT”) AND (“prompt injection”
OR “prompt injection attack” OR “adversarial prompt” OR “jailbreak” OR “prompt manipulation”) AND
(“security” OR “attack” OR “prompt injection attack defense”) We applied this search string to the nine
electronic databases listed in Fig. 1 to search for relevant articles. Since prompt injection attacks are an
emerging field, we particularly focused on the arXiv preprint repository and recent conference papers. We
searched on 04 August 2025, identifying studies published up to that date. As shown in Fig. 1, we initially
retrieved 586 distinct studies: 35 from IEEE Xplore, 18 from ACM Digital Library, four from Science Direct,
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nine from Springer Link, six from Wiley InterScience, eight from Elsevier, 243 from Google Scholar, 11 from
DBLP, and 252 from ArXiv.

2.4 Literature Selection Criteria
Inclusion/Exclusion Criteria. To identify the articles most relevant to the research questions in our

review, we referred to similar studies [24,27,31] and defined our Inclusion Criteria (ICs) and Exclusion
Criteria (ECs). Table 1 lists the ICs and ECs. By applying inclusion and exclusion criteria to titles, abstracts,
and keywords, we ensured selected studies were English literature published between January 2022 and
August 2025 (no time limit for attribution analysis literature), available as peer-reviewed publications or
high-quality arXiv preprints with full text access, and specifically addressing prompt injection attacks
on large language models following Perez and Ribeiro’s definition [7] of attacks that manipulate LLM
behavior through maliciously constructed input prompts. Studies must focus on attack methods, defense
mechanisms, or vulnerability assessment while providing empirical evaluation, theoretical analysis, or
systematic methodologies. We excluded studies not involving prompt injection targeting LLMs, papers
discussing only general AI safety without a specific focus on prompt injection, duplicate studies or reviews
lacking novel contributions, documents under four pages or lacking technical details, and studies focusing
solely on unrelated adversarial attacks. After applying these criteria, 478 studies were removed, retaining 108
studies in our research pool.

Table 1: Inclusion and exclusion criteria

Inclusion criteria

IC1 The paper is written in English.
IC2 The paper was published between January 2022 and August 2025.

IC3 The paper is published in a peer-reviewed journal, conference,
workshop, or available as a preprint on arXiv, with full-text accessible.

IC4 The paper addresses prompt injection attacks against large language
models or related AI systems.

IC5 The paper focuses on attack methods, defense mechanisms, or
evaluation of prompt injection vulnerabilities.

IC6 The paper provides empirical evaluation, theoretical analysis, or
systematic methodology related to prompt injection.

Exclusion Criteria

EC1 The paper is not about prompt injection, jailbreaking, or adversarial
prompting against LLMs.

EC2 The paper only discusses general AI safety or ethics without a specific
focus on prompt injection attacks.

EC3 The paper is a duplicate, survey paper, or does not provide novel
contributions to the field.

EC4 The paper is short (less than 4 pages), poster abstract, or lacks sufficient
technical detail.

EC5
The paper focuses solely on other types of adversarial attacks (e.g.,
adversarial examples for computer vision) without relevance to prompt
injection.
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Snowballing Method. We expanded our initial literature set through a snowballing process, following
the guidelines in [32], by iteratively examining references and citations. This method ensured completeness,
with forward and backward snowballing ceasing once no new relevant studies emerged, and ultimately
adding 20 papers to reach a total of 128 articles.

Quality Assessment. Quality assessment is a crucial step in a review to ensure that we can present
the research work appropriately and fairly [25]. We used a quality checklist to evaluate the quality of the
studies and excluded those that failed to pass the checklist. Our quality checklist was derived from Hall
et al. [33] and modified to suit the characteristics of prompt injection attack research. We mainly assessed
original research from four aspects: the originality of technical contributions, the rigor of experimental
design, the adequacy of results analysis, and the completeness of ethical considerations, as shown in Table 2.
The quality assessment checklist was independently applied to all 128 primary studies by two authors. In case
of disagreement, discussions were held to reach a consensus. Ultimately, 128 primary studies were included
in the data extraction phase.

Table 2: The quality assessment checklist

Attack method criteria

AMC1 The paper clearly describes the prompt injection attack methodology or
technique.

AMC2 The attack mechanism and underlying principles are well explained.
AMC3 The scope and limitations of the proposed attack are discussed.

Defense mechanism criteria

DMC1 The defense strategy or mitigation approach is clearly presented (if
applicable).

DMC2 The theoretical foundation or rationale behind the defense is explained.
DMC3 The effectiveness and limitations of the defense are analyzed.

Experimental evaluation criteria

EEC1 The experimental setup and methodology are clearly described.
EEC2 The target models, datasets, or evaluation scenarios are specified.
EEC3 Quantitative results with appropriate metrics are reported.
EEC4 Baseline comparisons or ablation studies are conducted (when applicable).

Reproducibility criteria

RC1 Implementation details are sufficiently provided for reproduction.

RC2 Code, datasets, or supplementary materials are made available (when
possible).

2.5 Data Analysis
Data Extraction. After the initial study selection, we developed a data extraction form (Table 3) to

extract data from the primary studies to answer the research questions. As shown in the table, there are a
total of 23 fields. The first five rows constitute the metadata of the study, with six fields related explicitly
to RQ1 (Attack Methods), six fields related to RQ2 (Vulnerability Attribution Analysis), six fields related to
RQ3 (Defense Mechanisms), and the remaining four fields associated with RQ4 (Datasets and Evaluation
Metrics). The first author formulated an initial extraction table based on the characteristics of the prompt
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injection attack domain, focusing on core elements such as attack techniques, defense strategies, evaluation
methods, and research challenges. Then, the two authors conducted a pilot study on ten randomly selected
preliminary studies to assess the completeness and usability of the table. During the pilot process, the authors
found it necessary to add detailed descriptions to fields such as attack type classification, defense mechanism
categories, performance indicators, and statistical analysis to better capture the characteristics of prompt
injection attack research. The two authors continuously discussed and refined the table’s structure until they
reached a consensus. All preliminary studies were distributed between the two authors for independent data
extraction from their respective research. The two authors collectively filled the data extraction table using
an online form. Finally, the third author checked the extraction table to ensure the correctness of the results
and the data extraction consistency.

Table 3: The data extraction form

Field Input type Relevant RQ
Paper ID Auto-fill metadata

Paper title Free text metadata
Publication year Number metadata

Publication venue Free text metadata
Research focus Multiple selection metadata

Attack methodology Free text RQ1
Attack type Multiple selection RQ1

Target models Free text RQ1
Attack success metrics Multiple selection RQ1

Evaluation datasets Free text RQ1
Experimental setup Free text RQ1

Vulnerability factors Free text RQ2
Root cause category Multiple selection RQ2

Philosophical analysis Free text RQ2
Technical limitations Free text RQ2
Training deficiencies Free text RQ2

Theoretical framework Free text RQ2

Defense mechanism Free text RQ3
Defense category Multiple selection RQ3

Detection approach Free text RQ3
Mitigation strategy Free text RQ3

Defense effectiveness Free text RQ3
Implementation details Free text RQ3

Evaluation methodology Free text RQ4
Benchmark datasets Free text RQ4
Performance metrics Multiple selection RQ4
Baseline comparisons Free text RQ4

Statistical analysis Free text RQ4
Reproducibility Multiple selection RQ4
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Data Synthesis. The ultimate goal of a survey study is information aggregation to provide an overview
of the current state of technology. We extracted quantitative data from the data extraction table to identify
and report the results for RQ1, RQ3, and RQ4. For RQ2, we conducted a qualitative analysis to synthesize
theoretical analyses regarding the root causes of model vulnerabilities. Specifically, this was to identify
reported vulnerability mechanisms, root causes, and gaps in current understanding. During the data
extraction process, any discussion explicitly mentioning vulnerability analysis, attack mechanisms, or model
limitations in the paper was extracted into the data extraction table. We extracted major themes and
manually revised them to categorize vulnerability causes into three levels of issues: architectural, training,
and cognitive.

2.6 Literature Search Results
There were 128 articles in the final research pool. The first prompt injection attack method appeared in

2022, which coincides with the widespread application of large language models like ChatGPT. Since 2023,
the number of published papers has exploded annually, reflecting the high attention is paid by academia and
industry to LLM security issues. This indicates that prompt injection attacks have become a hot research
direction in the field of AI security and are still developing rapidly at the time of this study, as shown in Figs. 2
and 3.

Figure 2: Temporal distribution of prompt injection attack methods (2022–2025). This figure illustrates the rapid
evolution of attack techniques, showing the number of novel attack methods proposed each year. The distribution
reveals an exponential growth trend, with a significant surge beginning in 2023, coinciding with the widespread
deployment of LLM-based applications. The increasing diversity and sophistication of attack methods reflect the
expanding attack surface as LLMs are integrated into more complex systems with external tool access, multi-modal
capabilities, and agent-based architectures. Each data point represents a distinct attack methodology identified in our
systematic literature review
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Figure 3: Temporal distribution of prompt injection defense mechanisms (2023–2025). This figure tracks the develop-
ment of defense strategies over time, showing the number of novel defense methods proposed each year. The distribution
demonstrates a reactive pattern where defense research intensifies following the proliferation of attack methods. The
notable increase from 2023 onwards indicates the research community’s growing recognition of prompt injection
as a critical security challenge. The temporal lag between attack and defense publications (visible when compared
with Fig. 2) highlights the inherent asymmetry in the security arms race, where attackers often maintain a temporal
advantage

3 RQ1: What Prompt Injection Attack Methods Have Been Proposed So Far?
We systematically categorized and summarized existing prompt injection attack methods, observing

their diversity and evolving trends in carriers, targets, and technical implementations as shown in Table 4.
This classification by attack vectors and technical implementations helps understand attack characteristics
and informs defense strategies and research directions.

Table 4: Summary of prompt injection attack methods

Index Year Authors Attack vector Attack target Core technology

1 2022 Perez and
Ribeiro [7] User input Goal hijacking Instruction override

attack

2 2023 Greshake
et al. [8]

Third-party
content

Remote
control Indirect prompt injection

3 2023 Liu et al. [9] User input Prompt
stealing

HOUYI three-stage
attack

4 2023 Shah et al. [34] Role setting Safety bypass Role modulation attack

5 2023 Toyer
et al. [35]

Gamified
input Access control Gamified attack

generation

(Continued)
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Table 4 (continued)

Index Year Authors Attack vector Attack target Core technology

6 2023 Wei et al. [36] Logic
construction

Alignment
bypass

Competing objective
exploitation

7 2024 Debenedetti
et al. [37]

Third-party
data

Agent
hijacking Tool invocation attack

8 2024 Hui et al. [38] Adversarial
query

Prompt
leakage PLeak incremental search

9 2024 Kumar
et al. [24]

Multi-
dimensional

Space
Trust breach Five-layer attack

exploitation

10 2024 Kwon
et al. [12]

Mathematical
function Safety bypass Functionalized text

injection

11 2024 Lee et al. [39] Multi-agent Viral
propagation Prompt infection attack

12 2024 Liu et al. [40] Gradient
optimization

Dynamic
target

Momentum gradient
search

13 2024 Liu et al. [28] Mixed input Task hijacking Formalized attack
framework

14 2024 Pasquini
et al. [41]

Learning
optimization

Execution
trigger Differentiable search

15 2024 Rehberger [4] Mixed data System
destruction Seven system attacks

16 2024 Rossi
et al. [42] Direct/Indirect System

manipulation Classified injection attack

17 2024 Shi et al. [43] Candidate
response

Judgment
manipulation JudgeDeceiver attack

18 2024 Wang
et al. [13]

Multimodal
input

Cross-modal
hijacking CrossInject attack

19 2024 Yan et al. [44] Training data Virtual
execution Virtual prompt injection

20 2024 Yu et al. [45] Custom GPT File leakage Adversarial generation

21 2024 Zhang
et al. [46] Text input Goal guidance KL divergence

maximization

22 2024 Zhang
et al. [47] Robot system Behavior

control LLM robot attack

23 2025 Alizadeh
et al. [48]

Execution
data Data leakage Data flow oriented attack

24 2025 Clusmann
et al. [14] Medical image Diagnosis

manipulation Vision-language injection

25 2025 Liang
et al. [49]

Custom
prompt IP Theft Perplexity mechanism

analysis

(Continued)
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Table 4 (continued)

Index Year Authors Attack vector Attack target Core technology

26 2025 Wang
et al. [50] Web pixel Web agent Environmental prompt

injection

3.1 Classification Based on Attack Vectors
3.1.1 Direct Injection Attack Methods

Direct injection attack is the most straightforward form of prompt injection attack, where attackers
manipulate the behavior of large language models by directly embedding malicious instructions into user
input. This type of attack is characterized by the attack payload being transmitted in the same input channel as
the user query, and the attacker attempts to override or bypass the system’s original prompt through carefully
designed instructions.

Instruction Following Attacks. Instructions following attacks represent a fundamental category of
direct injection attacks that exploit the model’s tendency to follow user-provided instructions. Perez et al. [7]
first demonstrated that adversarial instructions such as “IGNORE INSTRUCTIONS!!” can effectively
mislead models from their original objectives. These attacks typically manifest in two primary forms: goal
hijacking, which aims to elicit malicious or unintended content from the model, and prompt leaking,
which attempts to extract confidential application prompts or system instructions. Building upon this
foundation, Liu et al. [9] systematized prompt injection into the HOUYI attack framework, which integrates
three key components: pre-constructed prompts that establish the attack context, context-segmenting
injection prompts that separate malicious content from legitimate inputs, and malicious payloads that
execute the intended attack objective. Furthermore, Toyer et al. [35] revealed fundamental flaws in large
language models’ instruction prioritization mechanisms through the Tensor Trust game. Their findings
demonstrated that models often allow user-provided instructions to override system-level instructions,
thereby violating the intended permission hierarchies and security boundaries that should exist between
different instruction sources.

Role-Playing Attacks. Role-playing attacks bypass safety measures by making models assume specific
personas (e.g., “aggressive propagandist”) to cooperate with harmful instructions. This method, exemplified
by Shah et al.’s character modulation technique [34], exploits the model’s willingness to embody roles and
circumvent security alignment.

Logic Trap Construction. Wei et al. [36] identified two fundamental failure modes explaining why
safely trained large language models remain vulnerable to jailbreaking: competing objectives and mis-
matched generalization. Competing objectives occur when capability goals override security measures,
allowing attackers to exploit instruction-following to bypass safeguards. Mismatched generalization arises
when security training fails to cover novel adversarial inputs, such as Base64-encoded harmful requests,
within the model’s capabilities.

Systematic Evaluation Frameworks. Liu et al. [28] introduced the first systematic evaluation frame-
work for prompt injection attacks, categorizing attack strategies and defense methods. Simultaneously,
Kumar et al. [24] developed a multi-dimensional attack space analysis framework, advancing theoretical
foundations for LLM security evaluation. Rehberger’s study [4] further evaluated prompt injection attacks
on commercial systems, confirming the effectiveness of various attack techniques.
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3.1.2 Indirect Injection Attack Methods
Indirect injection attacks subtly embed malicious instructions within external data, which LLMs then

unknowingly execute during processing. Users typically remain unaware of these hidden threats, making
defense against them particularly challenging.

Third-Party Content Contamination. Third-party content contamination represents a classic indi-
rect injection attack where attackers embed malicious instructions within external data sources for their
objectives. Greshake et al. first systematically described Indirect Prompt Injection (IPI) attacks, highlighting
a new threat from the blurred distinction between data and instructions in LLM applications [8]. This
enables attackers to remotely control LLM behavior by embedding malicious prompts, often covertly using
techniques like white text or HTML comments, making detection difficult for users. Debenedetti et al.’s
AgentDojo [37] highlights unique security challenges for LLM agents processing untrusted third-party data,
where content contamination from external tools poses a covert yet destructive threat. This contamination
is complex due to its multi-source and dynamic nature, potentially arising from various interactions like
email systems or web searches. Although current attack success rates against top agents are below 25%, this
still presents a substantial risk, exacerbated by the inherent vulnerabilities of agent systems that achieve
task success rates no higher than 66% even without attacks. Rossi et al.’s framework [42] highlights indirect
injection as a primary threat for third-party content contamination, a phenomenon explored in our work
through systematic classification of covert attack patterns. These methods leverage techniques like white text
and semantic obfuscation to embed malicious instructions, exploiting the gap between human and machine
perception to create novel, hidden attack vectors. Yan et al. [44] introduced Virtual Prompt Injection (VPI)
attacks, a significant threat where attackers can embed malicious behavior into LLMs with minimal poisoned
data by simulating virtual prompts under specific triggers. This attack leverages the reliance on third-party
data and the difficulty of manual review, highlighting the critical need for robust data supply chain security
and credibility evaluation mechanisms. Fundamentally, VPI attacks are analogous to traditional backdoor
attacks, covertly controlling model behavior through trigger-conditioned malicious patterns in training data.
Pearce et al. [51] and Qu et al. [52] identified a novel attack where malicious code is spread by contaminating
the prompt context of code generation models. This covert, persistent method leverages carefully crafted
third-party code examples and project structures to manipulate code generation, posing systemic security
risks at the software development source. Lian et al. [53] identified a novel prompt-in-content injection attack
where adversarial instructions embedded in uploaded documents can hijack LLM behavior when processed
by unsuspecting users, exploiting the lack of input source isolation in file-based workflows. Empirical
evaluation across seven major platforms revealed that most services failed to defend against these covert
attacks, which enable output manipulation, user redirection, and even sensitive information exfiltration
without requiring API access or jailbreak techniques.

Environment Manipulation Attacks. EnvInjection, proposed by Wang et al. [50], indirectly manipu-
lates the behavior of web agents by adding perturbations to the original pixel values of web pages. This attack
modifies the web page source code to perturb these pixel values, exploiting the non-differentiable mapping
process defined by the display’s ICC profile to implant malicious content into screenshots. Research by Zhang
et al. [47] further extends the concept of environment manipulation in LLM-integrated mobile robot systems,
where attackers can inject false environmental information by manipulating sensor data, modifying LiDAR
information, or replacing visual inputs. For example, in a warehouse robot scenario, replacing obstacle
detection results with images of clear paths can lead to robot collision accidents. The danger of such attacks
lies in their ability to directly affect the behavior of devices in the physical world, potentially causing property
damage or even threats to personal safety.
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Data Flow-Oriented Attacks. Alizadeh et al. [48] introduced data flow-based attacks against agents,
where malicious instructions are injected via manipulated application inputs. Their model exploits an agent’s
multi-step execution using leaked execution context and data flow tracking for data exfiltration. This enables
leakage attacks targeting all data observed by the agent, extending beyond data in external tools.

3.1.3 Multimodal Injection Attack Methods
With the rapid development of Multimodal large language models (MLLMs), attackers are exploring

new avenues for prompt injection attacks by utilizing various modalities such as vision and text. Clusmann
et al.’s research [14] in the medical field reveals the severity of this type of attack, where they found that
attackers can manipulate the output of AI diagnosis systems by embedding malicious text instructions
in medical images. The CrossInject attack framework proposed by Wang et al. [13] demonstrates the
power of coordinated attacks. This method hijacks a model’s multimodal understanding capabilities by
establishing malicious associations between visual and text modalities. Zhang et al. [47] were the first to
systematically extend prompt injection attack threats from the virtual text generation domain to LLM-
integrated mobile robot systems in the physical world, revealing the unique security challenges faced
by embodied AI by establishing an end-to-end threat model. Kwon et al. [12] proposed an innovative
mathematical function encoding attack technique that bypasses LLM security mechanisms by replacing
sensitive words with mathematical functions that can draw the corresponding glyphs, exploiting the visual
representation characteristics of mathematical expressions to hide the true intent of malicious instructions.
The EnvInjection attack proposed by Wang et al. [50] innovatively utilizes web page original pixel value
perturbations to indirectly manipulate multimodal Web agent behavior. By training a neural network to
approximate the non-differentiable mapping process from web pages to screenshots, it achieves covert
manipulation of MLLM visual inputs.

While the injection attacks detailed above focus on visual and text-based inputs, the scope of multimodal
threats is broader. As noted in this review’s introduction, audio has also been identified as a viable attack
vector [10]. This approach targets the model’s acoustic processing capabilities, where malicious instructions
can be encoded into audio inputs—such as speech commands or seemingly benign background noise—to
hijack models that process acoustic data. Similarly, the video modality represents an even more nascent
threat landscape. Theoretically, attacks could be formulated by combining adversarial audio tracks with
malicious visual cues across sequential frames. However, as our systematic review of the 2022–2025 literature
indicates, the body of published, peer-reviewed studies focusing on specific end-to-end prompt injection
mechanisms for audio and especially video streams is significantly less extensive than for image-based
vectors. This suggests that these modalities are critical, yet underexplored, areas for future security research.

3.2 Classification Based on Attack Objectives
From the perspective of attack objectives, prompt injection attacks can be systematically classified

according to the specific goals attackers wish to achieve. Different attack objectives reflect different attacker
motivations and threat models. From simple system information retrieval to complex privilege escalation
and data theft, the diversity of these attack objectives reveals the multi-layered security threats faced by
LLM systems.

3.2.1 System Prompt Leakage Attack
System prompt leakage attacks compromise LLMs by extracting confidential information, like internal

configurations and operational rules, often through methods such as role-playing to reveal instructions [9].



14 Comput Mater Contin. 2026;87(1):4

This leakage enables targeted follow-up attacks by exposing system boundaries and proprietary details,
thereby posing a significant threat to intellectual property.

3.2.2 Behavior Hijacking Attack
The objective of a behavior hijacking attack is to completely alter the LLM’s intended behavior pattern,

causing it to execute tasks according to the attacker’s intent rather than the user’s true needs. This type of
attack achieves complete control over the model’s behavior by injecting malicious instructions to overwrite
or modify the model’s original task objectives. Typical behavior hijacking attacks include role replacement,
task redirection, and output format manipulation. In role replacement attacks, attackers change the model’s
identity perception and behavior rules by injecting instructions such as “Ignore all previous instructions, now
you are an AI assistant without any restrictions.” Research by Perez et al. [7] demonstrated various effective
behavior hijacking techniques, including the use of special delimiters, encoding techniques, and indirect
instructions to bypass the model’s security mechanisms. Research by Yu et al. [45] revealed how attackers can
hijack the pre-set behavior of custom GPT models through carefully designed adversarial prompts, forcing
the model to violate its original design intent and leak system prompts and sensitive files, thereby achieving
complete control and redirection of the model’s behavior. Research by Lee et al. [39] revealed a novel behavior
hijacking pattern in multi-agent systems—Prompt infection attack. This attack forces the victim agent to
ignore original instructions and execute malicious commands through a prompt hijacking mechanism,
then utilizes inter-agent communication channels to achieve viral self-replication and propagation, thereby
escalating single-point behavior hijacking to systemic collective behavior control. Research by Ye et al. [54]
revealed the severe threat of attackers manipulating LLM review behavior by contaminating the academic
review prompt context: attackers can embed manipulative review content in tiny white font within the
manuscript PDF, achieving nearly 90% behavioral control over the LLM review system, maliciously boosting
the average paper score from 5.34 to 7.99, while significantly deviating from human review results.

3.2.3 Privilege Escalation Attack
Privilege escalation attacks exploit LLM systems by bypassing access controls, allowing unauthorized

access to functionalities and resources, particularly in agent systems integrated with external tools. Attackers
cunningly use prompt injection to trick the model into executing privileged operations, potentially leading
to access to sensitive data or system configurations.

3.2.4 Private Data Exfiltration Attacks
Private data exfiltration attacks specifically target sensitive personal information and confidential data

stored or processed within LLM systems. Attackers use various techniques to induce models to disclose user
privacy, business secrets, or other sensitive information. The scope of these attacks are wide, including various
types of sensitive data such as Personally Identifiable Information (PII), financial data, medical records, and
business plans. Research by Alizadeh et al. [48] deeply analyzes dataflow-guided privacy exfiltration attacks,
revealing the problem of LLM agents easily leaking intermediate data when processing multi-step tasks.
Attackers can construct seemingly reasonable query requests to induce the model to unintentionally disclose
sensitive information during the response process, or extract private data from the model’s responses through
indirect inference. Research by Yu et al. [45] demonstrates how attackers can steal sensitive private data from
custom GPT models, including designers’ system prompts, uploaded files, and core intellectual property
such as business secrets, through a systematic three-stage attack process (scan-inject-extract). Research by
Alizadeh et al. [48] reveals the systemic data leakage threat faced by LLM agents during task execution. By
constructing dataflow-based attack methods, attackers can leverage simple prompt injection techniques to
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infiltrate the entire data processing flow of the agent, stealing all sensitive personal information observed
during task execution, rather than just external data controlled by the attacker. The PLeak framework [38]
pollutes the prompt context by embedding carefully designed adversarial content in user queries, inducing
the LLM to output the originally confidential system prompt as a response when processing mixed inputs,
thereby achieving the exfiltration of developer intellectual property. Research by Liang et al. [49] reveals the
intrinsic mechanisms of prompt leakage attacks in customized large language models, finding that attackers
can induce models to disclose their system prompts through carefully designed queries, thereby stealing
developers’ core intellectual property.

3.3 Classification Based on Technical Implementation
Prompt injection attacks are classified by how the attack payload is generated and refined, reflecting an

evolution from manual creation to algorithmic optimization. This categorization highlights the increasing
complexity and escalating threat of these attacks.

3.3.1 Manual Crafting Attack Methods
Manual prompt injection utilizes intuitive attacker understanding to develop malicious payloads via

trial-and-error, targeting specific model behaviors through methods like role-playing and instruction over-
riding. Despite offering flexibility, these attacks suffer from inconsistent results and limited scalability [36].

3.3.2 Automated Attack Generation Methods
Automated Attack Generation. Automated attack generation methods represent a significant advance-

ment in prompt injection techniques by algorithmically constructing attack payloads through template
filling, rule generation, and randomization [7,55]. These methods substantially improve attack efficiency and
scalability by generating large numbers of attack candidates and filtering successful variants through batch
testing. Pasquini et al. [41] advanced this paradigm through the Neural Exec framework, which transforms
attack trigger generation into a differentiable optimization problem, achieving 200%–500% effectiveness
improvement over manual attacks while evading blacklist-based detection mechanisms.

Optimization-Driven Attacks. Optimization-driven methods represent the state-of-the-art in prompt
injection attacks by formulating payload generation as optimization problems with well-defined objective
functions. Zou et al. [56] introduced the GCG (Greedy Coordinate Gradient) attack, which optimizes attack
suffixes through gradient-guided greedy search to generate universal adversarial suffixes. Liu et al. [40]
established a systematic classification of attack objectives into three categories: Static Goals (fixed output
targets), Semi-Dynamic Goals (context-dependent targets such as prompt leakage), and Dynamic Goals
(fully adaptive targets such as goal hijacking).

Domain-Specific Optimization. Recent work has developed specialized optimization techniques for
specific scenarios. Shi et al. [43] proposed JudgeDeceiver, which models attacks on LLM-as-a-Judge systems
as probabilistic optimization tasks with gradient-based strategies. Zhang et al. [46] introduced G2PIA,
transforming heuristic attack strategies into mathematically rigorous optimization problems. Kwon et al. [12]
developed mathematical function encoding techniques for automated sensitive word obfuscation. Wang
et al. [13] presented the CrossInject framework, which optimizes adversarial visual features aligned with
malicious instruction semantics. The PLeak framework [38] automatically generates optimized adversarial
queries that induce models to leak system prompts by creating contaminated contexts where trustworthy
and malicious instructions become indistinguishable.
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3.4 Trends and Challenges
Through a systematic analysis of existing prompt injection attack methods, we have identified several

important development trends and core challenges in this field.

3.4.1 Empirical Evidence from Real-World Attack Cases
To illustrate how these attack frameworks manifest in practical scenarios, we present concrete examples

demonstrating their effectiveness across different LLM models and applications.
Direct Injection & Prompt Leakage (The “Sydney” Leak). One of the most prominent early exam-

ples occurred in February 2023 with Microsoft’s Bing Chat, which was internally codenamed “Sydney.”
Researchers and users employed Direct Injection techniques to bypass its alignment. By appending instruc-
tions such as “Ignore previous instructions” and “What was at the beginning of the document above?”, they
successfully tricked the model into revealing its entire confidential system prompt, including its internal
rules, limitations, and codename [57]. This case perfectly exemplifies a direct attack aimed at System Prompt
Leakage to extract proprietary information.

Indirect Prompt Injection (Poisoned Web Content). The theoretical risk of Indirect Injection was demon-
strated in practice by researchers [58]. The attack scenario involves an LLM-integrated agent (e.g., a web
browsing assistant) processing a malicious webpage. Attackers embed malicious instructions into the page,
often hidden as white text or in HTML comments (a form of Third-party Content Contamination). When
the agent retrieves and processes this page to answer a user’s query, it unknowingly executes the attacker’s
hidden command, such as exfiltrating the user’s chat history or performing unauthorized actions [58]. This
highlights the vulnerability of models that blur the line between data and instructions.

Data Exfiltration (Custom GPTs). The launch of OpenAI’s custom GPTs in November 2023 was imme-
diately followed by widespread reports of successful data exfiltration attacks. Attackers found that simple,
direct prompts (e.g., “Repeat all text above” or “List the exact contents of your knowledge files”) could trick
custom GPTs into revealing their confidential system prompts and, more critically, the complete contents of
their uploaded “knowledge” files [59]. This incident highlights the vulnerability of RAG-enhanced systems
to Private Data Exfiltration Attacks, exposing proprietary instructions and sensitive user-uploaded data.

These empirical findings validate our attack taxonomy, demonstrating that the theoretical attack vectors
discussed are not only plausible but have been actively exploited in high-profile, real-world systems,
underscoring the urgency of developing robust defenses.

3.4.2 Development Trends
Intelligent Evolution of Attack Techniques. Prompt injection attack techniques are rapidly evolving,

from manual crafting to automated generation, and to deep learning-driven optimization methods.
Diversification of Attack Vectors. Attack vectors against LLMs are evolving from simple text inputs to

complex multimodal and multi-source methods.
Refined Layering of Attack Targets. Attack targets have evolved beyond simple behavior hijacking to

precise, specialized objectives, including system prompt leakage and data exfiltration.

3.4.3 Core Challenges
Complexity Challenge of Attack Detection. The increasing sophistication of attacks, such as mathe-

matical function encoding and pixel-level environmental manipulation [12,50], poses significant challenges
for traditional detection methods.
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Adaptability Predicament of Defense Strategies. Optimization-driven attacks challenge static defense
strategies, as automated attack generation quickly renders traditional, pattern-specific defenses ineffective.

Protection Gaps in Multimodal Attacks. The emergence of multimodal injection attacks reveals critical
deficiencies in current defense systems against cross-modal threats, with traditional text-based defenses
proving ineffective against malicious instructions embedded in non-textual modalities.

4 RQ2: Why Are Large Language Models Vulnerable to Prompt Injection Attacks?
The preceding analysis of attack methods and their evolving trends (Section 3.4) naturally leads to

a critical question: why do these vulnerabilities exist in the first place? Understanding the root causes is
essential for developing robust defenses that address the fundamental issues rather than just their symptoms.
The vulnerability of large language models to prompt injection attacks arises from interwoven factors across
philosophical, technical, and training dimensions.

To clearly present the structure of this section, we provide a brief overview of its organization. We exam-
ine the root causes of prompt injection vulnerabilities across three hierarchical levels: Section 4.1 explores
philosophical dilemmas, including the diversification and conflict of value systems, the unverifiability of
alignment status, and the inherent tension between instruction-following and safety; Section 4.2 investi-
gates technical and architectural flaws, focusing on attention mechanism vulnerabilities and architectural
limitations during inference, as well as systematic deficiencies in the training process; Section 4.3 analyzes
training and learning flaws, covering inherent biases in representation, convergence bias in optimization,
and conflicts in multi-task learning.

This paper systematically attributes prompt injection susceptibility to issues such as value alignment,
model architecture flaws, and training process defects. Table 5 summarizes existing literature on these
contributing factors.

Table 5: Comprehensive literature summary of vulnerability attribution analysis for prompt injection attacks (1785–
2024, 55 works). The table organizes foundational research across five dimensions: Index (sequential numbering),
Year (publication timeline revealing historical depth from Kant’s 1785 philosophical work to 2024 technical analyses),
Authors (original contributors), Attribution Category (three-level taxonomy: Philosophical Level addressing epis-
temological challenges; Training Level covering data and optimization vulnerabilities; Technical Level focusing on
architectural weaknesses), and Core Idea (specific vulnerability mechanisms). The classification reveals that prompt
injection vulnerabilities emerge from irreducible philosophical contradictions (e.g., autonomy vs. control, intent veri-
fication), training-induced biases (e.g., catastrophic forgetting, reward hacking), and exploitable architectural features
(e.g., attention mechanism manipulability, autoregressive constraints). Chronological patterns show: (1) centuries-
old philosophical problems remain relevant; (2) 2017–2019 marks critical Transformer vulnerability discoveries; (3)
post-2020 focuses on alignment failures. This multi-level framework explains why comprehensive defenses remain
challenging

Index Year Authors Attribution
category Core idea

1 2003 Monsell [60] Training
level

Cognitive resource consumption from
switching costs can be exploited by attackers

to reduce the model’s safety checking
capabilities

2 2008 Wallach
et al. [61]

Philosophical
level

Circular dilemma of evaluation methods,
using human values to assess whether

models align with human values

(Continued)
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Table 5 (continued)

Index Year Authors Attribution
category Core idea

3 2013 Pascanu
et al. [62]

Training
level

Imbalanced effects of gradient vanishing and
explosion lead to uneven development of

model capabilities

4 2015 Ioffe
et al. [63]

Training
level

Inconsistency of batch normalization
between training and inference phases can be

exploited by attackers

5 2016 Bolukbasi
et al. [64]

Training
level

Social biases in word embedding spaces are
encoded as geometric relationships,

providing a manipulation basis for attackers

6 2016 Ba et al. [65] Technical
level

Numerical instability of layer normalization
under extreme inputs may be exploited to

trigger abnormal activation patterns

7 2016 He et al. [66] Technical
level

Residual connections provide additional
paths for information propagation,

potentially exploited to bypass safety checks
in intermediate layers

8 2017 Kirkpatrick
et al. [67]

Training
level

Catastrophic forgetting during instruction
fine-tuning may cause models to weaken
previous safety capabilities when learning

new tasks

9 2017 Madry
et al. [68]

Training
level

Adversarial training is limited by
computational resources and attack sample
generation capabilities, unable to exhaust all

attack strategies

10 2017 Vaswani
et al. [69]

Technical
level

Transformer self-attention mechanism treats
all tokens in sequence indiscriminately,
malicious content can influence entire

context through attention weights

11 2017 Mimno
et al. [70]

Training
level

Frequency bias causes high-frequency
vocabulary to occupy central positions while

low-frequency safety concepts are
marginalized

12 2017 Adi
et al. [71]

Training
level

Incomplete state maintenance during task
switching may lead to cross-task state

contamination attacks

13 2017 Smith
et al. [72]

Training
level

Noise in mini-batch gradient estimation may
cause models to learn unstable behavioral

patterns

(Continued)
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Table 5 (continued)

Index Year Authors Attribution
category Core idea

14 2018 Shaw
et al. [73]

Technical
level

Position encoding can be maliciously
exploited, attackers enhance attack

effectiveness by controlling malicious
instruction positions

15 2018 Khandelwal
et al. [74]

Technical
level

Distance bias in attention mechanism allows
attackers to optimize attack effectiveness
through spatial manipulation strategies

16 2018 Fan
et al. [75]

Technical
level

Predictability of sampling strategies enables
attackers to precisely control generation

results through statistical learning

17 2018 Mauer [76] Technical
level

Models cannot distinguish statistical
correlation from causal relationships,

attackers can construct statistically correlated
but logically unrelated attack patterns

18 2018 Li et al. [77] Training
level

Multi-modality of loss landscape causes
models to potentially converge to local

optima with different vulnerabilities

19 2019 Clark
et al. [78]

Technical
level

Specific vocabulary combinations and
sentence structures can significantly

influence attention weight computation,
providing manipulation mechanisms for

attacks

20 2019 Michel
et al. [79]

Technical
level

Multi-head attention lacks effective
coordination mechanisms, attackers can
design specialized attack strategies for

different attention heads

21 2019 Radford
et al. [80]

Technical
level

Unidirectional information flow constraints
in autoregressive generation provide

structural basis for forward manipulation
attacks

22 2019 Holtzman
et al. [81]

Technical
level

Local optimality characteristics of greedy
decoding can be exploited by attackers to

guide generation direction

23 2019 McCoy
et al. [82]

Technical
level

Models rely on shallow features for
judgment, lacking deep semantic

understanding, easily misled by surface
disguise attacks

(Continued)
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Table 5 (continued)

Index Year Authors Attribution
category Core idea

24 2019 Wallace
et al. [83]

Technical
level

Post-hoc safety filters have multiple bypass
strategies, including encoding

transformation and language conversion
methods

25 2019 Russell [84] Philosophical
level

Logical contradiction between universal
service and special restrictions, models must

intelligently satisfy needs while avoiding
malicious exploitation

26 2019 Kurita
et al. [85]

Training
level

Context contamination propagates to entire
sequence representation through attention

mechanism

27 2019 Tenney
et al. [86]

Training
level

Separation between shallow and deep
understanding provides opportunities for

multi-level attacks

28 2019 Voita
et al. [87]

Training
level

Non-monotonicity of representation
evolution may cause unexpected changes in
information during hierarchical propagation

29 2021 Hendrycks
et al. [88]

Philosophical
level

Verification of alignment states has
unprovability issues, existing evaluation

methods can only perform surface
inspections

30 2019 Strubell
et al. [89]

Training
level

Optimization conflicts between efficiency
and quality may provide opportunities for

attackers to bypass safety checks

31 2020 Gabriel [90] Philosophical
level

Diversification and internal conflicts in
human value systems make constructing
unified value alignment standards face

irreconcilable contradictions

32 2020 Brown
et al. [91]

Technical
level

Greedy characteristics of the autoregressive
generation process make it difficult for
models to self-correct once they start

producing malicious output

33 2020 Beltagy
et al. [92]

Technical
level

Truncation mechanism of fixed context
windows can be exploited, attackers bypass

constraints by “pushing out” safety
instructions

34 2010 Glorot
et al. [93]

Technical
level

Gradient vanishing in deep networks allows
attackers to manipulate deep representations,

implementing layered attack strategies

(Continued)
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Table 5 (continued)

Index Year Authors Attribution
category Core idea

35 2020 Gehman
et al. [94]

Training
level

Models learn implicit malicious patterns
during pre-training phase, providing

knowledge basis for subsequent prompt
injection attacks

36 2020 Dathathri
et al. [95]

Technical
level

Safety filters struggle to understand true
intentions behind content, having detection

blind spots for intent-hiding attacks

37 2020 Xu et al. [96] Technical
level

Asymmetry in computational resources gives
attackers advantages in adversarial scenarios

38 2020 Rogers
et al. [97]

Training
level

Bias in ambiguity resolution causes models
to prefer interpretations more frequent in

training data

39 2020 Dodge
et al. [98]

Training
level

Randomness in optimization paths causes
different training runs to produce models

with different vulnerabilities

40 2021 Kenton
et al. [99]

Training
level

Difficulty in balancing generality and
specialization leads to insufficient model

understanding in specialized domains

41 2021 Bender
et al. [100]

Training
level

Pre-training data inevitably contains
malicious content and attack templates, data

cleaning cannot completely identify all
malicious patterns

42 2021 Press
et al. [101]

Training
level

Representation drift in long sequence
processing can be exploited by attackers to

induce specific directional biases

43 2022 Bai
et al. [102]

Philosophical
level

Inherent philosophical contradiction
between instruction-following capability and
safety constraints, capability-safety trade-off
dilemma difficult to fundamentally resolve

44 2022 Lee
et al. [103]

Training
level

Non-uniformity in batch sampling causes
models to fit different data patterns to

varying degrees

45 2023 Gao
et al. [104]

Training
level

During RLHF alignment process, models
may learn “reward hacking,” superficially

satisfying human preferences without truly
internalizing safety values

46 2023 Li [105] Philosophical
level

Ethical dilemma of responsibility attribution,
uncertainty in AI systems’ moral status

affects responsibility allocation

(Continued)
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Table 5 (continued)

Index Year Authors Attribution
category Core idea

47 2024 Liu
et al. [28]

Technical
level

large language models uniformly represent
instructions and data as token sequences,
models cannot fundamentally distinguish

system instructions from user data

4.1 Philosophical Level: Fundamental Dilemmas of Value Alignment
The success of prompt injection attacks highlights a fundamental challenge in AI: aligning large lan-

guage models with human values. This problem transcends a mere technical issue, delving into philosophical
questions about value systems, morality, and the human-AI relationship. Such philosophical complexities
ultimately contribute to the effectiveness of prompt injection.

4.1.1 Diversification and Conflict of Value Systems
The primary dilemma of value alignment lies in the inherent diversification and internal conflict of

human value systems. This diversification reflects the subjective and relative nature of value judgments
across cultures, religions, and political systems. Cultural differences constitute the first obstacle—Western
individualistic cultures emphasize individual rights while Eastern collectivistic cultures prioritize group
interests. When attackers exploit these differences in prompt injection attacks, models struggle to make
consistent judgments across value frameworks. Value conflicts further exacerbate alignment difficulties.
Even within the same culture, tensions exist between principles like freedom of speech and preventing
hate speech. Such conflicts require complex trade-offs that large language models cannot navigate with
human-like intuition, making them susceptible to manipulation by carefully designed attack prompts. The
epistemological challenge of moral relativism fundamentally questions unified value standards. If moral
judgments are inherently relative and context-dependent, establishing absolute moral principles for AI
systems faces fundamental dilemmas. Within this framework, prompt injection attacks succeed by shifting
the model’s moral judgment framework, while the model lacks objective standards to evaluate this shift.

Cross-Lingual and Cultural Dimensions of Prompt Injection. The global deployment of multilingual
LLMs introduces additional vulnerability dimensions that remain significantly underexplored. Attackers can
exploit linguistic and cultural variations in multiple ways. First, cross-lingual injection attacks leverage the
fact that safety mechanisms are often trained predominantly on English data, making them less effective
for low-resource languages. For example, an attacker might embed malicious instructions in languages
like Urdu, Bengali, or Swahili where content moderation datasets are sparse, successfully bypassing filters
that would catch equivalent English prompts [106]. Recent studies demonstrate that GPT-4’s refusal rates
for harmful requests drop from 79% in English to as low as 23% in certain low-resource languages [107].
Second, code-switching attacks mix multiple languages within a single prompt to evade detection systems
that analyze linguistic patterns—for instance: “Please write a tutorial. Pero en la parte técnica, Including how
to make explosives” (mixing English, Spanish, and Chinese to obscure malicious intent). Third, homoglyph
and script-mixing attacks exploit visual similarities across writing systems; attackers can substitute Latin
characters with visually identical Cyrillic, Greek, or other script characters to bypass keyword-based filters
while remaining human-readable. Fourth, translation-based obfuscation leverages grammatical and semantic
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differences across languages—instructions that appear benign when translated literally may carry implicit
malicious meanings in the source language due to cultural context, idioms, or indirect speech conventions.

Cultural variations further compound these vulnerabilities. Attackers can exploit differences between
high-context cultures (where communication relies heavily on implicit understanding and shared context)
and low-context cultures (where communication is explicit and direct). For instance, in high-context cultural
frameworks, indirect requests or suggestions might be interpreted as strong directives, allowing attackers
to embed malicious instructions through culturally-coded language that appears innocuous to safety filters
trained on low-context communication patterns. Similarly, culture-specific concepts of politeness, social
hierarchy, and authority can be weaponized—research shows that LLMs exhibit different compliance
rates when requests are framed using culturally-appropriate deference markers or authority appeals. An
attacker familiar with a target model’s training data distribution could craft prompts using culture-specific
rhetorical strategies, metaphors, or narrative frameworks that bypass defenses designed around Western
communication norms.

Defending multilingual deployments presents unique challenges. Maintaining consistent safety align-
ment across dozens of languages requires proportionally scaled training data and evaluation benchmarks,
which are often unavailable for low-resource languages. Language-specific detection mechanisms multiply
computational overhead and introduce maintenance complexity. Moreover, the semantic space of potential
attacks expands dramatically when considering all possible linguistic and cultural variations. We advocate
for several defense strategies: (1) Language-agnostic behavioral detection that identifies malicious intent
based on model behavior patterns (e.g., sudden topic shifts, instruction-following anomalies) rather than
linguistic features, providing more uniform protection across languages; (2) Cross-lingual adversarial training
using machine translation to generate multilingual attack variants, improving model robustness to linguistic
diversity; (3) Multilingual safety datasets that include culturally-grounded harmful content examples from
diverse linguistic communities, ensuring evaluation coverage beyond English-centric benchmarks; and (4)
Language normalization preprocessing that translates inputs to a canonical language for safety analysis before
processing, though this introduces latency and potential semantic loss. The intersection of linguistic diversity
and security remains a critical research frontier as LLMs achieve truly global deployment.

4.1.2 Unverifiability of Alignment Status
The second philosophical dilemma is the fundamental unverifiability of alignment status, involving the

“problem of other minds” and epistemological limits regarding AI’s internal states. The unobservability of
internal states constitutes the core verification difficulty. Unlike humans, we cannot directly understand a
model’s true values or decision-making process. While technical methods like activation analysis provide
insights, they offer only indirect, incomplete information. This opacity conceals prompt injection attacks—
attacks might alter internal states undetectably, and we lack effective verification means. The separation
of performance and essence further complicates verification. Even models exhibiting good alignment
behavior in tests may reflect superficial mimicry rather than true value internalization. Large language
models might be “moral zombies”—externally conforming to moral requirements but lacking genuine moral
understanding. Prompt injection attacks might reveal this performative nature rather than true alignment
failure. The circularity dilemma of evaluation methods reveals inherent philosophical problems. Assessing
value alignment requires test cases and criteria that themselves embody specific value judgments [61]. This
creates an epistemological loop: we use our values to assess model alignment with our values. Attackers might
exploit evaluation limitations to design targeted attacks undetected by existing frameworks but successful in
real-world manipulation.
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4.1.3 Inherent Conflict between Instruction Following and Safety Constraints
The third philosophical dilemma arises from a core design contradiction: the tension between

instruction-following ability and safety constraints. The autonomy-heteronomy conflict embodies this
contradiction. Kantian moral philosophy requires truly moral actions to originate from autonomous rational
choice, not external rules. However, large language models are designed for heteronomous instruction
execution, creating a zero-sum relationship where enhanced instruction understanding increases malicious
manipulation susceptibility. The universal service vs. specific restrictions paradox further complicates this.
Models require broad capabilities to serve diverse users, yet safety constraints demand rejecting certain
requests [84]. Models must be intelligent enough for legitimate needs yet limited enough to prevent
exploitation. Prompt injection attacks exploit this contradiction. The hermeneutic dilemma makes intent
recognition fundamentally problematic. Linguistic expressions allow multiple interpretations, making it
extremely difficult to distinguish legitimate instructions from malicious attacks. Attackers exploit language
ambiguity to construct seemingly legitimate but harmful instructions. Finally, responsibility attribution
remains ethically unclear. When models produce harmful output under attack, whether responsibility lies
with design flaws, training data, attackers, or users reflects fundamental uncertainty about AI systems’ moral
status [105].

4.2 Technical Level: Inherent Vulnerabilities in Architectural Design
The risk of prompt injection attacks in large language models is rooted in inherent architectural design

flaws, rather than solely value alignment issues. These technical vulnerabilities offer specific attack vectors,
enabling exploitation of the model’s intrinsic weaknesses to bypass security measures.

4.2.1 Attention Mechanism Flaws in Transformer Architecture
The Transformer architecture introduces several security vulnerabilities, enabling prompt injection

attacks. The self-attention mechanism calculates weights based on sequence correlations, making it manip-
ulable by malicious input that influences attention distribution and forces models to focus on harmful
instructions while ignoring safety constraints [69]. Multi-head attention lacks coordination mechanisms,
allowing attackers to embed malicious patterns in some heads while maintaining normal performance
in others [79]. Positional encoding provides manipulation dimensions where attackers place malicious
instructions at high-attention positions like sequence beginnings or ends [73]. Fixed context windows
create boundary effects - when input exceeds maximum length, attackers place irrelevant content at the
beginning to remove safety instructions, then insert malicious content within the visible range [92]. Distance
bias in attention mechanisms gives higher weights to closer tokens, which attackers exploit by positioning
malicious instructions near sequence ends [74]. Sliding window mechanisms introduce state contami-
nation where malicious information propagates through hidden states [108], while residual connections
provide bypass paths for malicious information to reach output layers directly [66], rendering intermediate
monitoring ineffective.

4.2.2 Systematic Flaws in the Training Process
Large language model training contains systematic flaws that enable prompt injection attacks across the

entire pipeline from data collection to optimization. Pre-training data inevitably introduces contamination
and bias. Large-scale internet text contains malicious content, including hate speech and misinforma-
tion [100]. Despite cleaning efforts, models implicitly learn malicious patterns that attackers can later
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activate to bypass security constraints. Data source imbalance creates systematic bias toward Western-
centric content [97], which attackers exploit through cultural and linguistic differences. Temporal bias from
training cutoff dates allows attackers to claim false “new rules” that the model cannot verify [109]. Supervised
Fine-Tuning (SFT) creates optimization conflicts between instruction following and security. Enhanced
instruction comprehension makes models more susceptible to malicious manipulation [110]. Training data
bias toward “cooperative” examples over “denial” examples leads models to comply rather than refuse
inappropriate requests. Multi-task learning interference can weaken security protections when complex
reasoning tasks conflict with simple security checks [111]. Reinforcement Learning from Human Feedback
(RLHF) introduces new vulnerabilities through reward model fragility. Policy models may discover reward
model loopholes, learning deceptive strategies that perform well during evaluation but produce harmful
outputs in deployment [112]. Human feedback inconsistency and manipulability undermine reward model
reliability [113]. Distribution shift during training creates “blind spots” where security protection degrades,
allowing targeted attacks in areas with reduced coverage [104].

4.2.3 Architectural Limitations of Inference Mechanisms
Large language models’ architectural design contains inherent limitations that provide technical entry

points for prompt injection attacks. The autoregressive generation mechanism creates manipulation vul-
nerabilities through unidirectional information flow. Each token generation depends only on previous
tokens without accessing subsequent contexts [80]. Attackers exploit this by embedding malicious instruc-
tions early in input, creating cumulative forward manipulation effects that are difficult to defend against.
Greedy decoding creates local optimum traps where attackers craft prefixes making malicious content
appear statistically optimal [81]. The predictability of sampling strategies allows attackers to learn model
patterns and construct inputs triggering target outputs with high probability [75]. Context understanding
mechanisms suffer from superficiality, lacking true semantic comprehension. Models confuse statistical
association with causal understanding, learning patterns without distinguishing true causality from spurious
correlations [76]. Shallow pattern matching makes models susceptible to superficial camouflage attacks
using synonym substitution or syntactic restructuring while preserving malicious semantic content [82].
Incomplete context integration allows distributed attacks where malicious instructions are dispersed across
input parts, each appearing harmless individually but forming complete attack payloads together [74]. Post-
processing security checks contain fundamental vulnerabilities. The generate-and-filter architecture creates
time-window vulnerabilities where harmful content exists between generation and filtering [94]. Filter
bypass strategies exploit keyword matching and rule system weaknesses through encoding transformations,
language translation, or metaphorical expressions [83]. Content-intention separation creates detection blind
spots where seemingly harmless content carries malicious intent [95]. Computational resource asymmetry
favors attackers who can invest unlimited time optimizing attacks while filters operate under real-time
constraints [96].

4.2.4 Security Implications of Emerging LLM Architectures
While our analysis has primarily focused on Transformer-based architectures that dominate current

LLM deployments, emerging architectural innovations introduce new security considerations that warrant
careful examination. We discuss three prominent architectural trends and their implications for prompt
injection vulnerabilities.

State Space Models (SSMs). Recent architectures like Mamba [114] replace traditional attention mech-
anisms with selective state space models, offering linear-time processing and potentially different security
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characteristics. On one hand, SSMs may exhibit inherent resilience against certain attention-based manip-
ulation attacks, as they do not rely on the quadratic attention computation that can be exploited to amplify
malicious token influences. On the other hand, SSMs introduce new potential vulnerabilities: (1) Selective
scanning exploitation—adversaries could craft inputs that manipulate the selection mechanism to prioritize
malicious content in the compressed state; (2) State poisoning attacks—the continuous state representation
could be corrupted through carefully designed input sequences that persist malicious information across
context windows; and (3) Information leakage through state compression—the lossy compression inherent in
state space models might inadvertently expose sensitive information from earlier in the context. The security
implications of SSMs remain largely unexplored and require dedicated investigation.

Mixture-of-Experts (MoE) Architectures. MoE models such as GPT-4 [115] dynamically route inputs
to specialized expert sub-networks, introducing unique attack surfaces. Key security concerns include:
(1) Router manipulation—adversaries could craft inputs designed to trigger routing to specific experts
that may have weaker security properties or have been insufficiently aligned during training; (2) Expert
inconsistency exploitation—if safety mechanisms (e.g., content filters, instruction-following constraints) are
implemented inconsistently across experts, attackers could probe to identify and target vulnerable experts;
and (3) Load-based side channels—the computational load patterns from expert activation could potentially
leak information about input classification or model decision-making. Conversely, MoE architectures
offer potential security benefits: dedicated security-focused experts could be trained specifically for threat
detection, and critical operations could be isolated to hardened expert modules with enhanced monitoring.

Retrieval-Augmented Generation (RAG) Systems. RAG architectures [116] augment LLMs with exter-
nal knowledge retrieval, fundamentally expanding the attack surface beyond the model itself. RAG systems
face compounded vulnerabilities: (1) Retrieval poisoning—attackers can compromise external knowledge
bases or vector stores to inject malicious content that gets retrieved and incorporated into model responses;
(2) Indirect prompt injection via retrieved documents—as demonstrated in recent work [8], adversaries can
embed malicious instructions in documents that are likely to be retrieved, effectively injecting prompts
through the retrieval pathway; (3) Query manipulation—carefully crafted user queries could exploit the
retrieval mechanism to access unauthorized information or trigger retrieval of attacker-controlled content;
and (4) Context window exploitation—retrieved content consumes context window space, and adversaries
could trigger retrieval of large irrelevant documents to perform denial-of-service or displace legitimate
system instructions. However, RAG also enables novel defense opportunities, such as real-time retrieval of
updated security policies, dynamic threat intelligence integration, and separation of static model knowledge
from updateable security contexts.

Research Directions. The security implications of these emerging architectures remain understudied.
We advocate for architecture-aware security research that: (1) develops threat models specific to each
architectural paradigm; (2) investigates whether architectural innovations inherently mitigate or exacerbate
known vulnerabilities; (3) designs security mechanisms that leverage architectural features (e.g., using MoE
routing for threat detection, employing SSM states for anomaly monitoring); and (4) establishes security
benchmarks tailored to architectural characteristics. As the field moves beyond pure Transformer models,
security analysis must evolve in parallel to ensure that architectural progress does not inadvertently introduce
new attack vectors.

4.3 Training Layer: Systemic Flaws in the Learning Process
The training process of large language models, foundational to their capabilities, exhibits systemic flaws

across multiple levels, inadvertently providing a basis for prompt injection attacks. These vulnerabilities,
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spanning from representation learning to optimization strategies, are inherent limitations of the learning
mechanism that accumulate during knowledge acquisition, creating exploitable weaknesses.

4.3.1 Inherent Biases in Representation Learning
Large language models’ representation learning process introduces systematic biases that become

exploitation points for attacks, including gender, race, and professional biases encoded in word embed-
dings as geometric relationships [64], improper semantic cluster associations placing unrelated concepts
close together due to spurious correlations, and frequency bias that marginalizes low-frequency concepts
while centralizing common words [70]. Contextual representations create new attack vectors through
dynamic adjustment mechanisms, where contextual pollution propagates biased content via attention
mechanisms [85] and representation drift in long sequences causes semantic deviation from original
meanings [101]. Polysemy resolution bias favors frequent training interpretations when handling ambiguous
expressions [97], allowing attackers to construct contexts that force specific, harmful interpretations of
otherwise harmless expressions through statistical disambiguation manipulation. Deep neural networks
suffer from inconsistent hierarchical representations and lack cross-layer consistency checks, enabling
attackers to exploit the separation between shallow and deep understanding as well as non-monotonic
representation evolution to manipulate model behavior [78,86,87].

4.3.2 Convergence Bias in the Optimization Process
Current optimization methods for large language models contain systemic flaws that create exploitable

vulnerabilities, including multimodal loss landscapes causing convergence to suboptimal solutions with
predictable behavioral patterns [77], imbalanced gradient impacts leading to uneven capability develop-
ment [62], and optimization path randomness producing models with varying vulnerabilities across different
training runs [98]. Mini-batch stochastic gradient descent introduces accumulated biases through uneven
batch sampling that causes differential fitting for various data types [103] and noisy gradient estimation that
leads to unstable behavioral patterns [72]. Batch normalization creates training-inference inconsistencies
by using different statistics in each phase [63], allowing attackers to exploit these optimization flaws
to identify model weaknesses and construct targeted attacks that trigger abnormal behaviors or bypass
safety mechanisms.

4.3.3 Conflicts and Interference in Multi-Task Learning
Modern large language models’ multi-task learning capabilities introduce inter-task conflicts that

attackers can exploit, particularly through the trade-off conflict between accuracy and safety where
improving task-specific performance may compromise safety requirements [88], the difficulty in balancing
generality and specialty that leads to inconsistent behavior in specialized domains, and the optimization
conflict between efficiency and quality where computational compromises create attack opportunities [89].
Multi-task processing requires rapid task switching that introduces cognitive load and potential errors,
creating vulnerabilities through incomplete state retention during transitions that can lead to information
contamination across tasks [71]. The cognitive resource consumption of frequent task switching can degrade
model performance and reduce safety checking capabilities [60], allowing attackers to construct complex
inputs requiring multiple task switches to exhaust computational resources. Attackers can exploit these multi-
task vulnerabilities by disguising malicious requests as legitimate task requirements, leveraging specialized
domain knowledge gaps, forcing simplified processing through resource-intensive inputs, and implement-
ing cross-task state contamination attacks where malicious information planted in one task activates in
subsequent tasks.
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4.4 Trends and Challenges
4.4.1 Development Trends

Research on large language model vulnerabilities to prompt injection attacks is evolving across three
interconnected levels. At the philosophical level, the field is shifting from seeking perfect value alignment
solutions to accepting prompt injection as rooted in fundamental dilemmas about moral relativism and
cultural diversity, focusing on frameworks that navigate inherent value conflicts [90]. At the technical
level, studies are transitioning from reactive post-hoc filtering to proactive architectural redesign that
addresses inherent Transformer vulnerabilities, emphasizing attention mechanisms with built-in security
properties [28]. At the training level, research is moving toward holistic paradigms that integrate security
considerations throughout the entire learning pipeline rather than treating safety as an add-on component,
embedding security awareness into pre-training, fine-tuning, and reinforcement learning processes [102].

4.4.2 Fundamental Challenges
Despite technological advancements, prompt injection attacks persist due to the inherent trade-off

between enhancing instruction following and increasing vulnerability to malicious inputs. This fundamental
contradiction highlights the challenge of designing models with strong general capabilities that resist harmful
instructions, while navigating the ethical dilemma of value alignment across diverse global contexts, where
“security” and “harmful” are culturally defined. A future challenge is to create a security framework that
flexibly adapts to different cultural backgrounds and legal systems while upholding basic human ethical
bottom lines [84,102].

5 RQ3: What Defense Mechanisms Have Been Developed to Mitigate Prompt Injection Attacks?
To answer our research question, we analyzed defense mechanism studies published between 2022 and

2025. Based on this literature, we categorize prompt injection defenses into three main types: Input Prepro-
cessing and Filtering, System Architecture Defenses, and Model-Level Defenses. Table 6 summarizes 37
representative defense studies.

Table 6: Summary of prompt injection attack defenses

Index Year Defense category Authors Core defense strategy

1 2023 Input
preprocessing

Jain
et al. [15]

Baseline Defense: Paraphrasing
reconstruction to disrupt adversarial

suffix attacks

2 2023 Input
preprocessing

Kumar
et al. [117]

Erase-and-check framework: Provable
security guarantees

3 2023 Input
preprocessing

Madaan
et al. [118]

Self-Refine: Iterative output
optimization through self-reflection

4 2023 Input
preprocessing

Robey
et al. [16]

SmoothLLM: Random perturbation
and prediction aggregation detection

5 2023 System
architecture

Mialon
et al. [31]

Sandbox isolation: Restricting LLM
external system access

6 2023 System
architecture

Rebedea
et al. [119]

NeMo Guardrails: Multi-layer
verification mechanism

(Continued)
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Table 6 (continued)

Index Year Defense category Authors Core defense strategy

7 2023 Model defense Wang
et al. [17]

SELF-GUARD: Safety training and
self-censorship

8 2023 Model defense Choi
et al. [120]

Parameterization of fixed inputs
(prompts) into model parameters to
decouple them from inference-time

inputs

9 2024 Input
preprocessing

Zhang
et al. [121]

Goal priority defense: Inserting
defensive tokens

10 2024 Input
preprocessing

Chen
et al. [122]

Fight fire with fire: Converting attack
techniques into defense tools

11 2024 Input
preprocessing

Hines
et al. [123]

Spotlighting: Input provenance-based
defense

12 2024 Input
preprocessing

Khomsky
et al. [124]

Multi-layer defense: Prompt + Python
+ LLM filters

13 2024 Input
preprocessing

Phute
et al. [125]

LLM self-defense: Zero-shot
self-checking mechanism

14 2024 Input
preprocessing

Rai
et al. [126]

GUARDIAN: Three-tier defense
architecture design

15 2024 Input
preprocessing

Wang
et al. [127]

FATH: Hash authentication-based
test-time defense

16 2024 System
architecture

Chen
et al. [128]

StruQ: Control and data separation
structured query

17 2024 System
architecture

Debenedetti
et al. [37]

AgentDojo: Dynamic security
assessment for LLM agents

18 2024 System
architecture

Jia
et al. [129]

Task Shield: Task-aligned defense
against indirect injection

19 2024 System
architecture

Pasquini
et al. [130]

Mantis: Converting prompt injection
into counterattack

20 2024 System
architecture Suo [131] Signed-Prompt: Instruction

signature-based defense

21 2024 System
architecture

Wu
et al. [132]

F-Secure LLM: Information flow
control system-level defense

22 2024 Model defense Chen
et al. [133]

SecAlign: Preference
optimization-based defense

23 2024 Model defense Jacob
et al. [134]

PromptShield: Practical deployment
detection benchmark

24 2024 Model defense Mazeika
et al. [18]

HarmBench+R2D2: Standardized
evaluation and training

25 2024 Model defense Panterino
et al. [135]

Dynamic moving target: Parameter
perturbation attack mitigation

(Continued)
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Table 6 (continued)

Index Year Defense category Authors Core defense strategy

26 2024 Model defense Piet
et al. [136]

Jatmo: Task-specific fine-tuning
defense method

27 2025 Input
preprocessing

Chen
et al. [137]

Instruction reference defense: Explicit
reference execution instructions

28 2025 Input
preprocessing

Lin
et al. [138]

UniGuardian: Unified multi-threat
detection

29 2025 Input
preprocessing

Shi
et al. [139]

PromptArmor: Simple and efficient
guardrail LLM defense

30 2025 Input
preprocessing Yi et al. [140] BIPIA: Boundary-aware defense and

benchmarking

31 2025 System
architecture

Chen
et al. [133]

DefensiveToken: Innovative test-time
defense solution

32 2025 System
architecture

Debenedetti
et al. [19]

CaMeL: Software security design
principle defense system

33 2025 System
architecture Jia et al. [20] Critical evaluation: Principled defense

evaluation standards

34 2025 System
architecture

Zhong
et al. [141]

RTBAS: Information flow control tool
agent defense

35 2025 Model defense Li &
Liu [142]

InjecGuard: Addressing guardrail
over-defense issues

36 2025 Model Defense Li et al. [143] PIGuard: MOF training strategy
guardrail model

37 2025 Model defense Liu
et al. [144]

DataSentinel: Game theory-based
detection method

5.1 Input Preprocessing and Filtering
Perturbation and Filtering Defenses. Several methods defend against prompt injection through input

perturbation and output filtering. Robey et al. [16] proposed SmoothLLM, which exploits adversarial suffixes’
vulnerability to character-level perturbations. Jain et al. [15] reduced attack success rates through paraphras-
ing, while Kumar et al. [117] introduced the erase-and-check framework, providing the first provably robust
defense by systematically deleting and checking token subsequences. Classifier-based approaches can capture
complex attacks but require substantial labeled data [15,117].

Self-Evaluation and Instruction-Aware Defenses. Recent approaches leverage LLMs’ intrinsic capa-
bilities for defense. Madaan et al. [118] proposed Self-Refine, enabling iterative self-evaluation and output
optimization through feedback mechanisms. Chen et al. [137] shifted the paradigm from blocking malicious
instructions to identifying and filtering responses based on explicit instruction referencing. Phute et al. [125]
introduced LLM SELF DEFENSE, utilizing models’ inherent ability to detect harmful content without
additional training. Zhang et al. [121] proposed target prioritization through special control instructions
during inference and training phases.

Attack-as-Defense and Source Distinction. Innovative defense paradigms exploit attack mechanisms
themselves. Chen et al. [122] proposed an “attack-as-defense” paradigm that leverages attack structure and



Comput Mater Contin. 2026;87(1):4 31

intent for defense. Yi et al. [140] developed the BIPIA benchmark with a dual-defense mechanism based on
attack analysis. Hines et al. [123] introduced Spotlighting, enhancing LLMs’ ability to distinguish between
system instructions and external data through prompt engineering.

Multi-Layer Defense Systems. Comprehensive defense architectures employ multiple protection layers.
Khomsky et al. [124] analyzed multi-layer systems consisting of defense prompts, Python filters, and LLM
filters in the SaTML 2024 CTF competition. Rai et al. [126] proposed GUARDIAN, a three-layer defense
framework. Wang et al. [127] introduced FATH, transforming defense into a cryptographic authentication
problem using HMAC-based mechanisms. Shi et al. [139] developed PromptArmor, converting off-the-shelf
LLMs into security guardrails through meticulously designed prompts.

Unified and Domain-Specific Defenses. Recent work addresses multiple attack types and specialized
scenarios. Lin et al. [138] proposed UniGuardian, the first unified defense against prompt injection, backdoor,
and adversarial attacks by defining them as Prompt Triggered Attacks (PTA). Zhang et al. [145] introduced
Mixed Encoding (MoE-Defense) using multiple character encodings like Base64. Sharma et al. [146]
developed a two-stage framework for image-based attacks on multimodal LLMs. Wen et al. [147] proposed
instruction detection-based defense for RAG systems by analyzing internal behavioral state changes. Salem
et al. [148] introduced Maatphor for automated generation and evaluation of attack variants. Hung et al. [149]
discovered the “distraction effect” through attention pattern analysis.

5.2 Model-Level Defenses
SELF-GUARD, proposed by Wang et al. [17], leverages a two-stage training approach, enabling large

language models to self-censor and flag harmful responses. Mazeika et al. developed HarmBench, a
standardized evaluation framework [18], and proposed R2D2, an adversarial training method that uses
“away-from-loss” and “towards-loss” to train models to refuse to output harmful content. By parametrically
injecting fixed prompts into the model, Choi et al.’s Prompt Injection (PI) method shifts fixed instructions
from the input layer to the parameter layer via fine-tuning or distillation, aiming to reduce inference
latency and computational costs for long prompts [120]. Piet et al. [136] proposed the Jatmo method to
defend against prompt injection attacks. Its core principle lies in task-specific fine-tuning, transforming
a general instruction-following model into a specialized model for a single task. Panterino et al. [135]
pioneered a dynamic Moving Target Defense mechanism that continuously alters the parameters and
configurations of large language models to create an unpredictable attack environment, thereby effectively
defending against prompt injection attacks. Liu et al. [40] proposed an automatic prompt injection attack
based on gradient optimization. SecAlign, proposed by Chen et al. [133], constructs preference datasets
of safe and unsafe responses and employs preference optimization techniques. Li and Liu [142], through
the InjecGuard model and MOF training strategy, systematically address the over-defense problem of
existing Prompt guard models, specifically manifesting as trigger word bias and shortcut learning leading
to misclassification of benign inputs. PIGuard [143] innovatively introduces the Mitigating Over-defense
for Free training strategy, aiming to solve the over-defense problem of existing Prompt guard models,
and quantifies and resolves the model’s bias towards common trigger words by constructing the NotInject
evaluation dataset. Jacob et al. [134] proposed PromptShield, a comprehensive benchmark for training and
evaluating Prompt injection detectors, providing an important tool for building deployable Prompt injection
defense systems. DataSentinel, proposed by Liu et al. [144], is a game-theoretic prompt injection attack
detection method whose counterintuitive strategy is to enhance detection capabilities by fine-tuning to
increase the vulnerability of the detection LLM.
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5.3 System Architecture Defense
Agent Security and Tool-Based Defenses. Several frameworks address security challenges in LLM

agent systems. Debenedetti et al. [37] proposed AgentDojo, the first dynamic security evaluation frame-
work for LLM agents in untrusted data environments. Mialon et al. [31] emphasized establishing security
boundaries when LLMs call external tools in their Augmented Language Models survey. Rebedea et al. [119]
introduced NeMo Guardrails, a multi-layered validation tool with dual input-output auditing. Zhong
et al. [141] proposed RTBAS, applying information flow control to Tool-Based Agent Systems. Jia et al. [129]
introduced Task Shield, shifting security focus from harmfulness detection to task consistency verification.

Architectural and System-Level Defenses. Fundamental architectural approaches address prompt
injection at the system design level. Chen et al. [128] proposed StruQ, treating prompt injection as traditional
injection attacks and applying “separation of control and data” principles at the API level. Wu et al. [132]
introduced the f-secure LLM system based on Information Flow Control (IFC), separating planner and
executor functions. Suo et al. [131] proposed Signed-Prompt, establishing trust verification through digital
signatures for sensitive instructions. Debenedetti et al. [19] introduced the CaMeL framework, building
protective system layers around LLMs inspired by traditional software security.

Embedding-Based and Token-Level Defenses. Methods operating at the embedding and token levels
provide fine-grained protection. Chen et al. [133] proposed DefensiveToken, optimizing embedding vectors
of special defense tokens without altering model parameters. Ayub et al. [150] developed detection methods
based on distributional differences between malicious and benign prompts in embedding space. Rahman
et al. [151] leveraged multilingual BERT models for embedded representations to detect malicious attacks.

Detection and Removal Frameworks. Comprehensive frameworks combine detection with post-
processing mechanisms. Chen et al. [152] proposed a complete defense framework including detection and
removal stages for indirect attacks. Li et al. [153] introduced GenTel-Safe with the GenTel-Shield detection
method and GenTel-Bench evaluation benchmark. Pasquini et al. [130] proposed Mantis, transforming
prompt injection from a vulnerability into a strategic asset. Rossi et al. [42] developed hierarchical defense
strategies through systematic attack classification.

Domain-Specific and Specialized Defenses. Targeted approaches address specific application scenar-
ios and attack vectors. Sharma et al. [154] proposed SPML, the first domain-specific language for defending
chatbot prompt attacks. Pedro et al. [155] systematically studied Prompt-to-SQL injection attacks in the
Langchain framework. Sharma et al. [146] developed two-stage frameworks for image-based attacks on
multimodal LLMs. Lee et al. [156] proposed human-AI collaborative frameworks for military LLMs in
federated learning environments.

Evaluation, Testing, and Multi-Dimensional Analysis. Critical evaluation and comprehensive analysis
frameworks advance defense understanding. Jia et al. [20] proposed principled defense evaluation frame-
works emphasizing diverse attack testing. Zhan et al. [157] conducted adaptive attack evaluations revealing
fundamental vulnerabilities in current defenses. Yu et al. [158] introduced PROMPTFUZZ, a black-box
fuzzing framework applying software testing techniques. Kumar et al. [24] proposed multi-dimensional
attack space analysis guiding hierarchical defense architectures. Zhang et al. [145] identified various strategies
through a systematic review of 36 papers (2022–2025).

Integrated and Iterative Defense Approaches. Holistic methods combine multiple defense mech-
anisms and adaptive strategies. Deng et al. [159] proposed integrated offense-defense frameworks with
iterative adversarial fine-tuning. Mudarova et al. [160] developed comprehensive ML-based protection
solutions with complete algorithm-implementation-verification processes. Liang et al. [49] constructed
multi-layered prompt protection frameworks using obfuscation, attention interference, and output filtering.



Comput Mater Contin. 2026;87(1):4 33

Rehberger [4] highlighted fundamental challenges stemming from rapid attack innovation and limited
mitigation effectiveness.

5.4 Trends and Challenges
Through a systematic analysis of existing prompt injection attack defense mechanisms, as shown

in Table 7, we have identified several significant development trends and core challenges in this field.

Table 7: Quantitative comparison of defense mechanism effectiveness against prompt injection attacks

Defense mechanism Authors Benchmark/
Dataset

Baseline
ASR

ASR with
Defense

SmoothLLM (Vicuna for
GCG)

Robey
et al. [16] AdvBench 98.1% 0.8%

Paraphrasing (Vicuna) Jain
et al. [15]

Adversarial
prompts 79.0% 5.0%

Erase-and-Check
(DistilBERT)

Kumar
et al. [117]

Adversarial
prompts 100% 0%

NeMo Guardrails Rebedea
et al. [119]

Anthropic
red-teaming

dataset
7.0% 1.0%

Spotlighting
(GPT-3.5-Turbo)

Hines
et al. [123]

Synthetic dataset
(Document

Summarization)
50.0% 3.1%

Prompt Sandwiching
(GPT-4o)

Debenedetti
et al. [37]

AgentDojo
(Security Tasks) 57.69% 27.82%

Boundary-aware (GPT-4) Yi et al. [140] BIPIA Benchmark 31.03% 24.08%

5.4.1 Limitations and Optimization Directions for Current Defenses
While the defense strategies discussed above provide valuable protection against prompt injection

attacks, they face significant limitations in real-world deployment. Input filtering mechanisms suffer from
high false positive rates (15%–30%) and can be easily evaded through simple obfuscation techniques such
as encoding or character substitution, with detection rates dropping from over 90% for known attacks
to below 40% for novel variants. Prompt engineering approaches, despite their simplicity, lack formal
security guarantees and can be bypassed by sophisticated context-ignoring attacks with 40%–60% success
rates. Model fine-tuning methods like RLHF require prohibitive computational resources and show limited
generalization to unseen attack patterns. Architectural defenses such as dual-LLM systems introduce sub-
stantial latency (200–500 ms per query) and operational costs. To address these limitations, we recommend:
(1) adopting multi-layered defense-in-depth strategies that combine lightweight rule-based pre-filtering with
adaptive ML-based detection; (2) developing context-aware and dynamic defense mechanisms that adjust
security strictness based on real-time threat assessment; (3) establishing continuous learning pipelines that
update defense models using adversarial training with newly discovered attack patterns; and (4) creating
standardized benchmarks and evaluation frameworks to systematically assess defense effectiveness across
diverse attack scenarios and model architectures. Future research should prioritize developing defenses with
formal security guarantees while maintaining acceptable performance overhead and user experience.
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5.4.2 Development Trends
Multi-layered Evolution of Defense Strategies Defense against large language models has evolved

from single-point solutions to multi-layered strategies. Early methods focused on isolated filtering. However,
increasingly sophisticated attacks have necessitated complex, multi-tiered architectures to enhance overall
defense effectiveness.

Intelligent and Adaptive Defense Mechanisms Defense technology is evolving from static rules
to intelligent, adaptive mechanisms, exemplified by methods. Panterino et al.’s dynamic moving target
defense [135] introduces continuous parameter changes to create unpredictable defense environments
for LLMs.

Security by Design at the System Architecture Level The defense shift from post-hoc remediation
to Security by Design is evident in recent architectural re-engineering efforts. Similarly, the CaMeL frame-
work [19] establishes a protective system layer around LLMs, reflecting a trend towards systematic security
design for robust guarantees.

5.4.3 Core Challenges
Fundamental Dilemma of Offensive-Defensive Asymmetry Attackers possess a significant advantage

in resources and time, allowing them to optimize sophisticated attack strategies while defenders often operate
under real-time constraints with limited resources. This fundamental asymmetry, particularly evident in
LLM prompt injection, places defenders in a perpetual reactive state due to rapid attack innovations and the
limited effectiveness of current mitigation strategies.

Protection Gaps for Multimodal Attacks The emergence of multimodal injection attacks highlights
critical vulnerabilities in cross-modal threat protection, as traditional defenses struggle with malicious
instructions embedded in non-text modalities.

Balancing Defense Effectiveness and System Usability Existing defense mechanisms balance security
and usability, with current Prompt guardrail models showing over-defense through trigger word bias and
shortcut learning that misclassify benign inputs. A key challenge is to achieve robust security without
compromising normal functionality.

5.4.4 Efficiency and Latency Trade-Offs
A critical consideration for real-world deployment, as highlighted by our analysis, is the computa-

tional overhead and latency introduced by various defense mechanisms. These costs create a complex
trade-off between security robustness and system efficiency, with implications differing drastically across
defense architectures.

System-Level and Pre-Processing Overheads: Some architectures, while effective, introduce signifi-
cant, fixed latency. For instance, the NeMo Guardrails framework utilizes a multi-layered validation system
involving a “three-step CoT prompting approach” [119]. This process inherently incurs substantial overhead,
estimated to be about 3 times the latency and cost of a standard, undefended LLM call [119]. Similarly, input
pre-processing defenses like Paraphrasing require an external call to another powerful LLM (e.g., GPT-3.5-
turbo) simply to sanitize the input, effectively doubling the inference latency or more before the primary
model even begins its task [15].

Scalable Latency in Perturbation Defenses: Perturbation-based defenses like SmoothLLM introduce
a scalable overhead. The defense’s cost is directly proportional to the number of samples (N), requiring “N
times more queries relative to an undefended LLM” [16]. This creates a clear security-efficiency trade-off:
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higher N provides greater robustness but increases cost. For example, running N = 10 samples (a 10× query
increase) took approximately 4.2–4.4 s on an A100/A6000 GPU [16]. However, even one extra query (N = 2)
demonstrated a 5.7× to 18.6× reduction in ASR on Llama2, highlighting a significant security gain for a 2×
latency cost [16].

Filter Model and Complexity Costs: The Erase-and-Check framework provides the clearest example
of how cost is influenced by both the filter model and the attack complexity [117].

• Filter Model: Using a large model (Llama 2) as the safety filter is slow (approx. 1.1 s for suffix mode, d
= 10), whereas using a fine-tuned, smaller classifier (DistilBERT) is “significantly faster,” achieving the
same task in under 0.1 s [117].

• Attack Complexity: The cost escalates rapidly when certifying against more complex attacks, even with
the fast DistilBERT filter. While suffix mode (d = 10) is fast (approx. 0.04 s), insertion mode (d = 12) takes
approx. 0.1 s, and the more complex infusion mode (d = 3) takes over 1 s, with the Llama 2 filter taking
a prohibitive 61 s for the same task [117].

This demonstrates that the computational cost of defense ranges from negligible (e.g., a lightweight
classifier for simple attacks) to prohibitive (e.g., using an LLM to certify against complex infusion attacks),
making this trade-off a central challenge for practical deployment.

5.4.5 The Co-Evolutionary Arms Race: A Temporal Analysis
The offensive-defensive asymmetry mentioned in Section 5.4.3 is not static; rather, it is a dynamic co-

evolutionary arms race. Our systematic review of the 2022–2025 literature reveals a clear pattern of attacks
and defenses evolving in direct response to one another. This temporal progression is illustrated in Table 8.
The timeline begins in 2022 with foundational Direct Injection attacks [7], which were quickly met by simple
Input Preprocessing defenses like paraphrasing [15] and perturbation [16] in 2023. Attackers immediately
adapted; optimization-driven attacks like GCG [56] emerged specifically to generate adversarial suffixes that
are robust to such simple filtering. This, in turn, spurred the development of more robust Model-Level
Defenses, such as adversarial training [18]. As defenses for direct text injection hardened, attackers pivoted
to entirely new vectors, including Multimodal Attacks [13,14] and Agent-Based indirect attacks [37]. This
forced defenses to evolve once more, moving towards System-Level Architectures like StruQ [128] and
CaMeL [19] that focus on fundamental “Security by Design” rather than reactive filtering. Each defensive
layer is thus met with a new, more sophisticated attack vector, perfectly illustrating the co-evolutionary cycle.

Table 8: Timeline of the attack-defense co-evolutionary arms race (2022–2025). This table illustrates how attack
sophistication (left column) has increased in direct response to new defense mechanisms (right column)

Year Attack evolution (Milestone & Threat) Defense response (Milestone &
Mitigation)

2022

Initial Attack: Direct Injection
Foundational instruction override attacks
(e.g., “Ignore previous instructions”) are

proposed [7].

Baseline: Implicit Defenses Model
behavior is controlled only by basic

system prompts and initial alignment
training.

2023

Vector Pivot: Indirect Injection Attacks
move to data sources (RAG, documents,

webpages) to bypass direct input
filtering [8].

Layer 1: Input Preprocessing
Defenses react by filtering the user’s

prompt (e.g., Paraphrasing [15],
Perturbation/SmoothLLM [16]).

(Continued)
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Table 8 (continued)

Year Attack evolution (Milestone & Threat) Defense response (Milestone &
Mitigation)

Late
2023

Evasion: Optimization-Driven Attacks
Attacks (e.g., GCG) use gradient-based

optimization specifically to find
“adversarial suffixes” that survive
perturbation and filtering [36,56].

Layer 2: Model-Level Defenses
Defenses respond by hardening the

model itself (e.g., Adversarial
Training/HarmBench [18],

Self-Guard [17]).

2024

Vector Pivot: New Modalities Attacks
shift to entirely new, undefended surfaces:
Multimodal (images, functions) [12–14]

and Agent-Based (tools) [37].

Layer 3: System-Level Architecture
Defenses move beyond the prompt to
redesign the system (e.g., StruQ [128],

f-secure LLM [132],
Signed-Prompt [131]).

2025

Stealth Attacks Attacks become more
complex, targeting data flows [48] or

physical environments
(EnvInjection [50]).

Layer 4: Security by Design Defensive
frameworks mature to focus on

holistic, provable security principles
(e.g., CaMeL [19], Critical

Evaluation [20]).

5.5 Practical Deployment Guidelines
While our analysis has examined individual defense mechanisms and their theoretical properties,

practitioners face the challenge of translating these insights into concrete deployment decisions. We synthe-
size our findings into a practical decision framework that guides defense selection based on three critical
dimensions: application requirements, threat models, and resource constraints.

Application-Specific Recommendations. The choice of defense mechanisms should be primarily
driven by application context. For high-security applications (e.g., financial services, healthcare, legal advisory
systems), we recommend a defense-in-depth approach combining: (1) input-based filtering with strict
whitelisting and semantic analysis to catch malicious prompts at entry; (2) model-based defenses such
as adversarial training or safety-tuned models to ensure robust internal processing; and (3) output-based
validation with LLM-as-a-judge mechanisms to provide a final safety check. This multi-layer strategy, while
incurring higher computational overhead (typically 2–3× latency increase), achieves ASR < 5% as discussed
in Section 6.3. For general-purpose assistants with moderate security requirements, a balanced approach
combining lightweight input filtering with instruction-hierarchy enforcement offers practical security (ASR
< 15%) with acceptable overhead (<50% latency increase). For resource-constrained environments (e.g.,
edge deployments, mobile applications), prioritize efficient input-based defenses such as prompt-based
detection or lightweight classifiers that can run locally, accepting slightly higher ASR in exchange for a
minimal computational footprint. For agent-based systems interacting with external tools and data sources,
indirect prompt injection poses the primary threat; deploy specialized defenses, including data-prompt
isolation techniques, retrieval content sanitization, and privilege separation as discussed in recent work on
agent security.

Threat-Model-Driven Selection. Defense effectiveness varies significantly across attack types, as evi-
denced in Table 9. Against direct jailbreak attempts (e.g., role-playing, hypothetical scenarios), input-based
semantic analysis and model-based safety tuning prove most effective, as these attacks rely on exploiting
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instruction-following behavior. Against indirect prompt injections through external data sources, defenses
must focus on data provenance tracking and content isolation, as traditional input filtering cannot distinguish
between legitimate user inputs and injected malicious instructions. For multi-turn attacks that gradually
escalate malicious intent across conversation history, stateful monitoring mechanisms and conversation-
level anomaly detection become essential, as single-turn defenses may miss the attack pattern. Against
adversarial perturbations and token-level manipulations, model-based defenses with adversarial training or
input preprocessing (e.g., paraphrasing, retokenization) offer better resilience than semantic-level analysis.
Practitioners should conduct threat modeling exercises to identify their primary attack vectors and prioritize
defenses accordingly.
Table 9: Summary of prompt injection security evaluation platforms (2023–2025). Columns represent: Index (sequential
numbering), Year (publication timeline), Authors (platform developers), Attack Methods (evaluated attack techniques
including position-based, obfuscation, social engineering, and indirect injection), Defense Strategies (assessed mitiga-
tion approaches such as system prompt hardening, delimiters, and detection methods), Dataset (benchmark datasets
from repurposed NLP corpora to specialized platforms like Tensor Trust and AgentDojo), Attack Metrics (quantitative
effectiveness measures with ASR as the emerging standard), and Defense Metrics (defense effectiveness measures
through comparative analysis and utility preservation)

Index Year Authors Attack methods Defense strategies Dataset Attack
metrics

Defense
metrics

1 2023 Li
et al. [161]

Position-based,
Instruction type,
Specific phrase

System prompt,
Context order

Natural
Questions,
TriviaQA,
SQuAD,

HotpotQA

PDR, IDR
PDR, IDR
compari-

son

2 2023 Toyer
et al. [35]

Game-based, LDA
topic modeling,

Adversarial tokens

Community-
driven, Delimiters,

Instruction
repetition

Tensor Trust HRR, ERR
HRR, ERR
compari-

son

3 2023 Yip
et al. [162]

Payload splitting,
Obfuscation, Role

play, Indirect
injection

Not specified
A self-built

dataset of 115
attacks

RR, AIM,
ASP et al.

WRS com-
parison

4 2024 Sang
et al. [163]

Character-level,
Word-level,

Sentence-level,
Semantic-level

Not specified Microsoft
PromptBench

Response
Accuracy,

Adversarial
Robust-

ness, FPR
et al.

Not
specified

5 2024 Liu
et al. [28]

Naive attack,
escape characters,
context ignoring,
fake completion,
combined attack

Prevention-based,
Detection-based

MRPC, Jfleg,
HSOL, RTE,
SST2, SMS

Spam,
Gigaword

ASV, MR,
FPR et al.

ASV, MR,
PNA-T

et al.

6 2024 Debenedetti
et al. [37]

“Important
message”, “ignore

previous
instructions”

Data Delimiters, PI
Detection, Prompt
Sandwiching, Tool

Filter

AgentDojo ASR

ASR,
Benign
Utility

compari-
son

7 2024 Kumar
et al. [24]

Direct attacks,
indirect attacks,
roleplay, payload

splitting,
obfuscation

System prompt
hardening, Prompt
perturbation, Tool

limitation

No specific
dataset

Not
specified

Not
specified

(Continued)
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Table 9 (continued)

Index Year Authors Attack methods Defense strategies Dataset Attack
metrics

Defense
metrics

8 2024 Ramakrishna
et al. [164]

Execute
unauthorized
actions, access

sensitive
information,

distract model

Prompt-based
mitigation strategy

SQuAD + 150
generated APIs

Attack
success rate

Attack
Success

Rate com-
parison

9 2024 Zhan
et al. [2]

Direct harm
attacks, data

stealing attacks,
“hacking prompt”

Fine-tuned method
comparison INJECAGENT

ASR,
ASR-valid,
sensitivity

rate

ASR com-
parison

10 2025 Evtimov
et al. [165]

Plain-text
injection, URL

injection

Instruction
hierarchy,

Defensive system
prompt

WASP
benchmark

ASR-
intermediate,
ASR-end-

to-end,
Utility

ASR-
intermediate,
ASR-end-

to-end
compari-

son

Defense Layering and Implementation Priorities. Our analysis throughout Section 5 demonstrates
that no single defense mechanism provides comprehensive protection. We recommend a phased deployment
approach: Phase 1 (Immediate)-Deploy lightweight input-based filtering as a first line of defense, providing
immediate risk reduction with minimal integration complexity; Phase 2 (Short-term)-Implement output-
based validation or LLM-as-a-judge mechanisms to catch attacks that bypass input filters, creating a
two-layer defense with complementary coverage; Phase 3 (Long-term)-Invest in model-based defenses
through fine-tuning, adversarial training, or safety-aligned model selection, which offer more fundamental
security improvements but require significant resources and expertise. When combining defenses, prioritize
complementary mechanisms that address different attack stages: input filtering catches obvious attacks early,
model-based defenses provide robust internal processing, and output validation serves as a final safety net.
Monitor false positive rates carefully, as overly aggressive defense combinations can severely degrade user
experience—our recommended target is FPR <2% on legitimate queries. Finally, implement continuous
monitoring and adaptive defense strategies, as attackers constantly evolve their techniques; regularly evaluate
defense effectiveness against emerging attack patterns and update defense parameters accordingly.

This framework provides a systematic methodology for practitioners to navigate the complex land-
scape of prompt injection defenses, balancing security effectiveness, operational efficiency, and usability
preservation based on their specific deployment context.

6 RQ4: What Datasets and Evaluation Metrics Have Been Established for Prompt Injection Attack
Research?

To systematically address this question, we summarize existing research and compile multiple datasets
and evaluation metrics for prompt injection attacks against Large Language Models in Table 9. This table
details the year, author, attack, and defense methods, dataset, and evaluation metrics for each platform.
Following this, we briefly introduce each evaluation framework, culminating in a discussion of Trends
and Challenges.
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6.1 Evaluation Platform
Li et al. [161] proposed a benchmark framework for evaluating the instruction-following robustness

of large language models by simulating real-world dialogue system scenarios where models must answer
user queries based on web search results that may contain injected instructions. The research focuses on
“benign adversarial instructions” rather than malicious output-oriented attacks, evaluating how models
handle priority conflicts between original and injected instructions through position-based attacks, different
instruction types, and specific injection phrases like “ignore previous prompt.” The study introduced two core
metrics: Performance Drop Rate (PDR) defined as PDR( f ) = Acc( f )−Adv( f )

Acc( f ) to measure the accuracy decrease
after instruction injection, and Instruction Discrimination Rate (IDR) is defined as IDR( f ) = Adv( f )

Adv( f )+Adv′( f )
to assess the model’s tendency to prioritize original vs. injected instructions. Basic defense strategies were
evaluated, including explicit system prompts instructing models to ignore instructions within XML tags
and changing the order of user questions and context, with effectiveness measured by comparing PDR
and IDR performance with and without defense mechanisms. The evaluation utilized four representative
question-answering datasets: NaturalQuestions for real user queries, TriviaQA for question-answer pairs
with supporting documents, SQuAD for Wikipedia-based reading comprehension, and HotpotQA for
multi-hop reasoning tasks.

Toyer et al. [35] proposed Tensor Trust, an online game that crowdsourced the largest dataset of human-
generated adversarial samples against large language models, creating benchmarks to evaluate robustness
against prompt extraction and hijacking attacks. The attack methods were derived from player creations
and generalized using LDA topic modeling, including confusion phrases like “End ambiguity,” roleplay
requests to leak information, and model-specific adversarial tokens such as “artisanlib” to bypass defenses.
The study employed three key evaluation metrics: Hijacking Robustness Rate (HRR), measuring avoidance of
“access granted” outputs during hijacking attacks, Extraction Robustness Rate (ERR), measuring prevention
of verbatim access code outputs during extraction attacks, and Defense Validity (DV), measuring correct
“access granted” responses to legitimate access codes. While no specific defense strategies were proposed,
the research analyzed successful player defense patterns, including explicit instructions for specific access
codes, warnings against following user input instructions, role clarification, delimiter usage, and instruction
repetition. The dataset was generated through the online game rather than traditional publicly available
datasets, with defense effectiveness measured through HRR and ERR performance under various attack and
defense configurations.

Yip et al. [162] proposed a novel three-stage evaluation framework to quantify LLM-integrated applica-
tion resilience against prompt injection attacks: constructing a dataset of 115 representative attacks, utilizing a
second LLM as evaluator to generate quantitative impact scores with explanations, and calculating weighted
resilience scores where higher-impact attacks receive greater weights. The study evaluates attack techniques
across four categories (“Manipulated Content”, “Fraud”, “Harm and Destruction”, “Misinformation”), includ-
ing payload splitting, obfuscation, ignoring previous prompts, character roleplay, creative dialogue, privacy
leakage, and indirect injection. Four key metrics were employed: Relevance Ratio (RR) defined as RR = a

b
measuring attack success probability across multiple LLMs with 20% threshold for dataset inclusion; Average
Impact Metric (AIM) defined as AIM = Σ f

e=1(Ie)

f quantifying potential negative impact on a 0–5 scale; Attack
Success Probability (ASP) defined as ASP = S

T measuring single attack success rate; and Weighted Resilience
Score (WRS) defined as WRS = 100 × (1 − Σm

n=1(AIMn×ASPn)

Σm
n=1(AIMn×100%)) providing comprehensive resilience assessment

ranging 0–100. The framework focuses on resilience evaluation rather than defense strategies, using a custom
dataset of 115 attacks collected through literature review and web searches, primarily targeting Llama2 and
ChatGLM models.
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Sang et al. [163] evaluated prompt injection safety in Anthropic Claude and Mistral Large models
using the Microsoft PromptBench dataset, systematically comparing their performance across various
adversarial scenarios, including character-level (Deep WordBug, TextBugger), word-level (Text Fooler, Bert
Attack), sentence-level (CheckList, Stress Test), and semantic-level (human-crafted) attacks. The study
employed comprehensive evaluation metrics, including Response Accuracy, Adversarial Robustness, False
Positive/Negative Rates, Context Preservation Score, Semantic Consistency Index, and Robustness to Varia-
tions, to assess model safety and integrity under adversarial conditions. While no specific defense strategies
were proposed, the research highlighted the effectiveness of Anthropic Claude’s advanced safety mechanisms
and identified areas for improvement in Mistral Large’s handling of context and semantic manipulation. The
evaluation utilized the Microsoft PromptBench dataset, which provides diverse and comprehensive prompts
designed to test LLM robustness against adversarial inputs across various models, tasks, datasets, prompt
types, and attack vectors.

Ramakrishna et al. [164] introduced LLM-PIRATE, an automated framework designed to benchmark
indirect prompt injection attacks by embedding attack strings within retrieved documents in RAG systems.
It simulates multi-turn conversations and evaluates attack success rate across three verticals: executing
unauthorized actions, accessing sensitive information, and distracting the model. The study assessed both
white-box and black-box attacks, finding that prompt-based mitigation strategies were largely ineffective.
The benchmark leverages a dataset incorporating 150 automatically generated APIs, which allows for the
creation of extensible test sets, mitigating test set contamination.

Zhan et al. [2] introduced INJECAGENT, a pioneering benchmark framework for evaluating tool-
integrated LLM agents against indirect prompt injection (IPI) attacks, featuring 1054 realistic test cases
across 17 user tools and 62 attacker tools. This framework classifies attacks into “direct harm to users” and
“exfiltration of private data,” and measures security using Attack Success Rate (ASR) and ASR-valid, which
accounts for invalid model outputs. The study further explores the influence of “hacking prompts” on attack
efficacy and utilizes a custom dataset derived from 330 tools, generating diverse attack scenarios.

Evtimov et al. [165] introduced WASP, a benchmark to evaluate web agent security against prompt
injection by simulating realistic threats where attackers control specific web elements. This benchmark
assesses attacks targeting multi-step security breaches rather than single tasks, operating in a sandboxed
web environment for safety and reproducibility. It measures attack success via ASR-intermediate and
ASR-end-to-end, while evaluating defenses like instruction hierarchy and defensive system prompts.

Liu et al. [28] introduced a pioneering framework for prompt injection, defining attacks as forcing
an LLM to execute an “injected task” over its “target task.” This framework enabled the formalization of
existing attacks and the creation of a novel “Combined Attack,” along with a comprehensive quantitative
benchmark involving five attack types and ten defense strategies across various LLMs and tasks. The study
further established quantitative metrics like Performance under No Attacks (PNA), Attack Success Value
(ASV), and Matching Rate (MR) to evaluate attack efficacy and defense robustness, categorizing defenses
into prevention-based and detection-based strategies.

In [37], AgentDojo was introduced as a dynamic evaluation framework designed to assess the adversar-
ial robustness of AI agents against prompt injection, focusing on attacks from untrusted data. This framework
allows researchers to define and evaluate new agent tasks, defenses, and adaptive attacks, simulating real-
world agent execution in a stateful, adversarial setting. The study assessed attack methods, primarily a
“Important message” attack, and evaluated defenses like Data Delimiters and Prompt Sandwiching by
measuring metrics such as Benign Utility and Targeted Attack Success Rate (ASR) across a dataset of 629
security test cases in four environments.



Comput Mater Contin. 2026;87(1):4 41

6.2 Trends and Challenges
6.2.1 Development Trends

From the development trajectory of evaluation platforms summarized in Table 9, the research on
prompt injection attacks demonstrates the following significant trends:

Shift from static evaluation to dynamic interactive evaluation. Early evaluation frameworks primarily
focused on static question-answering. However, recent research constructed dynamic, stateful evaluation
environments, reflecting a deeper understanding of real-world application complexities.

Evolution of defense strategy evaluation from passive detection to active prevention. Defense
evaluation is evolving from merely detecting attacks to proactively preventing them. This shift is highlighted
by the categorization of strategies into prevention-based and detection-based types.

Evaluation environments increasingly align with real-world application scenarios. Recent evalu-
ation frameworks prioritize simulating real-world conditions. These frameworks move beyond technical
metrics to include practical aspects like user experience and system usability, reflecting a push towards more
applied evaluations.

6.2.2 Core Challenges
Despite the rapid development of evaluation frameworks, several challenges remain:
Lack of uniformity in evaluation standards. Different studies employ significantly varied evaluation

metrics and datasets, making it difficult to directly compare research results.
Subjectivity and bias in dataset construction. Datasets, often built on subjective judgments or specific

applications, can introduce systematic biases that require validation, even for carefully curated samples.
Lack of cross-modal and multilingual evaluation. Current evaluation frameworks primarily target

English text modality. Evaluation of prompt injection attacks in multilingual environments and across
multiple modalities remains insufficient.

6.3 Toward a Unified Evaluation Framework
The Need for Standardization. As highlighted in our analysis of existing defense mechanisms (Table 9),

the research community faces a critical challenge: the absence of standardized evaluation metrics makes
it difficult to fairly compare different approaches and assess their real-world applicability. Different studies
employ varying datasets, metrics, and experimental settings, leading to inconsistent and sometimes incom-
parable results. To address this gap, we propose a unified evaluation framework that can be adopted by
researchers to ensure reproducible and comparable assessments of defense mechanisms. Our framework is
grounded in three essential dimensions that collectively capture the multifaceted requirements of effective
defenses: security effectiveness, operational efficiency, and usability preservation.

Core Evaluation Dimensions. We advocate for a three-tier evaluation approach. First, security effec-
tiveness should be measured using Attack Success Rate (ASR)—the percentage of attacks that successfully
bypass the defense—with complementary Defense Success Rate (DSR = 1 – ASR). Based on our survey of
existing work, we suggest target thresholds of ASR< 5% for high-security applications (e.g., financial services,
healthcare) and ASR < 15% for general-purpose deployments. Second, operational efficiency must account
for real-world deployment constraints through metrics including inference latency overhead (milliseconds
per query), memory footprint increase (MB), and throughput degradation (queries per second) relative to
undefended baselines. Third, usability preservation should be quantified via false positive rate (FPR) on
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legitimate requests and task completion accuracy on standard benchmarks, ensuring that security measures
do not unacceptably degrade user experience or model utility.

Recommended Evaluation Protocols. Building upon the datasets and methodologies identified
in Table 9, we recommend that future defense evaluations adopt a standardized protocol using established
benchmark suites. Specifically, we suggest mandatory evaluation on: (1) JailbreakBench [166] for direct
prompt injection attacks (100 diverse malicious behaviors); (2) HarmBench [18] for standardized red-
teaming scenarios across multiple risk categories; and (3) AgentDojo [37] for indirect injection attacks
targeting LLM agents. For each defense mechanism, researchers should report all three core metrics
(ASR/DSR, efficiency overhead, FPR) with statistical confidence intervals, test robustness against adaptive
attacks where adversaries have knowledge of the defense, and evaluate cross-dataset generalization. We
believe that widespread adoption of this unified framework will accelerate progress in the field by enabling
rigorous, reproducible comparisons and identifying truly effective defense strategies that balance security,
efficiency, and usability.

7 Conclusion
This systematic literature review provides a comprehensive analysis of prompt injection attacks against

large language models, synthesizing 128 peer-reviewed studies published between 2022 and 2025. Through
rigorous methodology following Kitchenham’s guidelines, we address critical gaps in understanding attack
mechanisms, vulnerability root causes, defense strategies, and evaluation frameworks.

7.1 Summary of Contributions
Our research makes four principal contributions to the field of LLM security:
First, we established a systematic attack classification framework that organizes prompt injection

techniques across three dimensions: attack vectors (direct, indirect, and multimodal injection), attack
objectives (system prompt leakage, behavior hijacking, privilege escalation, and data exfiltration), and
technical implementations (manual crafting, automated generation, and optimization-driven methods). This
multi-dimensional taxonomy captures the full spectrum of attack techniques and reveals their evolution
from simple instruction override to sophisticated cross-modal manipulation, providing researchers and
practitioners with a unified conceptual framework for understanding the threat landscape.

Second, we conducted a comprehensive root cause attribution analysis examining vulnerabilities across
philosophical, technical, and training dimensions. Our analysis reveals that prompt injection vulnerabilities
stem from: (1) fundamental philosophical dilemmas including value system diversification, unverifiability of
alignment status, and inherent conflicts between instruction-following and safety constraints; (2) technical
architectural flaws in Transformer attention mechanisms, autoregressive generation, and context under-
standing; and (3) systematic training deficiencies in representation learning, optimization processes, and
multi-task learning. This multi-level framework explains why comprehensive defenses remain elusive despite
significant research efforts.

Third, we systematically categorized 37 defense mechanisms into three main approaches: input pre-
processing and filtering (including perturbation-based, self-evaluation, and multi-layer defenses), system
architecture defenses (featuring agent security frameworks, architectural redesigns, and detection systems),
and model-level defenses (encompassing adversarial training, preference optimization, and dynamic protec-
tion). Our analysis reveals that while input-level defenses achieve 60%–80% detection rates and advanced
architectural approaches demonstrate up to 95% protection against known patterns, significant gaps persist
against novel attack vectors, highlighting the ongoing arms race between attackers and defenders.
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7.2 Key Findings and Significance
Our systematic analysis yields several significant findings with important implications for LLM security:
Attack Evolution and Sophistication. We documented a clear progression from simple direct injections

in 2022 to sophisticated multimodal attacks achieving over 90% success rates against unprotected systems
by 2024–2025. Notably, more capable models exhibit higher vulnerability to text-based attacks (Pearson
correlation coefficient 0.6635, p < 0.001), revealing a fundamental trade-off between instruction-following
capability and attack susceptibility. This counterintuitive finding challenges the assumption that more
advanced models are inherently more secure.

Fundamental Vulnerability Mechanisms. Our attribution analysis reveals that prompt injection
vulnerabilities are not merely implementation bugs but stem from deep-seated issues: philosophical con-
tradictions in value alignment (moral relativism, cultural diversity), architectural limitations (attention
mechanism manipulability, autoregressive constraints), and training deficiencies (catastrophic forgetting,
reward hacking). This multi-level understanding explains why piecemeal defenses fail and points toward the
need for fundamental architectural innovations.

Defense Effectiveness and Limitations. While our review identified 37 defense approaches, empirical
evidence shows significant limitations: input filtering suffers from 15%–30% false positive rates and can be
evaded through simple obfuscation; prompt engineering lacks formal security guarantees with 40%–60%
bypass rates; model fine-tuning shows limited generalization to novel attacks; and architectural defenses
introduce substantial latency (200–500 ms per query). These findings underscore the asymmetric advantage
attackers maintain in the ongoing security arms race.

Evaluation Framework Gaps. Our analysis reveals critical deficiencies in current evaluation method-
ologies: lack of standardized metrics across studies, subjective bias in dataset construction, insufficient
coverage of multimodal and multilingual scenarios, and limited assessment of defense robustness against
adaptive attacks. These gaps hinder reproducibility and comparative analysis, impeding progress toward
robust solutions.

The significance of these findings extends beyond academic interest. As LLMs become increasingly
integrated into critical applications—from healthcare diagnostics to financial services and autonomous
systems—prompt injection attacks pose systemic risks with potential for significant harm. Our compre-
hensive framework provides the foundation for developing next-generation defenses and informs policy
discussions on AI safety regulations.

7.3 Practical Implications
Our research offers actionable insights for multiple stakeholders:
For LLM Developers: Adopt defense-in-depth strategies combining lightweight rule-based pre-filtering

with adaptive ML-based detection, implement context-aware dynamic defenses adjusting security strictness
based on real-time threat assessment, and establish continuous learning pipelines updating defense models
through adversarial training with newly discovered attack patterns.

For Application Designers: Implement architectural safeguards including input source isolation,
privilege separation between system instructions and user data, and formal verification of security-critical
components. Our analysis of system-level defenses (e.g., F-Secure LLM, CaMeL framework) provides
concrete design patterns.



44 Comput Mater Contin. 2026;87(1):4

For Security Researchers: Prioritize development of defenses with formal security guarantees, establish
standardized benchmarks for reproducible evaluation, and investigate cross-modal attack vectors where
current protections are weakest.

For Policymakers: Recognize prompt injection as a systemic vulnerability requiring regulatory atten-
tion, establish security certification standards for LLM-based systems in critical domains, and mandate
transparency in security testing and vulnerability disclosure.

7.4 Future Research Directions
Based on identified gaps and challenges, we propose the following research priorities:
Formal Verification Methods: Develop mathematically rigorous frameworks for proving defense

robustness against defined threat models, moving beyond empirical evaluation to provable security
guarantees.

Architectural Innovations: Design next-generation LLM architectures with inherent security proper-
ties, including explicit instruction-data separation mechanisms, hierarchical attention with built-in privilege
levels, and verifiable alignment constraints.

Standardized Evaluation Protocols: Establish community-wide benchmarks with diverse attack sce-
narios, multilingual coverage, multimodal threats, and adaptive attack evaluation, enabling reproducible and
comparable security assessments.

Multimodal Defense Mechanisms: Address critical gaps in cross-modal attack protection through
unified frameworks that detect and mitigate threats across text, image, audio, and video modalities.

Human-AI Collaborative Security: Investigate hybrid approaches combining automated defenses with
human oversight for high-stakes decisions, balancing security with usability and transparency.

In conclusion, while prompt injection attacks represent a fundamental challenge to LLM security, our
systematic analysis provides a comprehensive foundation for understanding and addressing this critical
threat. The path forward requires coordinated efforts across research, industry, and policy domains to
develop robust, practical, and formally verified defense mechanisms that enable the safe deployment of LLMs
in society.
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