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ABSTRACT: Atinference time, deep neural networks are susceptible to backdoor attacks, which can produce attacker-
controlled outputs when inputs contain carefully crafted triggers. Existing defense methods often focus on specific
attack types or incur high costs, such as data cleaning or model fine-tuning. In contrast, we argue that it is possible to
achieve effective and generalizable defense without removing triggers or incurring high model-cleaning costs. From the
attacker’s perspective and based on characteristics of vulnerable neuron activation anomalies, we propose an Adaptive
Feature Injection (AFI) method for black-box backdoor detection. AFI employs a pre-trained image encoder to extract
multi-level deep features and constructs a dynamic weight fusion mechanism for precise identification and interception
of poisoned samples. Specifically, we select the control samples with the largest feature differences from the clean dataset
via feature-space analysis, and generate blended sample pairs with the test sample using dynamic linear interpolation.
The detection statistic is computed by measuring the divergence G(x) in model output responses. We systematically
evaluate the effectiveness of AFI against representative backdoor attacks, including BadNets, Blend, WaNet, and IAB, on
three benchmark datasets: MNIST, CIFAR-10, and ImageNet. Experimental results show that AFI can effectively detect
poisoned samples, achieving average detection rates of 95.20%, 94.15%, and 86.49% on these datasets, respectively.
Compared with existing methods, AFI demonstrates strong cross-domain generalization ability and robustness to
unknown attacks.

KEYWORDS: Deep learning; backdoor attacks; universal detection; feature fusion; backward reasoning

1 Introduction

In recent years, deep learning [1] has been widely applied across fields such as image classification, natu-
ral language processing, and pattern recognition, becoming a major focus of research in artificial intelligence.
Given a test image, its predicted category can be obtained by computing the similarity between the image
features and the textual features of category descriptions. However, as neural networks grow increasingly
complex—Ilarger parameter scales and deeper architectures—accuracy may improve, but robustness often
decreases, introducing additional security vulnerabilities. As a result, neural networks become inherently
susceptible to backdoor attacks [2].

® Copyright © 2026 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



https://www.techscience.com/journal/CMC
https://www.techscience.com/
https://doi.org/10.32604/cmc.2025.073798
https://www.techscience.com/doi/10.32604/cmc.2025.073798
mailto:xidianzzy@126.com

2 Comput Mater Contin. 2026;87(1):79

Backdoor attacks [3], which constitute a highly covert security threat, rely on the core mechanism
of injecting specific malicious behavior patterns into the model through training data poisoning. In such
attacks, attackers first carefully design backdoor triggers, which may be particular pixel patterns in the
image (such as local color blocks used by BadNets [2]), special word sequences in natural language (such as
specific combinations of harmless words as shown in [4]), or specific data features across modalities (such as
frequency domain perturbations proposed in [5]). Subsequently, attackers implicitly establish associations
between triggers and target outputs during the learning process by contaminating the training dataset
(typically, only 1%-5% of the data needs to be contaminated [2]). A key characteristic of this attack is that the
model implanted with a backdoor performs similarly to a clean model under normal input (the difference
in test accuracy is usually less than 0.5%). Still, once the input contains preset triggers (such as specific pixel
combinations in image corners or special character sequences in text), the model will perform malicious
actions predetermined by the attacker, such as misclassifying any input into the target category, generating
harmful content, and even leaking private data. More seriously, such triggers can be imperceptible to the
human eye and have minimal impact on the normal functioning of the model, posing significant challenges
to traditional anomaly-detection-based defense methods. The main process of backdoor attack and defense
is shown in Fig. 1.
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Figure 1: Basic process of backdoor attack and defense

The current research on defense against backdoor attacks in deep neural networks mainly faces two
limitations: firstly, most existing defense methods are designed for specific types of backdoor attacks, making
it difficult to cope with the constantly evolving and diverse attack methods. Secondly, mainstream defense
solutions often require high computational costs, including but not limited to: (1) global parameter adjust-
ment or retraining of pre-trained models [6], which can require thousands of GPU hours for large models
such as ViT-Huge; and (2) pruning defective neurons [7], which demands a large number of clean samples
that are difficult to obtain in practice. Such targeted and computationally intensive properties severely restrict
the practical deployment of defense methods in real-time systems and resource-constrained environments.

To address the above issue, we select multiple pairs of reference samples with maximal mutual
differences from the clean dataset based on feature space analysis. We use dynamic linear interpolation to
generate mixed sample pairs with the test sample and construct detection statistics by observing the model
output response dispersion G(x). The ability to induce misclassification errors is a general characteristic
of backdoored samples. Therefore, the proposed defense is attack-agnostic [6], which distinguishes it from
existing defenses.
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The main contributions are as follows:

1)  We propose a general black-box backdoor detection method based on a hybrid injection strategy. This
method fuses the input sample under inspection with multiple clean samples that have significant
differences in their features from each other, and infers whether the sample contains a trigger based on
the model output on the fused input. It does not rely on the model structure or parameters, and does
not require modification of the original inputs or the model itself, which provides good generalization
and black-box adaptability.

2)  We construct a dynamic-weight trigger fusion mechanism. This mechanism utilizes the characteristics
of trigger-induced neuron activation value maximization and manipulation of model predictions in
backdoor attacks. By comparing and analyzing the model’s output responses, it determines whether the
input sample is influenced by a trigger, thereby effectively identifying poisoned samples.

3)  Wepropose a new defense evaluation metric (Detection Stability Performance, DSP) to verify the cross-
domain generalization ability and robustness against unknown attacks of our method. The experimental
results show that the proposed method can effectively detect poisoned samples, with average detection
rates of 95.2%, 94.15%, and 86.49% on three benchmark datasets, respectively.

The remainder of this article is organized as follows. Section 2 reviews related work on backdoor
attacks and defenses. Section 3 presents the design of the proposed AFI defense method. Section 4 reports
experimental results demonstrating the effectiveness of AFI. Finally, Section 5 concludes the paper and
outlines potential research directions for backdoor defense.

2 Related Work
2.1 Backdoor Attacks

Backdoor attacks typically aim to implant malicious behavior into deep learning models by injecting a
small number of poisoned samples into the training dataset. Specifically, once the model is trained on these
poisoned samples, it will misclassify the samples into the target class when the trigger is activated. However,
when the trigger is not present, the backdoor model behaves the same as a normal model and does not
show anomalous behavior. According to the attack method, existing backdoor attacks can be classified into
two categories: (1) poison-label attacks [8-12], which connect the trigger and the target class by changing
the labels of the toxic samples to the target labels to enhance the attack effect [9,13] or to hide the traces of
the attack [14-16]. (2) Clean-label attacks [17-19], which keep the original labels of the samples unchanged
and only poison samples within the target class by injecting triggers. Although clean label attacks are more
stealthy, they may sometimes fail to successfully implant a backdoor [19,20].

2.2 Backdoor Defense

Existing backdoor defense methods can be broadly divided into three categories: (1) Model recon-
struction defenses. These methods directly modify a suspicious model to suppress or remove backdoor
behaviors, usually by first synthesizing triggers and then mitigating their influence [6,7,21,22]. This type of
method largely relies on the quality of synthesized triggers, so the defense effect may not be satisfactory
when facing more complex triggers [23,24]. For instance, Neural Cleaner (NC) [6] generates a trigger for
each category and employs Median Absolute Deviation (MAD) for outlier detection, followed by a forgetting
strategy to eliminate the backdoor. Zhu et al. [7] use the strong reconstruction capability of GANSs to detect
and “clean” neural backdoors without requiring access to the training data, showing robustness and efficiency
across various settings. A new Trojan network detection mechanism [21] locates a “winning Trojan lottery
ticket” that retains almost complete Trojan information but only chance-level performance on clean input,
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and then restores the triggers embedded in this already isolated subnetwork. The Shapley Pruning [22]
can identify and remove less than 1% of infected neurons while maintaining model structure and accuracy,
even with extremely limited data (one or zero samples per class). (2) Pruning-based defenses. These
approaches aim to detect and prune malicious neurons and typically require access to clean labeled data,
which is often impractical in real-world scenarios. For example, Fine-Pruning [25] combines neuron pruning
with fine-tuning to suppress or eliminate backdoor behavior. (3) Input detection defenses. This category
focuses on identifying poisoned samples at inference time without modifying the model. Activation-based
defenses such as STRIP [26] detect backdoors by measuring prediction entropy under input perturbations,
while SentiNet [27] localizes suspicious regions using model interpretability. MNTD [28] trains a meta-
classifier to distinguish clean and Trojaned models from their behavior. Defenses can be categorized by the
defender’s knowledge into sample-, model-, and training data-level approaches [29]. For example, CCA-
UD [29] operates at the training data level by clustering samples to identify clean and poisoned ones, which is
computationally expensive. In contrast, our method achieves high-level defense directly at the sample level.

3 Our Method: Fusion Triggered Detection (AFI)
3.1 Basic Settings

Attack Setting: In backdoor attacks on classification tasks, we train a DNN model Cy: X — ), where X' ¢
R¢ denotes the input spaceand V= {1,2, ..., K} denotes the set of class labels. The training dataset is denoted
by Dirain ={ (X, ¥n) };"zl, where x,, € X' is the n-th input sample and y, € ) is its corresponding class label. For
a clean input x,,, the model output satisfies Cg(x, ) = y,,, indicating that the prediction is correct on normal
samples. For an input sample x" = x + ¢(x) with a backdoor trigger #(x), the model satisfies Cg(x") = y4,
where y; is the target label specified by the attacker. To implement the backdoor attack, N (where 0 < & < 1)
samples are selected from the training dataset as poisoned samples, and the following modifications are
applied: (1) Label modification: change the labels of the poisoned samples to the target label y,. (2) Trigger
injection: add a trigger ¢(x) to each poisoned sample so that x” = x + #(x) becomes a triggered sample. After
processing the samples, we train the model Cy on the modified training set so that it behaves normally on
clean samples while being activated by the embedded triggers for backdoor attacks.

Defense Setting: This study considers a realistic black-box defense scenario, where the defender
obtains a pre-trained model from an untrusted source without access to its training process, and is only
given clean samples and test samples for inspection. (1) Defense Objective: Detect poisoned samples
with backdoor triggers while maintaining accuracy on clean samples comparable to standard defenses. (2)
Defense Capability: Our method detects backdoored samples without modifying the dataset or model,
preventing trigger-target associations. It generalizes to multiple types of backdoors and various image
classification datasets without requiring knowledge of model architecture or parameters.

3.2 Defense Model

Our backdoor defense adopts the inverse reasoning concept of “input-output” to achieve accurate
sample detection. Firstly, a convolutional neural network (CNN) extracts feature vectors for all images in the
dataset. By calculating the difference between feature vectors, we select the two clean images with the largest
difference in features between them. Secondly, the test image is fused with each of the two most dissimilar
images at a certain ratio. Finally, the two mixed samples are input into the model to obtain two outputs,
and the consistency of these outputs is used to determine whether the input samples are poisoned, thereby
achieving backdoor detection. The specific detection flowchart is shown in Fig. 2.
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Figure 2: AFI process diagram

It is worth noting that in order to carry out effective backdoor attacks, attackers must carefully design
the spatial location and pattern of triggers. Attackers typically maximize the mask of the trigger with the
activation value of one or more neurons to create trigger-sensitive internal neurons. This design reinforces
the activation of vulnerable neurons and establishes a strong association between the trigger and these
neurons. As a result, once the model detects the trigger, these neurons are strongly activated, leading to a
corresponding misclassification.

From a defense perspective, this characteristic can be exploited to identify poisoned inputs. The
conceptual basis of AFI is as follows: poisoned samples contain a backdoor trigger that is specifically designed
to maximize the activation of a small set of neurons highly sensitive to the trigger, establishing a strong
association between the trigger and these neurons. Once the model detects the trigger, these neurons are
significantly activated and dominate the output. Even when a poisoned sample is blended with other images,
this dominant activation persists, resulting in consistently predicted labels. In contrast, clean samples lack
such dominant features, so blending introduces variability in their representations, leading to unstable
predictions. This difference in prediction stability under blending provides the conceptual foundation for
AFT’s ability to distinguish poisoned samples from clean ones. When the input contains a trigger, it causes
significant increases in neuron activations, which heavily influence the model output. Therefore, when the
poisoned sample is fused with the clean sample, the model output will still be affected by the triggers and
each output matches the attacker-specified label specified by the attacker. When the sample to be detected is
a clean sample, the model output will be affected by the fusion of the two samples with which it is fused due
to the large differences in their characteristics, showing significant differences. As illustrated in Fig. 2.

3.3 AFI
3.3.1 Feature Extraction

In order to successfully extract two image samples with significant feature differences from a clean
dataset, we employ the widely used ResNet-18 as a generic feature encoder, denoted as ¢. This choice is based
on the following considerations. First, the ResNet architecture, which effectively mitigates the degradation
problem in deep networks through residual connections, is a representative model widely adopted in the
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field of computer vision. Its strong performance across diverse tasks, from MNIST to the ImageNet subset,
ensures the applicability of our method. Second, to maintain consistency in the experimental framework,
the target classifiers C under attack in this study and the feature encoder ¢ used here are both based on the
ResNet architecture. This approach aims to control variables and provide a purer evaluation of the defense
method’s own effectiveness.

Furthermore, we note that the choice of model architecture may affect the specific geometry of the
feature space. However, the core mechanism of our method relies on a more universal principle: that
backdoor attacks cause poisoned samples to become statistical outliers in the deep feature space. Extensive
research has shown that high-level features obtained from pre-training on different CNN architectures (e.g.,
VGG, ResNet), despite differences in spatial geometry, maintain consistency in their discriminability for
semantic content. Therefore, the effectiveness of the extreme disparity sample pairs identified based on
ResNet-18 features is expected to transfer to other modern architectures, ensuring the robustness of our
method’s core conclusions and confirming that it is not limited to a specific network.

The general process and formulas for image feature extraction are outlined as follows.

Firstly, convolutional layers serve as the foundation for image feature extraction. The convolution
operation involves sliding a filter (or kernel) over the input image and performing dot products to generate
feature maps.

Assuming the input image is denoted as I and the filter weights as W, the convolution operation can be
expressed as:

O(i,j)=>.>I(i+m,j+n)W(m,n)+b (1)

O(i, j) denotes the value at position (i, j) in the output feature map, I(i + m, j + n) represents the pixel
value at the corresponding position in the input image, W (m, n) refers to the weights of the convolution
kernel, and b is the bias term.

In order to introduce nonlinearity in the model, an activation function is typically applied after the
convolution operation. The most commonly used activation function is the Rectified Linear Unit (ReLU),
which is defined as follows:

f(x) = max(0,x) (2)

The activation function performs a nonlinear transformation on the output of the convolutional layer.

The pooling layer is used to reduce the size of the feature map while retaining important features. A
common pooling operation is maximum pooling with the formula:

O(i,j):rgarfc(l(i+m,j+ n)) (3)

where I(i+m,j+n) is the pixel value within the pooling window and O(i, j) is the output value
after pooling.

At the end of the encoder, the extracted features are usually flattened into a vector, and a fully connected
layer is used to generate the final feature encoding. The formula for the fully connected layer is:

Y=Wxx+b (4)

where x is the input vector (flattened feature map), W is the weight matrix, b is the bias term, and Y is the
output feature vector.
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The second step is to encode and output features. After multiple layers of convolution, pooling, and fully
connected operations, the image is finally encoded into a feature vector h.

Finally, by using Euclidean distance to calculate the difference between the feature vectors, the two
images with the largest difference are found, and the formula is as follows:

D(hi, hj) = Z( ik—hig) (5)

where h; and h; are the feature vectors of the two images, respectively, h;  and h;j x are the k-th components
in the feature vector, and 7 is the dimension of the feature vector.

We use Euclidean distance for its simplicity and interpretability. Since our method mainly relies on
poisoned samples being statistical outliers in the feature space, the choice of distance metric is not critical,
and other reasonable metrics are expected to yield similar results.

After the feature extraction operation using ¢, the two clean samples with the most disparate feature
vectors hy and h, are identified and denoted as ¢; and c¢;, respectively. The flowchart for selecting feature
sample pairs is shown in Fig. 3.

Feature Extraction
Image Input ¢ ;- ZZI(HM Jj+nmW(m,n)+b Feature Vector

. J -
Connected
f(x) =max(0, x)

06, jy=mex(i(i+m,j+n)” W””’

Euclidean distance
n 2
oo

Find pair with Largest
Difference

Figure 3: Process diagram for selecting feature sample pairs

3.3.2 Sample Fusion

We adopt the Blended Injection Strategy (BIS) [30]. The image samples to be detected are fused with
two clean samples that exhibit significant feature differences, in order to construct hybrid samples with
discriminative properties. Specifically, if the original detection image is ¢ and the two feature comparison
samples are ¢; and ¢;, the fusion process can be formally expressed as:

mix=Ci x(1—a)+cxa, ie€{l,2} 6)

where a € (0,1) represents the image fusion ratio, which controls the blending weights between the original
detection image and the two clean feature contrast samples.

3.3.3 Reverse Reasoning

Through the above feature fusion step, two mixed samples can be constructed respectively and
recorded as cyix1 and cpix2. Then, these mixed samples are input into the target classifier C to obtain their
corresponding prediction outputs y; = C(cmix1) and y, = C(cmix2). By comparing the classification results
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of y; and y,, we can infer whether the sample is controlled by the potential backdoor trigger. If y; = y, it
indicates that the model maintains a stable prediction of a particular category under the fusion disturbance,
which means that the sample to be detected contains triggers and thus activates backdoor behavior in the
model. On the contrary, if the two prediction results are significantly different, it means that the sample to
be detected is normal, and its decision boundary is vulnerable to fusion disturbance. The decision function
G(x) is defined as follows:

L,y =
G(x)={ 777 ?)
0: }/1 ¥ )’2

If G(x) = 1, the sample to be detected is suspected to be a poisoned sample. Conversely, it is considered
to be a clean sample. This discriminative mechanism does not need to access the model structure and
parameters, which is suitable for black-box detection, and the fusion disturbance enlarges the output stability
of poisoned samples, thus improving the accuracy and robustness of detection.

3.4 Selection Principle and Strategy for the Fusion Ratio «

The fusion ratio « is a key parameter that balances the influence between the test sample x and the clean
reference sample c;. Extensive experiments show that an effective range for a consistently lies between 0.3
and 0.6. The underlying principle is that « should be large enough to preserve potential trigger signals in the
test sample, yet small enough to allow the clean reference to provide a strong and correct semantic context
for consistency checking.

Based on an in-depth analysis of the spatial characteristics of triggers from different backdoor attacks,
we summarize the following empirical selection strategy:

« For Local Trigger Attacks: Such as BadNets and IAB, where the trigger is confined to a small region
of the image. We recommend using a lower « value (approximately 0.3-0.5). A smaller fusion ratio
helps retain the local trigger pattern in the blended image without overwhelming it with clean-
sample semantics.

« For Global Trigger Attacks: Such as Blend and WaNet, where the trigger is distributed across the
entire image as subtle perturbations or warping. We recommend using a higher « value (approximately
0.4-0.6) to ensure that the global trigger maintains sufficient influence in the fused image.

The above strategy provides a robust guideline for scenarios where the attack type is known or can
be inferred. For completely unknown cases, we suggest a simple grid search procedure over « € [0.3,0.6]
with a step size of 0.01, using a small validation subset to select the optimal value. This protocol has been
verified effective in our experiments, ensuring the AFI method’s robustness and reproducibility across diverse
datasets and attack types.

3.5 Summary

Firstly, we propose a sample-level universal backdoor detection method, which thoroughly embodies
the dialectical unity of attack and defense. This approach employs a straightforward mechanism to achieve
accurate and eflicient defense. Secondly, for the backdoor defender, the method only requires a clean sample
dataset. By extracting features and computing the feature distances, it selects the two samples with the most
significant feature discrepancy. Compared with conventional backdoor defense techniques, our method
greatly reduces the amount of data computation and storage. For users, this method does not need any
operation on the dataset, just upload and input the image samples to be detected, which is convenient to
use. Thirdly, our method focuses on the new defense concept of trigger detection. It only needs to detect the



Comput Mater Contin. 2026;87(1):79 9

poisoned samples containing triggers and prevent the toxic samples from entering the model, which not only
avoids backdoor attacks but also retains the availability of the model on clean samples. The AFI algorithm is
shown in Algorithm 1.

Algorithm 1: Adversarial feature fusion for backdoor detection (AFI)

Input: Test image x; clean sample set C; feature extractor ¢(-); blending ratio « € (0,1);
distance function dist(, -)
Output: Detection result G(x) € {0,1}
Step 1: Reference Sample Selection
Select the most dissimilar clean sample pair from C:
(c1,¢2) < argmax,, ¢ dist ((/)(ci), ¢(cj))
Step 2: Feature Fusion
Generate blended images by combining x with each reference:
Xplend,] < &-x+ (1-a) - ¢
Xplend,2 < & X+ (1-a) - c;
Step 3: Consistency Evaluation
Obtain predictions for both blended images using the target classifier C(-):
y1 < C(Xplend,1)
¥2 < C(Xblend,2)
Step 4: Detection Decision
if y; = y, then

return 1; // Flag as poisoned sample
else
return 0; // Flag as clean sample

4 Experiments
4.1 Datasets and Models

The experiment involves three datasets, including MNIST [31], CIFAR-10 [32] and ImageNet sub-
sets [33]. These datasets cover a variety of recognition tasks, including the classification of common objects,
fine-grained classification, and action recognition.

All datasets are initially composed of clean samples. We implement four prominent backdoor attacks
on these datasets: BadNets, Blend [14], WaNet [16], and IAB [13]. The ResNet-18 architecture [34] serves as
the target model for both backdoor attack implantation and defense evaluation.

Attack baseline: we have carried out four common backdoor attacks, including BadNets [9], Blend,
WaNet, IAB. In BadNets, WaNet, and IAB, we choose 1 (y; = 1) as the target label, and in Blend, we choose 0
(y+ = 0) as the target label. The poisoning rate for all attacks is set to 10%, meaning 10% of the training samples
are poisoned. For poison-label attacks (BadNets, WaNet, IAB), this involves modifying both the sample and
its label. For the clean-label attack (Blend), only the sample is modified while its original label is preserved.

Defense baseline: We compare our method with six existing backdoor defense methods, including fine
pruning (FP) [25], neural attention distillation (NAD) [35], anti-backdoor learning (ABL) [36], STRIP [26],
SentiNet [27], and MNTD [28]. Since FP, NAD, and ABL are sensitive to their hyperparameters, we optimize
their best results by grid search.
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4.2 Evaluation Indicators

In order to evaluate the performance of AFI, we use three indicators: the accuracy of clean images
(ACC), the success rate of detecting backdoor images (DSR), and the detection stability (DSP).

ACC reflects the classification ability of the model on a clean image. A higher value indicates that the
model is not disturbed by backdoor attacks.

clean

>, TT(C(xi) = »i) (8)

clean i=1

ACCclean =

where Nijean is the total number of clean images, f(x;) is the prediction label of the model for sample x;, y;
is the real label of sample x;, and [T () is the indicating function. When the prediction is correct, it returns
1; otherwise, it returns 0.

DSR reflects the ability of AFI to successfully detect whether the sample is poisoned. Ideally, we hope that
the defense success rate is as close as possible to 1, which means that the defense can effectively distinguish
between clean samples and poisoned samples.

1 Niiean Npmsaned

Z H (Ci(cmixl) * Ci(CmixZ))

Nclean i=1 Npozsoned j=1

DSR = % H(Cj(cmixl)zcj(cmixZ))

(9)

where N4y is the total number of clean images without embedded backdoor triggers, Noisoned is the total
)and C(C,. ()

mix2

number of images with backdoor triggers, The predictions C(C,. () ) are obtained by fusing

mixl

the i-th clean image with the two reference samples. C (Cr(rfi) )and C (le) ,) represent the prediction labels
from blending the j-th poisoned image with the two reference samples. [] (+) is the indicator function. In
the clean sample detection calculation, if the prediction labels of two fused images are different, it returns 1;
otherwise, it returns 0. In the calculation of poisoned sample detection, if the prediction labels of two fused
images are the same, it returns 1; otherwise, it returns 0. The detection success rate DSR of the AFI is the

average of DSR j¢qn and DSR poisoned-

We propose DSP (Detection Stability Performance) as a new evaluation metric to assess the universality
and robustness of detection methods under practical conditions. DSP measures performance consistency
across different datasets and attack methodologies. This metric addresses the real-world challenge where
users cannot predetermine the attack presence or specific attack types, thus requiring defenses that remain
effective in cross-domain scenarios.

DSP combines performance metrics across datasets and attacks, including average clean accuracy
(DSPycc) and average detection rate on poisoned samples (DSPpsg), formulated as:

1
DSP:E \

> > DSRy; (10)

nxm

; mACC,‘)'-i-
PIPIVCON \

i=1 j=1

The square root operation normalizes magnitude differences across heterogeneous datasets and attack
types, preventing any single condition from dominating the overall DSP. The equal weighting balances the
contributions of classification accuracy and detection success rate, which may differ in scale or importance
depending on the scenario. These design choices enhance the stability and interpretability of DSP while
maintaining sufficient sensitivity to distinguish between methods.
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The formula highlights how the square root reduces the influence of extreme values, and the weighting
balances the two components, yielding a robust and interpretable evaluation metric across diverse datasets
and attack types.

A larger DSP indicates that the detection method is more consistent and stable across scenarios, making
it a valuable measure of universality and deployment potential in complex, open environments.

4.3 Result

To verify the superiority of AFI, we conduct four types of backdoor attacks across three datasets using
ResNet. While maintaining a high accuracy and attack rate, the results of using AFI in turn are shown
in Table 1.

Table 1: Defense-effect of AFI detection

Dataset Attack method DSP
BadNets Blend WaNet IAB
Before ACC 98.2 99.1 97.8 96.5 /
DSR 0.9 0 0.5 0.1 /
MNIST After ACC 971 99.1 96.5 94.7 9590
DSR 93.5 94.6 92.0 94.1 :
Before ACC 94.9 94.1 93.6 94.2 /
DSR 0 17 0.1 0 /
CIFAR-10 After ACC 94.1 94.0 93.4 93.9 9415
DSR 94.5 93.8 94.5 95.1 ‘
Before ACC 79.5 82.5 79.1 78.2 /
ImaseNet DSR 0.2 0.5 11 0.4 /
8 After  ACC 78.1 81.9 78.5 76.5 56,4
DSR 96.3 92.4 933 94.9 ‘

Note: ACC: Accuracy (%); DSR: Detection Success Rate (%).

Evaluation results in Table I confirm AFI's universal defense capability. The method elevates DSR
from near-zero to >92% across all tested configurations while preserving ACC within 2% of its original
value. Consistent DSP performance (86.49-95.20) demonstrates robustness against diverse attack patterns
(BadNets, Blend, WaNet, IAB) and dataset complexities, establishing AFI as an effective sample-level
backdoor detection solution.

4.4 Comparative
4.4.1 Comparison of Similar Methods

In order to verify the effectiveness of AFI, we select six representative and widely used backdoor defenses
as comparison baselines, namely FP, NAD, ABL, STRIP, SentiNet, and MNTD. We systematically evaluate
four typical backdoor attacks on the CIFAR-10 dataset, which are BadNets, Blend, WaNet, and IAB. Table 2
summarizes the model classification ACC and DSR under different defense settings on the CIFAR-10 dataset.
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Table 2: Comparison of different defense effects on CIFAR-10

Dataset Attack CIFAR-10 DSP
BadNets Blend  WaNet IAB

e 0w ow
A U R (O S
w o M mmm e m
ML LR ons s om  oas  snso  S4S
STRE 5 ons  ser s ons  soas %
Nt B o6 ms s s s TP
MNID B on ses e ser s 7
e E MW n o am

Note: Bold data means excellent performance. Underlined data indicates poor performance.

The experimental results show that all attacks achieve high classification accuracy (>93%) in the absence
of defense, while the DSR remains nearly zero. This indicates that the model is successfully implanted with a
backdoor yet still maintains strong clean-sample performance. FP achieves a high DSR against BadNets, but
its defensive capability drops sharply when facing more complex and covert attacks such as Blend, WaNet,
and IAB. Although NAD attains a 97.8% defense success rate on WaNet, this comes at the cost of nearly a 20%
reduction in accuracy, significantly compromising the original model performance. ABL provides stronger
defense across the four attacks, but still suffers from a notable accuracy drop under WaNet, suggesting
limitations in handling warped triggers. STRIP and SentiNet, as representative inference-time detection
approaches, exhibit considerable performance variability across different attack paradigms. STRIP achieves
excellent performance against BadNets (DSR: 98.5%), yet its detection rate decreases substantially on
WaNet (DSR: 80.4%), highlighting the inherent limitations of its input-perturbation-based entropy analysis
when confronted with global or feature-space perturbations. SentiNet also displays strong attack-dependent
behavior, achieving only 79.5% detection on Blend due to the failure of its saliency-based spatial localization
assumptions under globally distributed triggers. MNTD, which adopts a meta-learning framework, shows
relatively more stable performance with an average DSR of 93.40%. However, its detection rate on IAB
(86.3%) is comparatively lower, and its average ACC (92.03%) is also somewhat affected. These results
indicate that the method’s effectiveness still depends on the diversity and coverage of attack patterns used
during training.

In contrast, the proposed AFI method demonstrates consistently strong performance across all attack
scenarios. It achieves a high detection rate (94.45% DSR) while preserving excellent classification accuracy
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(93.85% ACC), nearly matching the undefended baseline. Compared with inference-time detectors, AFI
improves DSR by more than 13 percentage points on complex attacks and avoids the need for meta-
training. These results confirm that AFI achieves an optimal balance between detection effectiveness, model
preservation, and generalization capability.

Table 3 reports the ACC and DSR of models trained on ImageNet under different defense methods (FP,
NAD, DBD, AFI) against four typical backdoor attacks (BadNets, Blend, WaNet, IAB).

Table 3: Comparison of different defense effects on ImageNet

ImageNet

Dataset Attack DSP
BadNets Blend  WaNet IAB
a5 2w B R R
S R T
wo A s mr e e,
wo S m o w m e me
AL b oes a4 oss  oas  oam 50

Note: Bold data means excellent performance. Underlined data indicates poor performance.

The experimental results show that, under baseline conditions without defense, all four backdoor attacks
maintain high classification accuracy (above 78%), while the DSR remains close to 0. This indicates that
the attacks successfully manipulate model behavior with minimal impact on clean-sample classification. FP
demonstrates good defensive performance against BadNets and Blend, but performs poorly against more
stealthy attacks. For example, the ACC under WaNet and IAB drops to around 15%, indicating that FP is
limited and cannot generalize across diverse attack types. NAD achieves consistently high DSR across all
attacks, but at the cost of significantly reducing the model’s classification accuracy. DBD exhibits highly
polarized performance, achieving 100% defense success under IAB but failing (0% DSR) against Blend. In
contrast, AFI maintains stable and balanced performance, preserving both high ACC and robust DSR across
all attack scenarios.

AFI demonstrates strong robustness, good transferability, and controllable accuracy degradation when
defending against diverse backdoor attacks, highlighting its potential for practical deployment. Fig. 4 com-
pares the performance of AFI with three baseline defenses under various backdoor attacks on the ImageNet
and CIFAR-10 datasets. As shown in Fig. 4a, both FP and AFI maintain high and stable classification
accuracy across the four attacks. However, Fig. 4b indicates that FP’s DSR fluctuates substantially, revealing
its instability across different attack types. Similarly, Fig. 4c shows that DBD and AFI perform well overall,
but Fig. 4d reveals that DBD completely fails against the Blend attack, with its detection success rate dropping
to 0%. Overall, AFI achieves more robust and reliable defensive performance across attacks and datasets,
outperforming the comparative baselines.
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Figure 4: Comparison of indicators based on different datasets

4.4.2 Comparison of Different Fusion Proportions

It should be noted that the optimal fusion ratio of AFI varies across different attack types, generally
falling between 0.3 and 0.6, which is a key factor influencing detection performance. (1) For BadNets, the
trigger is local and typically resides in background regions. Thus, even when the fused image occupies a large
proportion, the trigger remains identifiable. Increasing the fusion ratio improves clean-sample detection
while still preserving the trigger in poisoned images. (2) In Blend, the trigger is globally embedded across the
entire image, and the target-object region of the fused image introduces interference. Therefore, the fusion
ratio must be reduced to maintain a high proportion of the poisoned image and preserve attack effectiveness.
(3) Similarly, WaNet embeds its trigger globally via geometric warping, requiring the original image to retain
a dominant proportion during fusion to prevent the trigger from being suppressed. (4) For IAB, the trigger
is placed in non-object regions, and a larger fusion ratio is suitable, which is consistent with the behavior
observed in BadNets.

This section examines the factors affecting the fusion ratio and provides representative results
in Fig. 5. Fig. 5a—c respectively shows the defensive accuracy of AFI against BadNets and Blend on MNIST
and CIFAR-10.

Comparing Fig. 5a and b, it can be observed that when BadNets is applied to MNIST, the DSR of AFI
on clean samples decreases as the fusion ratio increases, while the DSR on poisoned samples increases. The
optimal fusion ratio in this setting is 0.3. When BadNets is performed on CIFAR-10, the optimal fusion ratio
becomes 0.52. These results indicate that for the same attack across different datasets, the optimal fusion ratio
of AFI varies. Fig. 5¢c shows the results of Blend on MNIST, where the optimal fusion ratio is 0.58. Combined
with Fig. 5a and ¢, it can be concluded that AFI also requires different optimal fusion ratios for different
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attack types on the same dataset. Therefore, when facing unknown attack types or datasets, a grid search over
the range of 0.3-0.6 (with a step size of 0.01) can be used to identify the optimal fusion ratio.

BADNETS-MNIST BADNETS-CIFART0 BLEND-MNIST
100 100 100
98 9% 98
96 944 94.5 96
9% 939 %5 939 o1, 985 ob 1 933
e 93.0
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&% 86 84 84
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80 i i 4 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6 0.61 0.62

0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 033 0.34 0.35 Blending ratio Blending ratio
Blending ratio DSRpoisoned r DSRclean -+~ DSR DSRpoisoned r® DSRclean —+- DSR
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(a) Badnets-MNIST (b) Badnets-CIFAR-10 (c) Blend-MNIST

Figure 5: Impact of different fusion ratios on model performance

Taking the experiment in Fig. 5 as an example, the optimal fusion ratio corresponding to Fig. 5a is 0.3.
The optimal fusion ratio corresponding to Fig. 5b is 0.52, and the visualized image samples with different
fusion ratios are shown in Fig. 6a and b, respectively. Poisoned samples are generated by applying BadNets to
clean samples. Clean samples and poisoned samples serve as mutual control groups. Regardless of whether
the sample to be tested is toxic or not, when the fusion ratio « < 0.3, the two results are identical; When the
fusion ratio «a > 0.3, the two results differ. It is impossible to determine whether the sample under detection
is poisoned based on the results. In Fig. 6a, when the fusion ratio « = 0.3, if the sample to be detected is clean,
resultl # result2; If the sample to be tested is poisoned, resultl = result2. Therefore, we first use a large
amount of data in the dataset to test the optimal fusion ratio, and then infer whether the sample to be tested
is toxic by judging whether resultl is equal to result2. Fig. 6b shows that when a < 0.52, the classification
results of the two fused images are different, and when a > 0.52, the classification results of the two fused
images are the same, making it impossible to determine the poisoning status of the test sample based on the
classification results.

fusion a=0.20 a=0.25 «a=0.30 «=0.35 «a=0.40

a=0.32 o= a=0.52 a=0.62 a=0.72

(a) Badnets-MNIST (b) Badnets-CIFAR-10

Figure 6: Comparison of model outputs under different fusion ratios

4.5 Robustness Analysis against Adaptive Attackers

This section discusses the theoretical robustness of the AFI method when facing a strong, adaptive
attacker with full knowledge of the defense mechanism, addressing the reviewer’s valuable comment.
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We consider a white-box attack scenario: the attacker is fully aware of AFI’s detection pipeline (including the
feature extractor, blending ratio «, and decision rule) and aims to design a trigger ¢ that can evade detection.

The attacker’s objective is formalized as a dual-goal optimization problem: the trigger must ensure that
not only is the poisoned sample x’ = x + ¢ classified as the target label y,, but also that the blended output
C(c;i x (1-a) + x" x &) remains y; when fused with any clean reference sample ¢; from the holdout set C,
thereby breaking the prediction consistency check upon which AFI relies.

Theoretically, we argue that successfully crafting such a trigger is inherently difficult for the adversary.
AFT’s fusion mechanism forces the attacker to solve a conflicting optimization objective: the trigger must
be effective on the original poisoned sample x” while simultaneously maintaining its dominance over the
model’s prediction even when x’ is significantly “diluted” by the semantic content of a clean sample. This
effectively necessitates the trigger to possess a global and overwhelmingly strong semantic influence in the
feature space.

However, achieving this likely comes at a high cost for the attacker, leading to a critical trade-off:

« Loss of Stealth: An overly potent and global trigger required to withstand arbitrary fusion becomes
more susceptible to detection via visual inspection or statistical anomaly detection, compromising the
fundamental requirement of a stealthy backdoor.

« Degradation of Model Utility: Embedding such a powerful backdoor functionality often interferes
with the model’s normal decision-making process, potentially leading to a noticeable drop in clean data
accuracy (ACC), which could reveal the presence of the attack.

In conclusion, the AFI mechanism does not attempt to create an impenetrable defense but rather
fundamentally raises the bar for a successful attack. It forces the attacker into a difficult tri-lemma, having
to balance attack effectiveness, trigger stealth, and model utility. While the implementation and evaluation
of more complex adaptive attacks constitute an important direction for our future work, the above analysis
demonstrates that AFI provides a foundation for practical backdoor defense with inherent robustness by
making adaptive attacks more costly and difficult to conceal.

5 Conclusion

We propose a feature-comparison fusion strategy that combines the sample under inspection with
two contrasting reference samples and leverages model predictions for reverse reasoning, enabling effective
identification of poisoned samples. Extensive experiments demonstrate that AFI robustly defends against
four common backdoor attacks, outperforming three mainstream defense methods in detection success rate,
accuracy, and stability across different datasets and attack types. Overall, AFI provides a novel and practical
approach for backdoor attack defense.
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