
echT PressScience

Doi:10.32604/cmc.2025.073550

ARTICLE

Heterogeneous User Authentication and Key Establishment Protocol for
Client-Server Environment

Huihui Zhu1, Fei Tang2,*, Chunhua Jin3 and Ping Wang1

1School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
2School of Cyber Security and Information Law, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
3Faculty of Computer and Software Engineering, Huaiyin Institute of Technology, Huai’an, 233003, China
*Corresponding Author: Fei Tang. Email: tangfei@cqupt.edu.cn
Received: 20 September 2025; Accepted: 10 November 2025; Published: 10 February 2026

ABSTRACT: The ubiquitous adoption of mobile devices as essential platforms for sensitive data transmission has
heightened the demand for secure client-server communication. Although various authentication and key agreement
protocols have been developed, current approaches are constrained by homogeneous cryptosystem frameworks,
namely public key infrastructure (PKI), identity-based cryptography (IBC), or certificateless cryptography (CLC),
each presenting limitations in client-server architectures. Specifically, PKI incurs certificate management overhead,
IBC introduces key escrow risks, and CLC encounters cross-system interoperability challenges. To overcome these
shortcomings, this study introduces a heterogeneous signcryption-based authentication and key agreement protocol
that synergistically integrates IBC for client operations (eliminating PKI’s certificate dependency) with CLC for server
implementation (mitigating IBC’s key escrow issue while preserving efficiency). Rigorous security analysis under
the mBR (modified Bellare-Rogaway) model confirms the protocol’s resistance to adaptive chosen-ciphertext attacks.
Quantitative comparisons demonstrate that the proposed protocol achieves 10.08%–71.34% lower communication
overhead than existing schemes across multiple security levels (80-, 112-, and 128-bit) compared to existing protocols.

KEYWORDS: User authentication; key establishment; client-server; heterogeneous; security

1 Introduction
With the rapid advancement of Internet technologies, the client-server architecture has become a

cornerstone of modern information systems [1]. It finds extensive application in mission-critical domains
such as the Internet of Things (IoT) [2], wireless body area networks (WBANs) [3], and industrial control sys-
tems (ICS) [4]. However, the inherent openness and heterogeneity of this architecture introduce significant
security challenges to data transmission. These challenges manifest as vulnerabilities to man-in-the-middle
attacks, data tampering, and privacy breaches [5], particularly in lightweight IoT communications and
critical WBAN medical data transmissions where security failures can have dire consequences [6]. To
mitigate these risks and ensure confidentiality, integrity, and non-repudiation, authentication and key
establishment (AKE) protocols are widely employed to establish trusted identities and negotiate secure
session keys [7].

Copyright © 2026 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
https://doi.org/10.32604/cmc.2025.073550
https://www.techscience.com/doi/10.32604/cmc.2025.073550
mailto:tangfei@cqupt.edu.cn

2 Comput Mater Contin. 2026;87(1):23

Current research has yielded numerous AKE protocols based on elliptic curve cryptography (ECC) [8],
public key infrastructure (PKI) [9], identity-based cryptography (IBC) [10], and certificateless cryptog-
raphy (CLC) [11]. However, existing solutions still face critical bottlenecks in adapting to heterogeneous
environments, which can be framed as two core conflicts.

Efficiency vs. Resource Constraints. Traditional security protocols, such as those based on Diffie-Hellman
(DH) key exchange, often require multiple rounds of interaction, leading to significant communication and
computational overhead. In resource-constrained environments like IoT terminals or WBAN devices, this
high overhead can degrade real-time performance and drastically shorten device lifespan due to excessive
energy consumption. This creates a fundamental conflict between achieving robust security and maintaining
the operational viability of lightweight devices.

Architectural Trade-Offs in Heterogeneous Trust Models. A second, more nuanced conflict arises from
the architectural trade-offs between different cryptographic systems. On one hand, resource-limited clients
are best served by lightweight systems like IBC, which eliminates the prohibitive certificate management
overhead of traditional PKI. On the other hand, servers demand robust security without single points of
failure. The inherent key escrow vulnerability of IBC, where a key generation center (KGC) knows all client
private keys, is an unacceptable risk for a trusted server. While CLC mitigates this key escrow problem,
existing protocols predominantly adopt a single, homogeneous system. This approach fails to address the
conflicting requirements of clients (who need simplicity) and servers (who need security without escrow),
creating a critical need for innovative heterogeneous designs that can harmonize these competing demands.

To address these challenges, this paper proposes a signcryption-based heterogeneous user authenti-
cation and key establishment protocol (HUAKE). Signcryption, a cryptographic primitive that integrates
digital signatures and encryption within a single logical step, provides confidentiality, integrity, non-
repudiation, and authentication for sensitive data. By leveraging signcryption, the HUAKE protocol reduces
communication rounds while enhancing security. In this protocol, clients adopt IBC, where public keys
are directly derived from unique identifiers (e.g., device IDs), eliminating certificate management burdens.
Servers adopt CLC, where partial private keys are generated by the KGC and combined with server-specific
secret values to form complete private keys. This hybrid approach circumvents IBC’s key escrow risks while
avoiding reliance on PKI’s complex certificate chains.

Furthermore, HUAKE integrates identity authentication, key agreement, and data encryption into 1.5
communication rounds through signcryption, significantly reducing interaction complexity and communi-
cation overhead. Theoretical analysis and experimental results demonstrate that HUAKE ensures resistance
to forgery, replay, key compromise impersonation (KCI) attacks, while achieving superior communication
efficiency compared to existing schemes. This makes HUAKE particularly suitable for lightweight secure
interactions between resource-constrained devices (e.g., IoT) and servers in client-server environments.

1.1 Contribution
The contributions of this work are fourfold.

• We construct a novel HUAKE protocol based on signcryption, in which IBC-based clients resolve
public key certificate management issues, while CLC-based servers simultaneously address certificate
management and key escrow risks.

• We formally demonstrate the security of our protocol by mBR model. Security proof revealed that
the proposed protocol enables user authentication, key authentication, key establishment, mutual
authentication. Moreover, it can also resist forgery, replay, and KCI attacks.

Comput Mater Contin. 2026;87(1):23 3

• We demonstrate how HUAKE transitions from a key transport mechanism to a DH-based construction,
offering flexibility in AKE protocol design.

• Comparative evaluations against five protocols confirm that HUAKE achieves the lowest communication
overhead, making it a practical solution for secure communications in client-server environments.

1.2 Organization
We characterize the existing literature in Section 2. In the next Section, we focus on the preliminaries.

We describe the security model of this protocol in Section 4. In Section 5, we describe our protocol. Then,
we illustrate security and performance in sections 6 and 7. Finally, we make a conclusion of the paper.

2 Related Work
Public key cryptosystems are broadly categorized into three types based on their authentication mecha-

nisms: PKI, IBC, and CLC [12]. PKI [13] relies on a Certificate Authority (CA) to bind public keys to identities,
but the associated certificate management overhead makes it cumbersome for resource-constrained mobile
environments. To address this, Shamir introduced IBC [10], which simplifies key management by deriving
public keys from identity strings. However, IBC introduces the key escrow problem, as a central private key
generator (PKG) knows all users’ private keys. CLC [11] was later proposed to resolve both issues; it eliminates
PKI’s complex certificates and mitigates IBC’s key escrow risk by having users contribute a secret value to
their full private key, making it well-suited for large-scale networks.

Numerous AKE protocols have been developed for mobile client-server (MCS) environments. However,
many early schemes were proven to be vulnerable to security threats like reflection, parallel session,
and tracking attacks [14,15]. Other works have explored symmetric encryption techniques [16] or CLC-
based multi-server authentication [17], but often lacked a heterogeneous design or incurred significant
communication overhead [18].

More recent research has continued to refine AKE protocols. For instance, Qiu et al. [19] proposed
a lightweight ECC-based protocol, which was nevertheless found vulnerable during its password update
phase. Other schemes have focused on achieving anonymity [20] or provable security against specific
threats like KCI attacks [21]. A critical limitation of many of these advanced protocols, including those by
Tsobdjou et al. [22] and Rana et al. [23], is their operation within homogeneous environments. While some
heterogeneous protocols exist, such as the IBC-to-PKI scheme by Li et al. [24], they do not fully solve the
certificate management problem due to their reliance on a PKI-based server. Most recently, Daniel et al. [25]
developed a pairing-free ID-AKE protocol with strong security in the enhanced eCK security model, while
Ma et al. [26] improved a CL-AKE protocol by Cheng et al. [27] to achieve perfect forward secrecy and
reduce computational overhead. While significant, these state-of-the-art solutions do not address the specific
challenge of creating a secure, efficient, and truly certificateless heterogeneous link between an IBC-based
client and a CLC-based server. Recently, the field of heterogeneous signcryption authentication has seen a
surge in research targeting specific application scenarios. For example, Khalafalla et al. [28] designed a cross-
domain mutual authentication scheme for Vehicular Ad Hoc Networks (VANETs) that combines CLC and
IBC, leveraging blockchain technology for decentralized trust management. Another work [29] enhances
the security of a heterogeneous CLC-PKI scheme by introducing a cryptographic reverse firewall to prevent
data leakage.

3 Preliminaries
In this paragraph, we describe the network model, threat model and security goals, bilinear pairings as

well as syntax, respectively.

4 Comput Mater Contin. 2026;87(1):23

3.1 Network Model
The client-server network architecture supported by our proposed protocol, as depicted in Fig. 1,

consists of three core entities: a Registration Center (RC), a server, and multiple clients such as industrial
IoT devices. Within this framework, clients and servers interact through wired or wireless communication
channels. The RC functions as the central trusted authority, playing a dual role within this heterogeneous
framework. For the IBC-based clients, it acts as a PKG, creating their full private keys. For the CLC-based
servers, it acts as a KGC, responsible for generating their partial private keys. Beyond key generation, the
RC assumes the critical responsibility of managing the credential lifecycle and security. To handle cases
where a client’s private key is compromised before its expiration date, the RC maintains and periodically
publishes a digitally signed Revocation List (RL). This list contains the unique identifiers of all invalidated
credentials, serving as an authoritative source for the server to verify a client’s real-time status. While the RC
is inherently trusted due to its custody of client private keys, a distributed RC architecture could optionally
be implemented to alleviate key escrow concerns. To initiate communication with a server, the client and
server first undergo a registration process with the RC. Subsequently, the client transmits an authenticated
message to the target server, which then verifies the client’s legitimacy. Upon successful authentication, both
parties engage in ephemeral session key negotiation to establish secure communication.

Client Server

Registration
Center

IBC
Environment

CLC
Environment

Enc(k,)Enc(k,)

Authentication message

Register Register

Partial Private KeyPrivate Key

IoT devices

Mobile devices
Temporary session key k

Figure 1: Network model

3.2 Bilinear Pairings
Assume the existence of two groups G1 and G2. G1 is an additive group and G2 is a multiplicative

group with the same prime order p, a generator P of G1. We say that e ∶ G1 ×G1 → G2 with the three
features. 1) Bilinearity: ∀r, c ∈ Z∗p , ∀Q , R ∈ G1, e(rQ , cR) = e(Q , R)rc . 2) Non-degeneracy: ∃Q , R ∈ G1 such
that e(Q , R) ≠ 1. 3). There exists a feasible algorithm to find e(Q , R), ∀Q , R ∈ G1.

We now demonstrate security concepts for the HUAKE protocol.
Definition 1: Upon receiving groups G1 (the generator is P) and G2 with same order p, and a bilinear pairing
is a map e ∶ G1 ×G1 → G2.

• The computational Diffie-Hellman (CDH) problem in G1 is to find x yP by giving (P, xP, yP).

Comput Mater Contin. 2026;87(1):23 5

• The gap Diffie-Hellman (GDH) problem in (G1 , G2, e) is to find x yP by giving (P, xP, yP)with the help
of the DBDH oracle that can decide whether DBDH (P, xP, yP, zP, T) = ⊺ or ⊥.

• The bilinear computational Diffie-Hellman (BDH) problem in (G1 , G2, e) is to find T = e(P, P)x yz by
giving (P, xP, yP, zP).

• The decisional bilinear Diffie-Hellman (DBDH) problem in (G1 , G2, e) is determine whether
or not T = e(P, P)x yz by giving (P, xP, yP, zP, T), where T ∈ G2. If T = e(P, P)x yz , then
DBDH(P, xP, yP, zP, T) = ⊺. Otherwise, we represent it by DBDH(P, xP, yP, zP, T) =⊥.

• The gap bilinear Diffie-Hellman (GBDH) problem in (G1 , G2, e) is to find T = e(P, P)x yz by giving
(P, xP, yP, zP) with the help of the DBDH oracle that can decide if DBDH(P, xP, yP, zP) = ⊺ or ⊥.

3.3 Security Goals
The main security goals achieved in this paper are as follows.

– Forgery Attack: No attacker can establish communication with a client disguised as a legitimate server.
– Replay Attack: This means that adversaries cannot send previous authentication messages to the server

for authentication.
– Key Compromise Impersonation Attack: An attacker who has compromised the client Ci ’s long-term

private key must not be able to use it to impersonate the server S j to the client Ci .
– Session Key Security: In this context, we must ensure that adversaries cannot recover the session key

from the information transmitted on public channels.

3.4 Syntax
The syntax of our protocol includes the below seven algorithms.
System Initialization: This phase is executed by RC. It takes a security parameter μ as input, and returns

a master private key s and parameters that contain the master public key Ppub .
Identity-Based-Key-Extraction (IB-KE): This happens in IBC environment. This phase is carried out by

RC to create a public/private pair (QIDi /SIDi) with an identity IDi as input.
Partial-Private-Key-Extract (PPKE): This phase happens in CLC environment. This phase is carried out

by RC to generate a partial private key DID j with an identity ID j as input.
Set-Secret-Value (SSV): A user with an identity ID j randomly chooses x j ∈ Z∗p as its secret value.
Set-Private-Key (SPK): This phase is executed by a user with DID j and x j as input, it returns the

corresponding full private key SID j .
Public-Key-Extract (PKE): This phase is executed by a user with system parameters and x j as input, it

outputs the corresponding public key PKID j .
Key-Establishment: The two communicating parties complete the authentication and key establishment

functions according to this protocol. Finally, a common temporary security session key ki j = k ji = k is
established between the two communicating parties.

4 Security Model
Our HUAKE protocol is constructed using signcryption technology. The security of a signcryption

scheme primarily requires demonstrating the confidentiality of the message and its unforgeability. Therefore,
our proof methodology is based on standard signcryption security proofs. However, as our protocol is
designed for authenticated key agreement, we have adapted the proof logic by referencing the model in [30]
to fit the context of a key agreement protocol. The security proof is modeled as a game between a challenger

6 Comput Mater Contin. 2026;87(1):23

C, and a probabilistic polynomial time (PPT) adversary A, who controls all communication channels and
can modify, relay, or delete messages. Since the server in our protocol operates within a certificateless
environment, we must consider two distinct types of adversaries to fully capture the security requirements.
1) Type I (AI): Can perform public key replacement (PKR) queries but cannot obtain the system master
private key. 2) Type II (AII): Can obtain the master private key but cannot perform PKR queries.

The adversaryA interacts with oracles, which represent the n-th communication session (∏n
i , j) between

parties i and j. A can adaptively issue a series of queries to these oracles, including a single Test query, to
challenge the protocol’s security.

IB-KE(IDi): A sends an identity IDi to C, C gives the public key QIDi , private key SIDi to A.
Create(ID j): A transmits an identity ID j to C, C gives the public/private key pair for ID j .
PKE(ID j): A transmits an identity ID j to C, C gives the public key PKID j to A.
PPKE(ID j): A transmits an identity ID j to C, C gives the partial private key DID j to A.
Corrupt(ID j): A transmits an identity ID j to C, C gives the full private key SID j to A.
PKR(ID j): This algorithm allows AI to replace the public key PKID j with PK′ID j

. The replaced public
key PK′ID j

is recorded by C.
Send(∏n

i , j, M): Suppose that the communication parties are i and j. After receiving this query, A can
initiate a query to oracle∏n

i , j with a message M. If M = ‘begin’, the oracle is an initiator oracle and initiates a
new session. Otherwise, it is a response oracle.

Reveal(∏n
i , j): A can require a specific oracle to disclose the session key it presently holds (if it is) to A.

Test(∏n
i , j): When C receipts of a Test query started by A, it selects b ∈ (0, 1) and outputs the actual

temporary session key if b = 0. If b = 1, C randomly selects a temporary session key g ∈ (0, 1)l1 and outputs it.
Definition 2: Matching conversation: Two oracles ∏n

i , j and ∏n
j , i are defined as matching conversation if the

two oracles share the common session identifier.
Definition 3: Fresh oracle: We say an oracle∏n

i , j is a fresh oracle if it satisfies the four requirements.∏n
i , j has

produced a session key. The adversary has not made a Reveal query on∏n
i , j. If there is a matching conversation

exists for∏n
i , j, the adversary has not made a Reveal query on it. If the adversary is AII , it has not made a PKR

query on ID j .
The adversary may repeat all queries besides Test query, but these queries are limited by the three

conditions. It cannot make a Reveal query on∏n
i , j or∏n

j , i , which has a matching conversation with∏n
i , j (if

it exists). It cannot execute a Corrupt query on identity ID j . If the adversary is AII , it cannot execute a PKR
query on ID j.

Finally, A has to export a surmise bit b′. We say that the adversary wins if b′ = b and the advantage of
it to win this game is defined as Adv(A) = ∣P(b′ = b) − 1

2 ∣ where P(b′ = b) represents the probability that
b′ = b.
Definition 4: A user authentication key establishment protocol may be considered secure if it satisfies the tow
requirements. 1) In the existence of a passive attacker on∏n

i , j and∏n
j , i , the two oracles always concur over the

common session key. In addition, this key is uniformly distributed. 2) For each adversary, Adv(A) is negligible.

5 The Proposed Protocol
We mainly introduce an efficient HUAKE protocol for a client-server environment in this segment.

The following four algorithms show the detailed construction of this protocol. Table 1 explains the main
notations.

Comput Mater Contin. 2026;87(1):23 7

Table 1: Notations

Symbol Description Symbol Description
IDs An identity of client DL An expiration date

IDr An identity of server Hi
A one-way hash function (i = 1,

2, 3, 4)
e A bilinear pairing s A master private key of RC

p The prime order of G1 and G2 Z∗p
A group of integers that do not

contain zero
μ A security parameter k Temporary session key

G1 An addition group ∣∣ Connection symbol

G2 A multiple group l1
Length of temporary session

key k
QIDs A public key of client l2 Length of timestamp TS

SIDs A private key of client l3
Length of identity (client and

server)
DIDr A partial private key of server l4 Length of DL
xIDr A secret value of server TS A timestamp
⊕ XOR operator MAC Message authentication code

5.1 Initialization Phase
System Initialization: A security parameter μ is provided to RC to produce a bilinear map, e∶G1 ×G1 →

G2. Here, P ∈ G1 is the generator of G1, G1 is an additive group and G2 is a multiplicative group with the same
prime order p. RC chooses four hash functions: H1 ∶ {0, 1}l1 × {0, 1}l4 → G1, H2 ∶ (G1)2 ×G2 × {0, 1}l3 →
{0, 1}l1+l2+l3+l4 , H3 ∶ (G1)2 × {0, 1}l1+l2+l3+l4 × {0, 1}l3 → G1 , H4 ∶ (G1)2 × {0, 1}l1+l2+l3+l4 × {0, 1}l3 → Z∗p .
Functionally, H1 maps identities to public key, H2 provides confidentiality by generating the encryption
mask, and H3 and H4 collectively ensure integrity and unforgeability by producing components for the
signature. RC randomly selects a master private key s ∈ Z∗p , calculates Ppub = sP as system master public key.
Finally, RC publishes system parameters {G1 , G2, e , P, Ppub , H1 , H2, H3, H4} but retains s secret.

5.2 Registration Phase
Both clients and the server need to complete registration on RC before they communicate with each

other.

• IB-KE: A client Ci in IBC transmits its identity IDs ∈ {0, 1}l3 to RC. RC picks a deadline DL ∈ {0, 1}l4 and
calculates public key QIDs = H1(IDs ∣∣DL), private key SIDs = sQIDs for Ci , as well as sends (SIDs , DL)
to Ci over a secure and authenticated channel. This channel is assumed to provide confidentiality and
integrity for the transmitted key. Similar to Wu et al. [31], we can achieve this through methods such as
offline delivery or online protocols like Transport Layer Security (TLS).

• PPKE: A server S j in CLC submits its identity IDr ∈ {0, 1}l3 to RC. Then RC calculates QIDr =
H1(IDr ∣∣DL), partial private key DIDr = sQIDr for S j, as well as sends (DIDr , DL) to S j in a secure way.

• SSV : A server S j with an identity ID j randomly selects xIDr ∈ Z∗p as its secret value.
• SPK: Given a secret value xIDr and a partial private key DIDr , S j calculates its full private key SIDr =
(xIDr , DIDr).

• PKE: Given a secret value xIDr , S j calculates its public key PkIDr = xIDr P.

8 Comput Mater Contin. 2026;87(1):23

5.3 User Authentication and Key Establishment Phase
In the following steps, both the encryption and signature components share a common random number

r. Specifically, the encryption of the session key k is realized by using r and the server’s public key to derive
the T, which is then hashed to create a mask h for encrypting the key. The subsequent steps, culminating in
the generation of V, form the signature component, which provides authenticity and integrity, preventing an
adversary from forging a valid message.

1) Randomly selects k ∈ {0, 1}l1 , r ∈ Z∗p
2) Computes U = rP, T = e(Ppub , QIDr)

r

3) Computes h = H2(U , T , IDr , rPKIDr)
4) Computes C = (k∣∣TS∣∣IDs ∣∣DL) ⊕ h
5) Computes W = H3(U , C , IDr , PKIDr)
6) Computes f = H4(U , C , IDr , PKIDr)
7) Computes V = rW + f SIDs . Finally, Ci sends the authentication message (U , C , V , TS) to S j.

When S j receives the authentication message (U , C , V , TS) from Ci , it first checks the validation of
TS by Time-TS < △T , in which △T is the maximum time threshold of accepting messages and Time is
the current time received message. This check presupposes that the client and server maintain reasonably
synchronized clocks, with any potential clock drift accommodated within the threshold△T . If it is true, S j
performs the next steps:

1) Computes W = H3(U , C , IDr , PKIDr)
2) Computes f = H4(U , C , IDr , PKIDr)
3) Checks if e(P, V) = e(U , W)e(Ppub , QIDs) f holds. If yes, proceed to step 4. Otherwise, S j rejects the

authentication message and outputs an error symbol ⊥
4) Computes T = e(U , DIDr)
5) Computes h = H2(U , T , IDr , xIDr U)
6) Recovers the temporary session key k, computes (k∣∣TS∣∣IDs ∣∣DL) = C ⊕ h. Then, the server S j

computes Q′IDs
= H1(IDs ∣∣DL). Then, S j verifies the expiration date DL and consults its cached RL. If the

DL is expired or Q′IDs
is found on the RL, S j must reject the authentication message and return an error

symbol �.
At this point, Ci and S j have successfully established a temporary session key k. This HUAKE protocol

also supports key confirmation property in which S j continues to compute tag = MACk(TS) and sends it
to Ci . When receiving the tag from S j, Ci computes tag′ = MACk(TS), then verifies whether tag′ = tag
holds. If it holds, Ci confirms that S j has correctly recovered the temporary session key k. Otherwise, Ci
rejects the temporary session key and stops. This process is summarized in Fig. 2.

Comput Mater Contin. 2026;87(1):23 9

Figure 2: User authentication and key establishment process

We commonly use two methods to establish a temporary session key. The first method is Differ-Hellman
key exchange protocol where both Ci and S j determine the temporary session key together. The second one
is key transport protocol which permits Ci in selecting a session key to pass it to S j. Although our protocol is
the second one, but it can also be modified to the first way, which only requires S j to select another temporary
session key k′ ∈ (0, 1)l1 and computes tag = MACk⊕k′(TS), then, sends (tag , k′) to Ci . Ci continues to
compute tag′ = MACk⊕k′(TS), then Verifies whether tag′ = tag holds. If it holds, the temporary session
key is k ⊕ k′. Otherwise, Ci rejects this temporary session key and returns an error symbol ⊥. The default
key transport mode offers maximum efficiency with 1.5 communication rounds, making it ideal for latency-
sensitive applications. The optional key exchange modification ensures the session key is derived from the
mutual contributions of both parties, which enhances the key’s collaborative generation.

5.4 Revocation Mechanism
Real-time certificate queries, such as the online certificate status protocol (OCSP), add a synchronous

network round-trip to each authentication, which degrades the performance of lightweight protocols. To
implement a near-real-time key revocation mechanism, the RC maintains a dynamically updated Revocation
List (RL), which is digitally signed with its master key. This list records all client credentials that have been
confirmed as compromised or are otherwise invalidated.

To avoid imposing a burden on resource-constrained clients, the responsibility for fetching and verifying
revocation status is entirely shifted to the more powerful server. The server actively and asynchronously
polls the RC at a configurable, fixed interval (e.g., every few minutes, depending on the specific application
scenario) to fetch the latest signed RL and caches it locally. When processing a client’s authentication
request, the server first validates the client’s signature. Following successful signature validation, the server
proceeds to decrypt the authentication message, recovering the session key k, the client’s identity IDs , and
the expiration date DL. It is only after this recovery step that the mandatory “hard-fail” security check is
performed. The server uses the recovered IDs and DL to compute the specific credential identifier (Q′IDs

),
which is then checked against the local RL cache. If the credential is found on the revocation list, the server
must discard the recovered session key k and abort the protocol, even though the digital signature was
initially valid. Once the RC updates the RL, the server learns of the change within the next polling cycle.
This allows the system to block the use of a compromised key within a short time window determined by the
polling period, thereby achieving near-real-time revocation capability.

10 Comput Mater Contin. 2026;87(1):23

While this mechanism introduces additional communication overhead, this cost is primarily borne by
the server for its periodic communication with the RC and does not add latency to the client authentication
handshake. This trade-off is deemed acceptable, as the server typically possesses a more stable network
connection and greater processing power.

6 Analysis of the Protocol

6.1 Correctness
We know PKIDr = xIDr P, DIDr = sQIDr , we have T = e(U , DIDr), = e(rP, sQIDr), = e(Ppub , QIDr)

r .
Also on account of U = rP, V = rW + f SIDs , SIDs = sQIDs , so we have e(U , W)e(Ppub , QIDs)

f =
e(U , W)e(P, sQIDs)

f = e(P, rW)e(P, f SIDs) = e(P, rW + f SIDs) = e(P, V).

6.2 Security
The security proof of our HUAKE protocol follows the standard methodology for signcryption schemes,

which primarily involves proving confidentiality and unforgeability. However, since our protocol is designed
for authenticated key establishment, we have adapted the proof logic from the standard model to fit the
context of a key agreement protocol. We use i and j (e.g., IDi , ID j) to represent any participant in the system.
These indices correspond to the client the server roles described in Section 5. The security analysis of our
protocol is as follows. The following lemmas formalize the security guarantees.
Lemma 1: There exists a begin adversary on ∏n

i , j and ∏n
j , i , the two oracles always reach agreement over the

common session key as if there was no adversary. In addition, this key is uniformly distributed.
This Lemma aims ensuring that in the absence of an active adversary, both parties will always agree on

the same, uniformly random session key.
Proof of Lemma 1: In this HUAKE protocol, suppose that two participants Ci and S j follow the protocol
and A is benign. According to the above correctness analysis in Section 6.1, it can be concluded that two
participants may establish a shared temporary session key. It is uniformly distributed over {0, 1}l1 , because
r is a random value and hash functions h, W , f are also random. ◻
Lemma 2: If there exists a PPT adversary AI having advantage ς to succeed the security of the HUAKE protocol
under the mBR model at time t with qμ IB-KE queries, qpke PKE queries, qppk PPK queries, qc Corrupt queries,
qpkr PKR queries, qs Send queries, and qHi(i = 1, 2, 3, 4) hash queries, then there exists an algorithm C that can
resolve the GBDH problem with a non-negligible advantage ς′ ≥ ς

qH1
(1 − qs(qs+qH3)

2μ) in a time t′ ≤ t + O(qs)tp,
where μ is a security parameter and tp represents the cost of a pairing operation.

This Lemma establishes the confidentiality of the session key k. It demonstrates that no adversary can
break the confidentiality of the ciphertext without solving the GBDH problem.
Proof of Lemma 2: In this proof, we demonstrate how C utilizes AI as a subroutine to resolve a random
example (P, xP, yP, zP) of the GBDH problem in the following content.

Initial: C runs the System Initialization algorithm to generate the master public key Ppub = xP, where
the corresponding private key x is unknown to C. The specific process is as follows:

In this game, C maintains lists L1, L2, L3 and L4 to save hash queries. Furthermore, C also keeps an
empty list Lk to store public key. We assume that H1 query is different from other hash queries, AI will do
H1(ID) query before using ID. Through the irreflexive assumption, we assume that the sender and receiver
identities are different. C randomly selects ξ ∈ {1, 2, . . . , qH1} to answer the queries of AI .

Comput Mater Contin. 2026;87(1):23 11

H1 queries: AI sends an identity to C. For the ξ-th query, C computes H1(IDξ) = yP to answer this
query, and inserts the tuple (IDξ ,⊥) into L1. For the i-th query (i ≠ ξ), C picks di ∈ Z∗p at random and sends
H1(IDi) = di P to AI , then, inserts the tuple (IDi , di) into the list L1.

H2 queries: C executes the below procedure: If (xP, yP, zP, Tj) = ⊺, C returns Tj and stops; if the list
L2 includes a tuple (U j , ∗, ID j , R, h j) that makes DBDH(xP, yP, U j , Tj) = ⊺, C sends h j and renews the
notation ∗ to Tj. At this point, ID j = IDξ; if C reaches this point of execution, it selects a random value, then
sends it to AI . After this, the random value must be saved in L2 by C. H3 queries: When AI initiates a H3
query, C first checks whether (U j , C j , ID j , PKID j , t j , t jP) exists in the list L3. If it exists, C gives t jP to AI .
Otherwise, C selects t ∈ Z∗p ati random, inserts the tuple (U j , C j , ID j , PKID j , t, tP) into the list L3, then gives
tP to AI .

H4 queries: C first checks whether the tuple (U j , C j , ID j , PKID j , f j) exists in the list L4. If it exists, C
sends f j to AI . Otherwise, C selects f ∈ Z∗p at random, inserts the tuple (U j , C j , ID j , PKID j , f) into the list
L4 and returns f to AI .

IB-KE (IDi): C fails and stops if IDi = IDξ. Otherwise, C invokes H1 oracle for acquiring the tuple
(IDi , di) and sends private key SIDi = di xP to AI .

Create (ID j): C maintains an empyt list Lc . when receiving ID j from AI , C will fail if ID j = IDξ.
Otherwise, C runs H1 oracle to get (ID j , d j), then C randomly selects xID j ∈ Z∗p and computes PKID j = xID j P.
Then, C inserts (ID j , PKID j , xID j) and (ID j , PKID j , xID j , d jxP) into Lk and Lc .

PKE (ID j): C finds the tuple indexed by ID j in the list Lk , and returns PKID j to AI .
PPKE (ID j) queries: C first checks if ID j = IDξ. If yes, C will fail. Otherwise, C invokes H1 oracle for

acquiring the tuple (ID j , d j), then sends DID j = d jxP to AI .
Corrupt (ID j): C first checks if ID j = IDξ. If yes, C will fail. Otherwise, C looks for a tuple indexed by

ID j in the list Lc , and returns (xID j , d jxP) to AI .
PKR (ID j): AI can replace the public key PKID j with a random value PK′ID j

that it chooses. For a PKR
query, C should replace the corresponding tuple (ID j , PKID j) in the list Lk with (ID j , PKID j , �), where �
indicates an unknown secret value.

Send (∏n
i , j , M): We define ∏n

S , j denotes the n-th session between a sender S and a receiver j, ∏n
R , i

denotes the n-th session between a receiver R and a sender i. C maintains a list Ls to store internal
state information.

An oracle can be in one of several states: Accepted: Oracle accepts a session key after receiving the
appropriate messages. Rejected: In the absence of a session key, an oracle will reject this protocol run and
abort it. ∗: This oracle is in state ∗ if it has not decided whether to accept or reject. Opened: The state is opened
if an oracle replies to a reveal query and Corrupted: The state is corrupted if an oracle replies to a corrupt
query. To complete this simulation process, there are three cases that need to be considered.

(1) When ∏n
i , j = ∏n

S , j, M = begin, IDi = IDξ, C selects u, v ∈ Z∗p at random, defines U = vxP, T =
e(U , DID j), V = uxP and H3(U , C , ID j , PKID j) as v−1(uP − f jQID j). C fails if H3 is already defined but this
situation only occurs with probability (qs + qH3)/2μ . C runs H2 oracle to obtain the value of h and computes
C = (k∣∣TS∣∣IDi ∣∣DL ⊕ h). Finally, C transmits this authentication message δ = (U , C , V) to AI and inserts
the tuple (n, S , j, k∣∣TS∣∣IDi ∣∣DL, δ, ∗) into the list Ls .

(2) When∏n
i , j = ∏n

R , i , M = δ, ID j ≠ IDξ, C runs Corrupt (ID j) oracle to acquire the partial private key
DID j of the receiver and calculations T = e(U , DID j). Then C invokes H2 oracle for acquiring the value of h
and computes (k∣∣IDi ∣∣TS∣∣DL) = C ⊕ h. At this time, C marks the state of ∏n

R , i as Accepted, then inserts
the tuple (n, R, i , k∣∣IDi ∣∣TS∣∣DL, δ, Accept) into the list Ls . Finally, C returns tag = MACk(TS) to AI . If C

12 Comput Mater Contin. 2026;87(1):23

outputs an error symbol �, the status of∏n
R , i is marked as Re jected and the tuple (n, R, i , δ, Re jected) is

inserted into the list Ls by C. C returns Re jected to AI .
(3) When ∏n

i , j = ∏n
R , i , M = δ, ID j = IDξ, C is unable to acquire the partial private key DID j of the

receiver, in which situation T fails to be calculated. In order to reply with a consensus response, C queries
the tuple (U , T , ID j , h) in the list L2, for different values of T such that DBDH(xP, yP, U , T) = ⊺. If
the tuple exists in the list L2, which implies that we have found the correct T. C continues to compute
(k∣∣TS∣∣IDi ∣∣DL) = C ⊕ h. Note that, if there is no tuple (U , T , ID j , h) in the list L2 for different values of
T such that DBDH(xP, yP, U , T) = ⊺. C places the tuple (U , ∗, ID j , PKID j , h) for a random h in the list L2
and computes (k∣∣TS∣∣IDi ∣∣DL) = C ⊕ h. The notation ∗ represents an unclear value of T. At this point, the
constant component of all entries with the symbol ∗ is IDξ. After completing this calculation, C marks the
state of∏n

R , i as Accepted and inserts the tuple (n, R, i , (k∣∣TS∣∣IDi ∣∣DL, δ, Accepted) into the list Ls , then
returns tag = MACk(TS) to AI . If C outputs a error symbol �, which indicates this session is Rejected. C
gives Rejected to AI and adds the tuple (n, R, i , �, δ, Rejected) into the list Ls .

Reveal (∏n
i , j): C starts by examining if the tuple (n, i , j) exists in the list Ls . Since a Reveal

inquiry can only be initiated when the session state is signs Accept, which means that L2 must include
a tuple (n, i , j). Otherwise, this query is invalid. C gives this session key to AI , then renews the
tuple (n, i , j, k∣∣TS∣∣IDi ∣∣DL, δ, Accepted) into (n, i , j, k∣∣TS∣∣IDi ∣∣DL, δ, O pened). Before Test query,
C examines whether a tuple (n, S , R, n, i , j, k∣∣TS∣∣IDi ∣∣DL, δ, Accepted) such that no tuple contains
(n, S , R) exists in the list Ls . If yes, C can output a forged authentication message δ∗ = (U∗, V∗, C∗). To
generate δ∗, C randomly selects a hash value h∗, defines U∗ = cP, C∗ = (k∗∣∣TS∣∣IDi ∣∣DL) ⊕ h∗, V∗ = tcP +
f SIDs .

Test (∏n
i , j): At this stage, if ∏n

i , j ≠ ∏n
S ,R , C stops. Otherwise, C outputs the real session key if b = 0. If

b = 1, C picks g ∈ {0, 1}l1 at random as well as outputs it.
The success of this simulation is contingent on the challenger C correctly guessing the target identity

IDξ at the start of the game, an event which occurs with a probability of at most 1/qH1 since the list L1 contains
at most qH1 elements. As described in the simulation of the IB-KE query, the game aborts if the adversary
requests the private key for this specific identity. This is precisely why the simulation’s success probability is
bounded, linking this potential failure condition directly to the 1/qH1 factor in our final advantage calculation.
Assuming this event occurs (i.e., the guess is correct and the simulation does not abort), the simulation
is perfect unless AI performs an H2 query on the challenge-related tuple (U∗, T∗, IDξ). AI will have no
advantage if this tuple is absent from L2, since the hash function H2 is modeled as a random oracle. However,
if this event occurs, C will resolve the GBDH problem because of the first step in the simulation of H2. C can
make at most q2

H2
+ qH2 qs DBDH queries in the whole process. ◻

Lemma 3: If there exists a PPT adversary AI having advantage ς to succeed the security of the HUAKE protocol
under the mBR model at time t with qμ IB-KE queries, qpke PKE queries, qppk PPK queries, qc Corrupt queries,
qpkr PKR queries, qs Send queries, and qHi(i = 1, 2, 3, 4) hash queries, then there exists an algorithm C that can
resolve the GDH problem with a non-negligible advantage ς′ ≥ ς

qH1
(1 − qs(qs+qH3)

2μ) in a time t′ ≤ t + O(qs)tp,
where μ is a security parameter and tp denotes the cost of one pairing operation.

This lemma establishes the unforgeability of the protocol message against a Type I adversary. It proves
that no Type I adversary can forge a valid authentication message without solving the GDH problem, thus
ensuring message integrity and authenticity.
Proof of Lemma 3: Initial: C executes the System Initialization algorithm with a security parameter μ as
input to generate the system parameters that contain a master public key Ppub = xP. Note that x emulates
the master private key of RC, and it is unknown for C.

Comput Mater Contin. 2026;87(1):23 13

C performs the same procedure as in Lemma 2 to answer the queries of AI , except for H2.
H2 queries: C starts by checking whether the tuple (U j , Tj , ID j , R j , h j) exists in the list L2. If yes, C gives

h j to AI . If it does not exist in the list L2, C randomly selects h ∈ {0, 1}l1+l2+l3+l4 and returns it to AI , then
inserts the tuple (U j , Tj , ID j , R j , h) into the list L2.

AI exports a forged authentication message δ∗ = (U∗, V∗, C∗), a sender’s identity IDs , a receiver’s
identity IDr . C examines whether IDs = IDξ. If not, C stops. Otherwise, C obtains t and f by inquiring L3
and L4, respectively. If AI wins the game, the authentication message δ∗ must be valid, which means that we
can compute e(P, V∗) = e(U∗, tP)e(Ppub , QIDs)

f = e(U∗, tP)e(xP, yP) f . Therefore, C can compute x yP =
f −1(V∗ − tU∗). At this time, IDs = IDξ, QIDs = yP.

The probability of an adversary guessing correctly by a non-negligible advantage is related to the
following events. 1) E1: AI does not select identity IDξ. 2) E2: AI has performed a Corrupt query on IDξ. 3)
E3: AI has performed a IB-KE query at some stage. 4) E4: C stops in a send query due to a collision on H3.

Clearly, Pr[⌝E] = 1/qH1 and Pr[E4] ≤ qs(qs + qH3)/2k . Furthermore, we know that ⌝E1 means ⌝E2 and

⌝E3. So, we have ς′ ≥ ς
qH1

(1 − qs(qs + qH3)
2μ). ◻

Lemma 4: If there exists a PPT adversary AII having advantage ς to succeed the security of the HUAKE
protocol under the mBR model at time t with qc Corrupt queries, qpke PKE queries, qs Send queries and qHi(i =
1, 2, 3, 4) hash queries, then there exists an algorithm C that can resolve the CDH problem with a non-negligible
advantage ς′ ≥ ς

qc+q pke+qs+1(1 −
qs(qs+qH3)

2μ) in a time t′ ≤ t + O(qs)tp, where μ is a security parameter and tp

denotes the cost of one pairing operation.
Proof of Lemma 4: Initial: C executes the System Initialization algorithm with a security parameter μ as input
to generate the system parameters that contain a master public key Ppub = sP. In this game, s is randomly
chosen by C which emulates the master private key of RC.

This lemma completes the unforgeability proof by addressing the Type II adversary. It demonstrates that
even a malicious KGC cannot forge a valid message without solving the CDH problem, thus securing the
protocol against insider threats.

In this game, C randomly selects ξ ∈ {1, 2, . . . , qc + qpke + qs + 1} to answer the queries of AII . C per-
forms the same procedure as in Lemma 2 to answer the queries of AII , but except for the following queries:

H1 queries: C starts by checking whether the tuple (IDi , ei) exists in the list L1. If yes, C returns ei P to
AII . If the tuple does not exist in the list L1, C randomly selects e ∈ Z∗p and returns eP to AII , then inserts
the tuple (IDi , e) into the list L1.

H3 queries: C starts by checking whether the tuple (U j , C j , ID j , PKID j , t j , t j yP) exists in list L3. If yes,
C returns t j yP to AII . If the tuple does not exist in list L3, C randomly selects t ∈ Z∗p and returns tyP to AII ,
then inserts the tuple (U j , Tj , ID j , PKID j , t, tyP) into the list L3.

Create (ID j) queries: C maintains a list Lc with an empty initial value. After receiving an identity
ID j from AII , C fails if ID j = IDξ. Otherwise, C runs the H1 oracle to obtain the tuple (ID j , d j), then C
randomly selects xID j ∈ Z∗p and computes PKID j = xID j P. Then, C inserts the two tuples (ID j , PKID j , xID j)
and (ID j , PKID j , xID j , d jsP) into the list Lk and Lc , respectively.

PKE (ID j): C looks for PKID j indexed by ID j in the list Lk , then gives it to AII .
Corrupt (ID j): C starts by examining if ID j = IDξ. If yes, C fails. Otherwise, C looks for a tuple indexed

by ID j in the list Lc , and returns (xID j , d jsP) to AII .
AII exports a forged authentication message δ∗ = (U∗, V∗, C∗), a sender’s identity IDs , a receiver’s

identity IDr . At this point, let U∗ = xP, C examines whether IDs = IDξ. If not, C stops. Else, C obtains t

14 Comput Mater Contin. 2026;87(1):23

and y from the list L3 and L4, respectively. If AII wins the game, the authentication message δ∗ must be
valid, which means that we can compute e(P, V∗) = e(U∗, tyP)e(Ppub , QIDs)

f = e(U∗, tyP)e(sP, QIDs)
f .

Therefore, C can compute x yP = t−1(V∗ − f sQIDs).
The probability of an adversary guessing correctly by a non-negligible advantage is related to the

following events. 1) E1: AII does not select identity IDξ. 2) E2: AII has performed a Corrupt query on IDξ.
3) E3: C stops in a send query due to a collision on H3.

It is obvious that Pr[⌝E] = 1/(qc + qpke + qs + 1) and Pr[E3] ≤ qs(qs + qH3)/2μ . Furthermore, we
know that ⌝E1 means ⌝E2, the maximum of the list Lk is (qc + qpke + qs + 1), So, we have ς′ ≥

ς
qc + q pke + qs + 1 (1 −

qs(qs+qH3)

2μ). ◻

6.3 Informal Security Analysis
The security requirements met by the HUAKE protocol are as follows.

• Forgery Attack: This type of attack means that an adversary can masquerade as a legitimate server. If the
adversary is AI , it can perform a public key replacement attack but cannot obtain the master private key
s. To obtain a full private key of S j, AI needs to obtain s from Ppub = sP. However, if it is able to obtain s
that means the CDH hard problem is solvable, which is not correspond to the fact. If the adversary isAII ,
it can obtain the master private key of RC but fails to execute a public key replacement attack. To obtain
a full private key of S j, AII needs to obtain xIDr from PKIDr . We known the public key PKIDr = xIDr P,
AII cannot obtain xIDr because the CDH hard problem is intractable.

• Replay Attack: Our protocol can resist replay attacks by taking a timestamp. When S j receives the
authentication message (U , C , V , TS) from Ci , it first checks the validation of TS by Time − TS <
△T , in which △T is the maximum time threshold of accepting messages and Time is the current
time received message. In other words, if an adversary performs a replay attack using the previous
authentication information, the timestamp TS will not be verified successfully.

• Key Compromise Impersonation Attack: We consider a scenario where an adversary compromises the
client’s long-term private key SIDs and then attempts to impersonate the server S j to that same client. The
attack proceeds as follows: the client Ci initiates a session by sending the message (U , C , V , TS) to the
adversary (believing it is the server). To successfully impersonate the server, the adversary must respond
with a valid confirmation tag, which is computed as MACk(TS). To generate this tag, the adversary
must first know the session key k. According to our protocol, the session key k is encrypted within C and
can only be decrypted by the legitimate server S j using its own long-term secrets (the partial private key
DIDr and the secret value xIDr). Therefore, possession of SIDs provides no advantage to the adversary in
deriving the server’s secrets or the session key k. Unable to compute the correct k, the adversary cannot
forge a valid tag. The client Ci will reject the session upon failing to verify the tag, thus thwarting the
KCI attack.

• Session Key Security: The attacker wants to recover session keys from the information exchanged on
public data and communication channels. In this paper, the session key k is a random value chosen by
Ci and it is also encrypted for transmission. Therefore, there is no possibility for an adversary to retrieve
k from the public information.

It is important to note that the HUAKE protocol, in its current form as a key transport scheme, does not
provide forward secrecy. A compromise of the server’s long-term keys would allow an adversary to decrypt
previously captured sessions.

Comput Mater Contin. 2026;87(1):23 15

7 Performance
In this section, we evaluate the performance of our proposed HUAKE protocol against five existing

protocols: HA [18], TL [22], RS [23], DMR [25], and MA [26]. The evaluation focuses on computational and
communication overheads. Table 2 summarizes the theoretical cryptographic operations for each scheme.
The notation PC signifies a bilinear pairing operation, PM denotes a point multiplication operation on G1,
EC represents an exponential operation on G2, and ∣x∣ indicates the bit length of x. Cheaper operations like
XOR and point addition are omitted for clarity. Operations marked with () can benefit from pre-computation
using known public information. For a fair comparison, a deadline DL has been incorporated into the
communication overhead of the compared protocols. It should be noted that the ∣k∣ in our communication
overhead formula accounts for the size of the key confirmation tag sent from the server back to the client.

Table 2: Performance comparison

Schemes Client Server Communication overhead (bytes) Environment
PC PM EC PC PM EC

HA [18] 0 4 0 2 4 0 2∣G1 ∣ + ∣ID∣ + 2∣Z∗p ∣ + ∣DL∣ CLC to PKI
TL [22] 0 3 0 0 3 0 2∣G1 ∣ + 3∣h∣ + ∣DL∣ ECC to ECC
RS [23] 0 2 1 2 1 0 4∣G1 ∣+3∣h∣ + ∣DL∣ + 2∣TS∣ IBC to IBC

DMR [25] 0 7 0 0 7 0 8∣G1∣+2∣ID∣ + ∣DL∣ PKI to PKI
MA [26] 0 5 0 0 5 0 4∣G1 ∣+3∣h∣ + ∣DL∣ CLC to CLC
HUAKE 0 + (1) 4 1 3 + (1) 1 1 2∣G1 ∣ + ∣h∣ + ∣DL∣ + ∣TS∣ + ∣k∣ IBC to CLC

7.1 Computational Overhead
To empirically assess the computational overhead, we utilized the JPBC library, which is a widely

adopted standard for prototyping and benchmarking pairing-based protocols. We selected Type A pairings
for our tests due to their noted computational efficiency, making them a suitable choice for evaluating
performance in resource-aware environments. The pairing is built on the elliptic curve y2 ≡ (x3 + x)
(mod q) where q is a prime (q ≡ 3 (mod 4)), the embedding degree is two, and p is the order of G1 [32].
Three security levels were adopted, namely 80-bit security with a 512-bit q and a 160-bit p, 112-bit security
with a 1024-bit q and a 224-bit p, and 128-bit security with a 1536-bit q and a 256-bit p. The client-side
experiments were conducted on a Xiaomi 10 smartphone (CPU Snapdragon 865, 2.84 GHz, 8 GB RAM,
Android 12.0), while the server-side experiments were performed on an HP computer (Intel Core i7-7700HQ,
2.80 GHz, 8 GB RAM). The experiments were implemented using the JPBC library (version 2.0.0) running
on an OpenJDK 17.0.7 Java development environment. All tests were executed with the default Java Virtual
Machine (JVM) runtime parameters. To ensure the fairness and accuracy of the results while minimizing
the impact of random errors, especially given that the computation times are sensitive at the millisecond
level, each performance test in this study was independently repeated 500 times. All computational times
presented in the final figures are the average values of these 500 measurements.

Client-side computational overhead is detailed in Fig. 3. While our protocol’s client-side computation is
slightly higher than the lightweight homogeneous schemes TL [22] and RS [23], it remains highly competitive
and often superior to other schemes like DMR [25]. More importantly, this moderate computational cost
at the client facilitates a crucial advantage: our protocol’s heterogeneous architecture. This allows resource-
constrained clients operating in an IBC environment to securely interact with servers in a CLC environment,
a flexibility not offered by the purely homogeneous schemes. The slight increase in client-side operations is
a well-justified trade-off for this enhanced interoperability and practicality in diverse real-world scenarios.

16 Comput Mater Contin. 2026;87(1):23

Fig. 4 illustrates the server-side computational overhead. Here, our protocol demonstrates a distinct and
significant advantage. Across all tested security levels, Ours consistently exhibits the lowest computational
time on the server. This superior server-side efficiency becomes even more pronounced at higher security
levels. While server resources are generally more abundant, this notable efficiency contributes to reduced
operational costs and better scalability for service providers.

When considering the total computational overhead (client + server), as shown in Fig. 5, our protocol
achieves an excellent balance. Ours is demonstrably more efficient in total computation time than HA [18],
DMR [25], and MA [26] across all security levels. While the total time for TL [22] and RS [23] can be
marginally lower in some instances, these schemes do not offer the heterogeneous environment support that
is a core strength of our protocol.

80bit 112bit 128bit
Security Level

0

50

100

150

200

250

300

350

T
im

e
(m

s)

HA[18]
TL[22]
RS[23]
DMR[25]
MA[26]
HUAKE

Figure 3: Computational time of
the client for each scheme [18,22,
23,25,26]

80bit 112bit 128bit
Security Level

0

50

100

150

200

250

300

350

T
im

e
(m

s)
HA[18]
TL[22]
RS[23]
DMR[25]
MA[26]
HUAKE

Figure 4: Computational time of
the server for each scheme [18,22,
23,25,26]

80bit 112bit 128bit
Security Level

0

100

200

300

400

500

600

700

T
im

e
(m

s)

HA[18]
TL[22]
RS[23]
DMR[25]
MA[26]
HUAKE

Figure 5: Total computational time
for each scheme [18,22,23,25,26]

7.2 Communication Overhead
The efficiency of data transmission is paramount, especially for resource-constrained devices. We

analyzed the communication overhead of all six protocols, with the following parameters. ∣ID∣ = 160 bits,
∣TS∣ = 32 bits, ∣DL∣ = 112 bits. An element in G1 is compressed to 65 bytes [33]. Hash output sizes (∣h∣) are
160-, 224-, and 256-bit for the respective security levels. For our protocol, a symmetric key or nonce ∣k∣ is 80
bits. The detailed byte values for each scheme at 80-, 112-, and 128-bit security levels are visually presented
in Figs. 6–8, respectively. The communication overhead analysis in this paper considers only the size of
the cryptographic payload transmitted at the application layer and does not include the overhead from
lower-level network protocol headers (e.g., TCP/IP).

HA[18] TL[22] RS[23] DMR[25] MA[26] HUAKE

80-bit Security Level

0

100

200

300

400

500

600

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
(b

yt
es

)

204 204

342

574

334

178

HA[18]
TL[22]
RS[23]
DMR[25]
MA[26]
HUAKE

Figure 6: Total communication
over head with 80-bit
security [18,22,23,25,26]

HA[18] TL[22] RS[23] DMR[25] MA[26] HUAKE

112-bit Security Level

0

200

400

600

800

1000

1200

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
(b

yt
es

)

348 356

622

1086

614

322

HA[18]
TL[22]
RS[23]
DMR[25]
MA[26]
HUAKE

Figure 7: Total communication
over head with 112-bit
security [18,22,23,25,26]

HA[18] TL[22] RS[23] DMR[25] MA[26] HUAKE

128-bit Security Level

0

200

400

600

800

1000

1200

1400

1600

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
(b

yt
es

)

484 496

890

1598

882

458

HA[18]
TL[22]
RS[23]
DMR[25]
MA[26]
HUAKE

Figure 8: Total communication
overhead with 128-bit
security [18,22,23,25,26]

Comput Mater Contin. 2026;87(1):23 17

A consistent and striking observation from Figs. 6–8 is that our protocol unequivocally achieves the
lowest communication overhead across all evaluated security levels. This superior performance is not
marginal but represents a substantial improvement over the compared schemes.

For instance, at the 80-bit security level in Fig. 6, our protocol’s communication cost is significantly
lower than all other protocols. Even compared to HA [18] and TL [22], which are relatively efficient, our
scheme offers a notable reduction. The advantage becomes even more pronounced when compared to
RS [23], MA [26], and particularly DMR [25]. This trend of superior communication efficiency continues
and is often amplified at higher security settings. As seen in Figs. 7 and 8, while the absolute communication
costs increase for all protocols to ensure stronger security, our protocol maintains its leading position with
the smallest data transmission size. The percentage reduction in communication overhead offered by our
protocol is substantial, as detailed in Table 3. Our scheme consistently cuts down data transfer by a significant
margin compared to HA [18], TL [22], RS [23], MA [26], and especially DMR [25], with advantages often
exceeding 45% against several protocols and reaching over 70% against DMR [25].

Table 3: Advantage of our protocol over five protocols

Schemes Advantage in communication overhead

80-bit(%) 112-bit(%) 128-bit(%)
HA [18] 12.75 11.80 10.08
TL [22] 12.75 11.80 10.08
RS [23] 47.95 49.52 49.89

DMR [25] 68.70 70.35 71.34
MA [26] 46.71 47.56 48.07

This pronounced efficiency in communication overhead is a key advantage of our protocol. By mini-
mizing the amount of data exchanged, Our scheme significantly reduces bandwidth consumption, latency,
and energy usage on client devices. This makes our protocol exceptionally well-suited for deployment
in bandwidth-sensitive and power-constrained environments, such as mobile networks, IoT ecosystems,
and other scenarios where efficient communication is critical. The empirical data strongly supports the
theoretical communication cost analysis presented in Table 2, confirming our protocol’s design for optimal
communication performance.

7.3 Discussion on Practical Application Scenarios
While its client-side computational overhead is not the lowest, this protocol’s extremely low commu-

nication overhead makes it a superior choice in environments where communication is the dominant cost,
such as battery-reliant IoT devices on low-power wide-area networks (LPWAN) or implantable wearable
medical devices (WBANs). In these scenarios, minimizing data transmission is critical for extending multi-
year battery life, rendering the brief, one-time computational cost for authentication a well-justified trade-off
for device longevity.

8 Conclusion
We designed an efficient and secure HUAKE protocol using signcryption for heterogeneous MCS

communication. In this protocol, the client belongs to the IBC and the server belongs to the CLC, which
is quite applicable to heterogeneous networks. In addition, we proved the security of the proposed HUAKE
protocol in the mBR model and described its resilience against other attacks using heuristic analysis. Our
performance evaluation indicates that the protocol achieves the least communication overhead compared to

18 Comput Mater Contin. 2026;87(1):23

the associated protocols. While the protocol excels in communication efficiency, its computational overhead
is not optimal, and it does not provide forward secrecy. Future work will focus on achieving forward secrecy
by incorporating a key exchange mechanism, while simultaneously optimizing the new construction to
reduce computational overhead.

Acknowledgement: Not applicable.

Funding Statement: This work was supported by the Key Project of Science and Technology Research by Chongqing
Education Commission under Grant KJZD-K202400610 and the Chongqing Natural Science Foundation General
Project Grant CSTB2025NSCQ-GPX1263.

Author Contributions: The authors confirm contribution to the paper as follows: Conceptualization, Huihui Zhu
and Fei Tang; methodology, Fei Tang; validation, Ping Wang; formal analysis, Huihui Zhu; investigation, Ping Wang;
resources, Fei Tang; writing—original draft preparation, Huihui Zhu; writing—review and editing, Huihui Zhu and
Chunhua Jin; funding acquisition, Fei Tang. All authors reviewed the results and approved the final version of
the manuscript.

Availability of Data and Materials: Not applicable.

Ethics Approval: Not applicable. For studies not involving humans or animals.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Ali S, Alauldeen R, Ruaa A. What is client-server system: architecture, issues and challenge of client-server system.

Recent Trends Cloud Comput Web Eng. 2020;2(1):1–6.
2. Yousefi S, Karimipour H, Derakhshan F. Data aggregation mechanisms on the internet of things: a systematic

literature review. Internet Things. 2021;15:100427. doi:10.1016/j.iot.2021.100427.
3. Preethichandra D, Piyathilaka L, Izhar U, Samarasinghe R, De Silva LC. Wireless body area networks and their

applications—a review. IEEE Access. 2023;11:9202–20. doi:10.1109/access.2023.3239008.
4. Conti M, Donadel D, Turrin F. A survey on industrial control system testbeds and datasets for security research.

IEEE Communicat Surv Tutorials. 2021;23(4):2248–94. doi:10.1109/COMST.2021.3094360.
5. Thankappan M, Rifà-Pous H, Garrigues C. Multi-Channel Man-in-the-Middle attacks against protected Wi-Fi

networks: a state of the art review. Expert Syst Appl. 2022;210:118401. doi:10.1016/j.eswa.2022.118401.
6. Aski VJ, Dhaka VS, Parashar A, kumar S, Rida I. Internet of Things in healthcare: a survey on protocol standards,

enabling technologies, WBAN architectures and open issues. Phys Commun. 2023;60:102103. doi:10.1016/j.phycom.
2023.102103.

7. Blake-Wilson S, Johnson D, Menezes A. Key agreement protocols and their security analysis. In: IMA international
conference on cryptography and coding; Berlin/Heidelberg, Germany: Springer; 1997. p. 30–45.

8. Koblitz N, Menezes A, Vanstone S. The state of elliptic curve cryptography. Des Codes Cryptogr. 2000;19:173–93.
doi:10.1023/a:1008354106356.

9. Maurer U. Modelling a public-key infrastructure. In: Computer Security—ESORICS 96: 4th European Symposium
on Research in Computer Security; Sep 25–27; Rome, Italy. Berlin/Heidelberg, Germany: Springer; 1996. p. 325–50.

10. Shamir A. Identity-based cryptosystems and signature schemes. In: Workshop on the theory and application of
cryptographic techniques. Berlin/Heidelberg, Germany: Springer; 1984. p. 47–53 doi: 10.1007/3-540-39568-7_5.

11. Girault M. Self-certified public keys. In: Workshop on the theory and application of of cryptographic techniques.
Berlin/Heidelberg, Germany: Springer; 1991. p. 490–7.

12. Braeken A. Public key versus symmetric key cryptography in client-server authentication protocols. Int J Inf Secur.
2022;21(1):103–14. doi:10.1007/s10207-021-00543-w.

https://doi.org/10.1016/j.iot.2021.100427
https://doi.org/10.1109/access.2023.3239008
https://doi.org/10.1109/COMST.2021.3094360
https://doi.org/10.1016/j.eswa.2022.118401
https://doi.org/10.1016/j.phycom.2023.102103
https://doi.org/10.1016/j.phycom.2023.102103
https://doi.org/10.1023/a:1008354106356
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/s10207-021-00543-w

Comput Mater Contin. 2026;87(1):23 19

13. Alrawais A, Alhothaily A, Cheng X, Hu C, Yu J. SecureGuard: a certificate validation system in public key
infrastructure. IEEE Trans Veh Technol. 2018;67(6):5399–408. doi:10.1109/tvt.2018.2805700.

14. Wang D, Ma Cg. Cryptanalysis of a remote user authentication scheme for mobile client-server environment based
on ECC. Inf Fusion. 2013;14(4):498–503. doi:10.1016/j.inffus.2012.12.002.

15. Hsieh WB, Leu JS. An anonymous mobile user authentication protocol using self-certified public keys based on
multi-server architectures. J Supercomput. 2014;70(1):133–48. doi:10.1007/s11227-014-1135-8.

16. Dey S, Sampalli S, Ye Q. MDA: message digest-based authentication for mobile cloud computing. J Cloud Comput.
2016;5(1):1–13. doi:10.1186/s13677-016-0068-6.

17. Liu B, Zhou Y, Hu F, Li F. User authentication and key agreement protocol for mobile client-multi-server
environment. J Cryptol Res. 2018;5(2):111–25. (In Chinese).

18. Hassan A, Eltayieb N, Elhabob R, Li F. An efficient certificateless user authentication and key exchange protocol
for client-server environment. J Ambient Intell Human Comput. 2018;9(6):1713–27. doi:10.1007/s12652-017-0
622-1.

19. Qiu S, Xu G, Ahmad H, Xu G, Qiu X, Xu H. An improved lightweight two-factor authentication and key
agreement protocol with dynamic identity based on elliptic curve cryptography. KSII Trans Internet Inf Syst.
2019;13(2):978–1002.

20. Jegadeesan S, Azees M, Kumar PM, Manogaran G, Chilamkurti N, Varatharajan R, et al. An efficient anonymous
mutual authentication technique for providing secure communication in mobile cloud computing for smart city
applications. Sustain Cities Soc. 2019;49:101522. doi:10.1016/j.scs.2019.101522.

21. Xu S, Reng X, Chen C, Yuan F, Yang Z. Provably secure certificateless two-party authenticated key agreement
Protocol. J Cryptol Res. 2020;7(6):886–98. (In Chinese). doi:10.1109/cis.2009.152.

22. Tsobdjou LD, Pierre S, Quintero A. A new mutual authentication and key agreement protocol for mobile client—
Server environment. IEEE Trans Netw Serv Manag. 2021;18(2):1275–86. doi:10.1109/tnsm.2021.3071087.

23. Rana S, Obaidat MS, Mishra D, Mishra A, Rao YS. Efficient design of an authenticated key agreement protocol for
dew-assisted IoT systems. J Supercomput. 2022;78(3):3696–714. doi:10.1007/s11227-021-04003-z.

24. Li F, Wang J, Zhou Y, Jin C, Islam S. A heterogeneous user authentication and key establishment for mobile client-
server environment. Wireless Netw. 2020;26(2):913–24. doi:10.1007/s11276-018-1839-4.

25. Daniel RM, Thomas A, Rajsingh EB, Silas S. A strengthened eCK secure identity based authenticated key agreement
protocol based on the standard CDH assumption. Inf Comput. 2023;294:105067. doi:10.1016/j.ic.2023.105067.

26. Ma Y, Ma Y, Liu Y, Cheng Q. A secure and efficient certificateless authenticated key agreement protocol for smart
healthcare. Comput Stand Interf. 2023;86:103735. doi:10.1016/j.csi.2023.103735.

27. Cheng Q, Li Y, Shi W, Li X. A certificateless authentication and key agreement scheme for secure cloud-assisted
wireless body area network. Mobile Netw Applicat. 2022;27(1):346–56. doi:10.1007/s11036-021-01840-3.

28. Khalafalla W, Zhu WX, Elkhalil A, Yan C. An efficient cross-domain mutual authentication scheme for heteroge-
neous signcryption in VANETs. Cluster Comput. 2025;28(13):838. doi:10.1007/s10586-025-05333-w.

29. Khalafalla W, Zhu WX, Elkhalil A, Khokhar S. Efficient authentication scheme for heterogeneous signcryption
with cryptographic reverse firewalls for VANETs. Int J Inf Secur. 2025;24(3):1–18. doi:10.1007/s10207-025-01021-3.

30. Bellare M, Rogaway P. Entity authentication and key distribution. In: Annual International Cryptology Confer-
ence. Berlin/Heidelberg, Germany: Springer; 1993. p. 232–49.

31. Wu TY, Tseng YM. An efficient user authentication and key exchange protocol for mobile client-server environ-
ment. Comput Netw. 2010;54(9):1520–30. doi:10.1016/j.comnet.2009.12.008.

32. De Caro A, Iovino V. jPBC: java pairing based cryptography. In: 2011 IEEE Symposium on Computers and
Communications (ISCC); 2011 Jun 28–Jul 1; Kerkyra, Greece: IEEE; 2011. p. 850–5.

33. Shim KA. An efficient conditional privacy-preserving authentication scheme for vehicular sensor networks. IEEE
Trans Veh Technol. 2012;61(4):1874–83. doi:10.1109/tvt.2012.2186992.

https://doi.org/10.1109/tvt.2018.2805700
https://doi.org/10.1016/j.inffus.2012.12.002
https://doi.org/10.1007/s11227-014-1135-8
https://doi.org/10.1186/s13677-016-0068-6
https://doi.org/10.1007/s12652-017-0622-1
https://doi.org/10.1007/s12652-017-0622-1
https://doi.org/10.1016/j.scs.2019.101522
https://doi.org/10.1109/cis.2009.152
https://doi.org/10.1109/tnsm.2021.3071087
https://doi.org/10.1007/s11227-021-04003-z
https://doi.org/10.1007/s11276-018-1839-4
https://doi.org/10.1016/j.ic.2023.105067
https://doi.org/10.1016/j.csi.2023.103735
https://doi.org/10.1007/s11036-021-01840-3
https://doi.org/10.1007/s10586-025-05333-w
https://doi.org/10.1007/s10207-025-01021-3
https://doi.org/10.1016/j.comnet.2009.12.008
https://doi.org/10.1109/tvt.2012.2186992

	Heterogeneous User Authentication and Key Establishment Protocol for Client-Server Environment
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Security Model
	5 The Proposed Protocol
	6 Analysis of the Protocol
	7 Performance
	8 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

