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ABSTRACT: The large-scale deployment of Internet of Things (IoT) technology across various aspects of daily life
has significantly propelled the intelligent development of society. Among them, the integration of IoT and named data
networks (NDNs) reduces network complexity and provides practical directions for content-oriented network design.
However, ensuring data integrity in NDN-IoT applications remains a challenging issue. Very recently, Wang et al.
(Entropy, 27(5), 471(2025)) designed a certificateless aggregate signature (CLAS) scheme for NDN-IoT environments.
Wang et al. stated that their construction was provably secure under various types of security attacks. Using theoretical
analysis methods, in this work, we reveal that their CLAS design fails to meet unforgeability, a core security requirement
for CLAS schemes. In particular, we demonstrate that their scheme is vulnerable to a malicious public-key replacement
attack, enabling an adversary to produce authentic signatures for arbitrary fraudulent messages. Therefore, Wang
et al’s design cannot achieve its goal. To address the issue, we systematically examine the root causes behind the
vulnerability and propose a security-enhanced CLAS construction for NDN-IoT environments. We prove the security
of our improved design under the standard security assumption and also analyze its practical performance by comparing
the computational and communication costs with several related works. The comparison results show the practicality
of our design.

KEYWORDS: IoT; certificateless signature; public-key replacement attack; data integrity; aggregation

1 Introduction

The Internet of Things (IoT) has seamlessly integrated into our daily lives, transforming industries and
urban infrastructure with its interconnected smart systems. However, the widespread interconnection of IoT
devices and the rapid growth of data volume pose significant challenges to the security and efficiency of
communication systems. To tackle these problems, named data networking (NDN) has gained recognition
as an innovative content-centric communication framework, distinguished by its unique strengths [1,2].
Departing from conventional address-centric network models, NDN adopts a data-centric paradigm enabled
by name-driven routing protocols, delivering superior flexibility, scalability, and native security features.
In short, NDN shifts the model from host-to-host communication, like the current Internet Protocol
(IP), to a data-centric model where users request content by name. However, integrating NDN and IoT
contexts introduces multifaceted security complexities. Recall that data is the core resource of NDN-IoT
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applications, necessitating robust protective measures to safeguard its security. In real-world scenarios,
however, data frequently traverses insecure public networks, and faces numerous security threats [3,4]. A
key security requirement involves verification mechanisms where data receivers must validate the source’s
trustworthiness and confirm the data integrity throughout its transmission path [5]. In addition, an observer
in NDN may be able to monitor which content names are being requested, potentially revealing sensitive
information. Therefore, user’s privacy should also not be ignored.

Digital signatures is an essential cryptographic mechanism for guaranteeing both data integrity and
source authentication. Moreover, in high-throughput applications such as vehicular ad hoc networks and
named data networking (NDN) networks, there are a large number of digital signatures that require efficient
validation, which puts higher performance requirements on digital signatures. The aggregate signature
scheme, initially put forward by Boneh et al. [6], presents an optimal solution by enabling the compression
of n individual signatures into one consolidated form. This approach facilitates batch verification while
significantly reducing bandwidth consumption.

Boneh et al’s framework relies on public key infrastructure (PKI), and its actual deployment faces
challenges due to the substantial overhead associated with key management. Alternative aggregate signature
schemes using identity-based cryptography have emerged [7] to address PKTI’s limitations; however, identity-
based setting suffers from the inherent key-escrow issue. The certificateless paradigm [8] elegantly resolves
both concerns by employing a hybrid key generation model: the key generation center (KGC) supplies partial
secret information while users independently select additional secret components, with public keys derived
from the user’s public information [9]. Due to its merits, recent years have witnessed significant academic
interest in certificateless aggregate signature (CLAS) schemes for IoT applications [10,11].

1.1 Related Work ¢ Motivation

To date, a number of CLAS schemes have been designed for IoT applications. Early schemes were
designed based on bilinear pairing [12,13], requiring expensive computational costs. Cui et al. [14] designed
a pairing-free CLAS scheme for vehicular ad hoc networks. However, their design cannot resist malicious-
but-passive KGC attacks (i.e., called as Type 2 attacks) [15]. Xu et al. [16] put forward another CLAS scheme
without pairings for VANETs. Zhu et al. [17] pointed out the security vulnerability of [16] in resisting the Type
2 attack and constructed a new scheme with enhanced security. However, their work was further pointed
out by Yang et al. [18] to have a security vulnerability of the public-key replacement attack (i.e., called as
Type 1 attacks). In [18], Yang et al. then proposed an improved CLAS scheme with new aggregate algorithm,
which ensures the validity of all individual signatures participating in the aggregation. But the performance
is a weakness of their design. In addition, Zhu and Guan [19] put forward an authentication scheme with
conditional privacy protection for vehicular ad-hoc networks based on a CLAS scheme. However, their work
cannot achieve Type 1 security [20]. A recent comprehensive survey of CLAS schemes can be found in [21].

More recently, Yue et al. [22] proposed a CLAS scheme for VANETSs. However, their design is compu-
tationally inefficient and cannot ensure resistance to Type 1 attacks, where an adversary can systematically
generate fraudulent signatures for arbitrary messages (refer to Appendix A). This vulnerability fundamen-
tally compromises the unforgeability property, which is a core security requirement for any CLAS schemes.
In addition, Wang et al. [23] designed a CLAS scheme for NDN-IoT environments. Wang et al. initially
asserted the security of their CLAS construction. Our analysis reveals, however, that their implementation
remains vulnerable to public-key replacement attacks. That is, their schemes can not ensure data integrity,
thus cannot be deployed in real-world NDN-IoT applications.

Contribution. To solve data security and efficiency problems in NDN-IoT applications, we put forward
anew CLAS scheme. The key contributions of this work are outlined below:
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1. By presenting a concrete public-key replacement attack, we explored the security vulnerability of a very
recent CLAS scheme in [23] proposed for NDN-IoT environments.

2. We systematically examine the root causes behind the vulnerability in [23] and propose an improved
CLAS design.

3. We prove the security of our design based on the cryptographic assumption, and analyze its perfor-
mance. The performance comparison results demonstrate that the improved CLAS scheme not only has
better security but also has desirable computational and communication costs. Therefore, our design is
suitable for NDN-IoT environments.

4. As an additional contribution, in Appendix A, we analyze the security flaw of a very recent CLAS
construction in [22] and propose targeted countermeasures to enhance its security.

Organization. The subsequent sections of this paper are structured as the following: Section 2 intro-
duces the foundational concepts and preliminaries. In Section 3, we review Wang et al’s scheme in [23] and
put forward our security analysis. In Section 4, we introduce our enhanced design with its rigorous security
analysis. We evaluate the performance of our proposal in Section 5 and conclude the work in Section 6.
In Appendix A, we provide a retrospective analysis of Yue et al’s construction in [22], including identified

security weaknesses and proposed response strategies.

2 Preliminaries

Here, we introduce some required preliminaries, such as notations and elliptic curve discrete logarithm
problem (ECDLP).

2.1 Notations

Some notations are listed in Table 1.

Table 1: Notations and descriptions

Notations Descriptions Notations Descriptions

IoT Internet of Things NDN Named data networking

PKI Public key infrastructure KGC Key generation center

CLAS  Certificateless aggregation signature ECDLP  Elliptic curve discrete logarithm problem
A System security parameter ppa System public parameters

Prge Public key of the KGC s Private key of the KGC
ID;/PID; Identity/Pseudonym of entity i D; Partial private key of entity i
(PK;,SK;) Public/private key pair of sensor i t; Timestamp

(mj,0;) Message-signature pair of i o Aggregated signature for n entities
2.2 ECDLP

Let G be an g-order cyclic elliptic curve group and P be a generator of G. Given (P, aP) € G for some
unknown « € Z7, the ECDLP is to find a.

3 Security Attack to Wang et al’s CLAS Scheme in [23]

As shown in Fig. 1, there are several entities in [23]. The KGC is responsible for building the system.
An end device (ED) can register as a producer or consumer in the network system by interacting with
KGC. Acting as a vital element for secure data forwarding, the NDN router checks the integrity of data
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packets during transmission. It conducts signature verification on the embedded producer details within the
data packets. Moreover, it supports batch processing of multiple signatures from multiple end devices. As a
data requester, the consumer can send Interest packets to request needed data or services. In addition, the
producer, which corresponds to the producer entity in NDN, is in charge of generating data in the NDN-IoT
environment. It employs sensor devices to gather information like soil moisture levels, vehicle locations, and
indoor temperatures.

Consumer

Key Generation Center

> , $ |
KGO Jzz /\/’\Q 2 \\fl/

(- 2N -
End Device Producer
(ED)
> Linel - - — — — — — > Line2 —-—————-—-——--= > Line 3

Figure 1: Wang et al’s system structure. The figure is adopted from [23]. Line 1 depicts an instance of how a consumer
seeks data forwarding from an NDN router. Line 2 showcases the procedure where a consumer requests data packets
from multiple producers. Line 3 presents the interaction between terminal devices and the KGC for registration
purposes, along with the process of creating an aggregate signature and sending data packets through the NDN router

The CLAS scheme proposed by Wang et al. [23] mainly formed by the following algorithms: System
Setup, Device Pseudonym Generation, Device Keys Generation, Signing, Single Signature
Verification, and Aggregated Signature Verification. We now briefly review their algorithms to
support our analysis.

1. System Setup: Taking a security parameter { as input, the KGC sets up the system as below:
(a) Define an g-order cyclic group G = (P).
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(b)  Randomly select a master private key a € Z; and calculate a public key PKygc = aP.
(c)  Choose three hash functions H; : {0,1}* ~Z3,i=12,...,3.
(d) Store a secretly and publish public parameters ppa = {G, P, q, PKig, H; }.

2. Device Pseudonym Generation: In this algorithm, a terminal device ED; with real identity ID;

interacts with KGC to generate a pseudonym PID; = {AID;,, T} for a validity period T;.
(a) ED; randomly picks e; € Z; and computes E; = ¢;P, F; = ¢; Py, and AID;, = ID; ® F;. Then, it
sends {E;, F;, AID;; } to the KGC.
(b) KGC recovers ID; = AID;; ® E;, computes AID;, = H|(T;, «AID;;) ® ID;, and sends PID; =
{AIDj3, T;} to ED;.
3. Device Keys Generation:
(a) ED; randomly picks x; € Z; and computes X; = x;P.
(b) KGC picks r; € Zj at random, computes R; = r;P, hl(.z) = Hy(PID;, R;, Py ), di = 1 + ochfz), and
provides ED; with the partial private key D; = (d;, R;).
(¢c) ED; computes hfz) = Hy(PIDj, R;, Py ), Ki = hfz)Xi + R;, and sets its private key SK; =d; +
hgz)xi and public key PK; = (K}, R;).
4. Signing: To sign a message m; € {0,1}* at time t;, ED; performs the following:
(a) Picku; € Z; at random and calculate U; = u;P and h§3) = H3(m;, PID;, PK;, U}, t;).
(b) Compute V; = u; + hl(,3)SK,< and set 0; = (U;, V;) as the signature.

5. Single Signature Verification: Given {PID;, PK;, m;, d;, t; }, the verifier verifies the freshness of
t;, recovers hl(.z) = Hy(PID;, R;, Py ), and hl@ = H3(m;, PID;, PK;, U}, t;). It accepts the signature if
ViP=U; + th)(K,- + hgz)PkgC) and rejects otherwise.

6. Signature Aggregation: For n messages {PID;, PK;, m;, 0;, t;} from n ED;, the verifier computes
an aggregated signature 0,5 = (U, V), where U= Y[, Ujand V = 21, V.

7. Aggregation Verification: To check the validity of 0,4 = (U, V'), verifier verifies first checks whether
t; is fresh. Then, it recovers hgz) and h,@ for i =1,2,...,n. It accepts the signature if VP =U +
pIy hl@((K,- + hfz)Pkgc) and rejects otherwise.

3.1 Security Analysis to [23]

The first five algorithms in [23] naturally form a CLS scheme and the remaining algorithms are used to
perform batch verification of multiple signatures. For ease presentation, our analysis focuses on their CLS
scheme. For a CLS scheme, two distinct types of attackers should be considered, i.e., public-key replacement
attacker (called as Type 1 attacker) and malicious-but-passive KGC (called as Type 2 attacker). In particular,
a Type 1 attacker knows a target user’s secret value. However, the attacker cannot access the user’s partial
private key. A Type 2 attacker knows the KGC’s private key but does not allowed to access the target user’s
secret value. For more security definitions and security models, please refer to [23].

In [23], Wang et al. stated that their design can achieve both Type 1and Type 2 security. In the following,
we show that a Type 1 attacker .%; possesses the capability to produce a verifiable signature for any fraudulent
message, thereby compromising the unforgeability property inherent in their cryptographic construction.
Let the device ED; with pseudonym PID; be the target device attacked by .%#;. Given public parameters
ppa ={G,P,q, PKy,.,H;} and ED;’s public key PK; = (K;, R;), .71 can also access ED1i’s secret value x;.
Suppose that .#; tries to generate a forgery o on a message m at time t;, as shown in Fig. 2, .%# operates
as follows:

(1)  Compute h'* = H,(PID;, Ry, Pyy.).
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Pick 8 € Z; at random and set K} = P — hfz)PkgC.
Set PK; = (K, R;) as the replaced public key.
Select u} € Z; at random and compute U} = u} P, h§3)* = Hs(m},PID;,PK},U},t;),and V" = u} +
h(3)>(—ﬁ
B
Set o) = (U}, V;*) as the forged signature.

Nd'dld}

.1
*

{110 fm

Intercept

v

~
{PID;, PK;, m;, 0;, t;} X N

Signer Verifier
(ED) (NDN router)

Figure 2: An example of the Type 1 attack

Now, the correctness of ¢, is checked by:

VP = (u +hB)P=urp+ hD* P

= U+ hO(KF + P Pig,).

Since the underlying CLS scheme is insecure, the CLAS construction is therefore cannot

achieve unforgeability.

4 Our Improvement

In [23], a verifier checks a received signature through the equation V;P = U; + hl(.S)(Ki + hgz)Pkgc).

However, due to the lack of binding between K; and hgz), a .# attacker can use the algebraic relationship in
the equation to bypass the KGC'’s private key « (corresponding to Pyg.).

To patch this vulnerability, our improvement is as follows:

The algorithms System Setup and Device Pseudonym Generation are the same as the origi-

nal scheme.

Device Keys Generation:

(a) ED, randomly picks x; € Z;’ and computes X; = x;P.

(b) KGC picksr; € Z; at random, computes R; = r; P, hfz) = Hy(PID;, X;, R, Prgc ), di = 17 + ochgz),
and securely provides ED; with the partial private key D; = (d;, R;).

(c) ED; setsits private key SK; = (x;,d;) and public key PK; = (X;, R;).
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3. Signing: To generate a signature on message m; € {0,1}* at time ¢;, ED; performs the following:
(a) Randomly pick u; € Z} and calculate U; = u;P and hES) = H3(m;, PID;, PK;, U;, t;).
(b) Compute V; = u; + h§3)(xi +d;) and set the signature o; = (U;, V;).

4. Single Signature Verification: Given {PID;, PK;, m;,0;,t;}, the verifier checks whether t; is
fresh. It then recovers hl(.z) = Hy(PID;, Xi, R;, Py ) and hl(.3) = H3(m;, PID;, PK;, U;, t;). It accepts the
signature if V;P = U; + h§3) (X;+R; + hfz) Py ) and rejects otherwise. The correctness:

ViP = (u; + h® (x; + d))P = u;P+ h (x; + d;))P
=U; + h§3)(xiP + d,P) =U; + h1(3)(Xl +R; + hEZ)PkgC).

5. Signature Aggregation: The algorithm is the same as the original scheme.

6. Aggregation Verification: To check the validity of o,, = (U, V), the verifier checks whether t;
is fresh. Then, it recovers hgz) and hl(.3) for i =1,2,...,n. It accepts the signature if VP =U +
i h1(3) (Xi+R)+ (X, th)hfz) )Pi,c and rejects otherwise. The correctness:

(i V,) P= En: (4 B (x4 di)) P = f: (Ui + 1 (X + Ri+ hP Py ))

i=1 i=1 i1l

an U + anh“) (X +R; +h® )Pkgc) U+ th”(xi +R;) + (i hf”hﬁ”)Pkgc.
i=1

i=1 i=1 i=1

Following Wang et al’s proof approach in [23], the modified scheme can be easily proven to be secure.
To avoid a lot of repetitive proof work, we omit the proof process here. Compared to the original scheme,
the improvement adds one point multiplication, one point addition, and a general hash operation. This is
acceptable since the modification achieves greater security.

4.1 Security Proof

Here, we proof the security of our improved design. Note that for ease presentation, our proof directly
focuses on our underlying CLS scheme. Following the proof idea in [23,24], the improved CLS design is
resistant to forgery attacks against Type 1 and Type 2 adversaries.

Theorem 1: The improved CLS scheme is secure against any Type 1 adversary if ECDLP is hard.

Proof: This theorem demonstrates that if a Type 1 adversary A; compromises the underlying CLS scheme,
there must exist an adversary B capable of resolving the ECDLP. Now, A; and B performs the following:

+ Stage-1: Boperates as System Setup to obtain system parameters ppa = {G, P, q, PKy,., H; }, where
Pygc = aP for some unknown « € Z;. It sends ppa to A;. For simplicity, let PID;+ be A;’s target identity.
During the forgery game, A, keeps a series of lists to store the query results. In the initial stage, all lists
are empty.

« Stage-2: In this stage, BB responds to .A;’s adaptive queries as below.

H,-Query: For a H, query on (PID;, Ry, Pyg. ), if the item (PID;, X;, Ry, Pyge, h'*)) can be found in the
list Ly,, BB returns hgz) to A;. Otherwise, B picks hgz) €R Z;, inserts (PIDi,Xi,Ri,PkgC, hgz)) to Ly,,
and responds hfz) to Aj;.

H;-Query: For a H; query on (m;, PID;, PK;, U;, t;), if the item (m;, PID;, PK;, U;, t;, hfS)) exists in
the list Ly, BB returns hl@ to A;. Otherwise, 3 picks h§3) €r Z;, inserts (m;, PID;, PK;, U;, t;, hl@) to
Ly, and responds hfs) to Aj.
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Secret value-Query: A, can issue such query on PID;. BB searches the tuple (PID;, x;, X;) from the
list Ly, and sends it to A;. Otherwise, B selects x; €x Z;, stores (PID;, x;, X;) to Ly,, and responds x;
to Aj.
Partial private key-Query: A, can issue any partial secret key query regarding PID;. If PID; =
PID;-, B aborts. Otherwise, B3 searches the list L, to find (PID;, d;, R;) and send it to A;. If the tuple
(PID;,d;, R;) does not exist in L,y and the tuple (PID;, X;, R;, Pige, hl(.z)) does not exist in Ly,, B
selects d;, hgz) €r Z;, computes R; = d;P — hEZ)PkgC, and sets hfz) = Hy(PID;, Xj, R;, Pigc ). A updates
lists Ly, and Ly and provides A; with (PID;, d;, R;). Public key-Query: Once B3 receives A;’s query
on PID; (PID; = PID;+), B checks if (PID;, x;, X;, d;, R;) exists in the list Ly.,. If it exists, B returns
(Xi, R;). Otherwise, B runs as Secret value-Query and Partial private key-Query to generate and
update (PID;, x;, X;,d;, R;), and then returns (X;, R;).
Public key replacement-Query: Once B receives a query for some (ID;, PK;, PK}) from A;, B
searches the tuple (ID;, PK;) from L., and replaces it with (PID;, 1, X}, d;, R;).
Signing-Query: Upon receiving A;’s query on (m;, PID;), B performs as below. If PID; # PID;x,
B scans the lists to obtain the required parameters and runs as Signing to produce a signature
0; = (U;, V;) as the response. Otherwise, BB picks hgz)’ hl(.3), Vi er Zy, sets U; = V;P - h§3)(X,- +R; +
hl(,z)PkgC), and returns o; = (U;, V;).

« Stage-3: Eventually, 7, either admits failure or returns its forgery o;* = (U, V;*) on m}.
If o/ is a valid forgery under (PID;,m}), then VP = U} + hf3*)(X;* +R; + hfz*)Pkgc) holds. By
applying the forking lemma in [25], B replays A; with the same random tape, but provides two
distinct values of H3. A; can output another valid signature o = (U7, V,-*,). Hence, we have Vl-*/P =
Ur + hl@)(X;’ +R; + hgz* )Pkgc). Therefore, B calculates o = (V;* — Vl-*')(hl(?*)(hl(,z*) - hgz* )))_1 asa
solution to ECDLP. O

Theorem 2: The improved CLS scheme is secure against any Type 2 adversary if ECDLP is hard.
Proof: The proof follows a similar approach to that of Theorem 1 and is thus omitted for brevity. O
Theorem 3: The improved CLS scheme achieves conditional privacy-preserving.

Proof: In our design, the anonymity of the end device is assured by the pseudonym PID;. Recall that PID; =
{AIDj,, T;}, where AID;, = H\(T;, «AID;;) @ ID;, AID;, = ID; ® F;, F; = e;Pyg., E; = ¢;P, ¢; € Ly and T;
is the valid period. To extract the real identity ID;, the attacker must compute H,(T;, « AID;;). However,
computing H;(T;, ®AID;;) means that the attacker must know «a and AID;;. Note that « is the private key
of the KGC. Meanwhile, according to the above equation, to compute AID;;, the attacker needs to recover
e; from E; = e; P, which is solving the ECDLP. Due to the hardness of the ECDLP, it is evident that no such
attacker can reveal ID;. However, in scenarios where an end device fails to operate correctly or triggers an
operational issue, the KGC can trace ID; to take appropriate action in a timely manner.

In Signing, to generate a signature on a message, three distinct random numbers e;, x;, and u; are
generated by the end device. The inherent randomness of these random numbers ensures that the attacker
cannot correlate anonymous identities or associate disparate signatures produced by the same end device,
thereby achieving unlinkability in our improvement. The combination of the above properties implies the
proof. O

5 Performance Analysis

This section analyzes the performance of our design by comparing its computational and communi-
cation costs with recent schemes in [17,22,23]. We adopt the experiment parameters provided in [23] for
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our analysis, which was tested on a Raspberry Pi 3B+ device under the Curve25519 elliptic curve, achieving
128-bit security level. Specifically, the running time for different operations is as follows: general hash
T, = 0.0729 ms, point addition operation T, = 0.1652 ms, and point multiplication operation T, =
23.4405 ms.

Computational costs. Taking the algorithm Signing in our improved scheme as an example, it
executes one point multiplication operation and one general hash operation to generate the signature. Hence,
the total computational cost is T, + Tj, = 23.5134 ms. Similarly, we count the cost for the remaining schemes
and record the computational costs in Table 2.

Table 2: Comparison of computation cost with related works

inele signat cati
Scheme  Signing Sing e-: s1gn.a ure Aggregation verification Communication
verification cost
7] Tom +3Ty 4Ty +3Tpe + 3Ty, (4n +4)Tpp + 30Ty, + 30Ty, 4Gl +2[Zy| +8
~ 23.6592ms ~ 94.4763ms ~ 94.4763n + 93.7620ms =200 bytes
3] Tom+Tn  3Tpm + 2Ty + 2Ty, (2n +1)Typ +2nTy, + 20Ty, 3G +2|Z;| + 8
~ 23.5134ms ~ 70.7977ms ~ 47.3572n + 23.4405ms =168 bytes
(0] Tpm +2Ty  ATpm +3Tpa +3T (3n+5) Ty + (4n+4)Tpo + (3n+3)T),  3|G[+2[Z7] +8
~ 23.5863ms ~ 94.4763ms ~ 71.2010n + 118.0820ms =168 bytes
Ours Tom+Tn  3Tpm +3Tpa + 2Ty, (n+2)Tpm + 21Ty, + 21Ty, 3|1G| + 2|Z;| +8
~ 23.5134ms ~ 70.9639ms ~ 23.9167n + 46.8810ms =168 bytes

In Signing, the cost of our design is the same as that of [23] and lower than that of [17] (i.e.,
23.6592 ms) and [22] (i.e., 23.5863 ms). In Verification, the schemes in [17,22] require a relatively high
computational cost. Though the cost of our scheme is slightly higher than that of [23], the gap between them
is quite small (i.e., 0.1652 ms). In addition, as can be seen from the table and Fig. 3, our scheme achieves
the smallest computational cost in Aggregate Verification. Therefore, our scheme has better security and
desirable computational cost.

-10%
27
—m— [23]
—o— [22]
s L5 || . Ours
=
g
g
S
g
g
= 0.5
0

0 50 100 150 200

Number of signatures (1)

Figure 3: Computational costs comparison between the improved CLAS scheme and [17,22,23] in aggregation
verification phase
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Communication costs. Based on the above curve parameters, the length of G and Z; can be
represented by 32 bytes and 32 bytes, respectively [26,27]. We assume that the size of both the identity and
the timestamp is 4 bytes. In our design, the signer needs to send { PID;, PK;, m;, 0;, t; } to the verifier, where
PID; = {AID;;, T;}, PK; = (X;,R;), and 0; = (U;, V;). Since X;,R;, U; € G and AID;,, V; € Z;, the cost is
3|G| +2|Z;| + 8 = 32 x 5 + 8 = 168 bytes. Similarly, Table 2 counts the communication costs of these schemes.
The above results indicate that the communication cost required for the scheme in [17] is 200 bytes, while
other schemes, including ours, only require 168 bytes.

In summary, our improved scheme not only has better security but also has desirable computational
and communication costs.

Discussion

In Wang et al’s design in [23], the main reason why their proposal has the security vulnerability under
Type 1 attack is that the verification equation V;P = U; + h§3) (K; + hl(.z)PkgC) in the verification algorithm
has some special algebraic relationship (i.e., K; and hfz) are independent and do not affect each other). As
we analyzed in Section 3.1, the Type 1 attacker uses such an algebraic relationship to replace K; by setting
K =P - hl(.z)PkgC, where the random f3 € Z7. Hence, the attacker can bypass the KGC's private key
(corresponding to Py, = aP).

In our improvement, we have made corresponding adjustments to the device private-public key pair
generation method, signature generation process, and verification equation, avoiding the problems found
in Wang et al’s design. The above performance analysis shows that compared with existing work, our
improvement has reached the optimal state in signature generation, signature batch verification processing,
and communication cost. However, our work cannot not achieve optimal performance in terms of single
signature verification. This is a cost for our solution in achieving high security. To address this limitation, a
teasible approach is to combine certificateless cryptosystems with lightweight hash-based message authenti-
cation code [28] to construct new privacy preserving authentication schemes. However, However, this may
require a new security model.

6 Conclusion

In this effort, we explored the security vulnerability of a very recent CLAS scheme in [23] proposed
for NDN-IoT environments. By presenting a specific Type 1 attack, our analysis demonstrates how attackers
can use their scheme to forge legitimate signatures for fraudulent environmental data. This manipulation
allows malicious actors to deceive consumers, thereby guiding them to make wrong decisions. In view of
3] and proposed an
improved CLAS design to secure NDN-IoT applications. We proved its security based on the cryptographic

this, we have systematically examined the root causes behind the vulnerability in [2

assumption, and analyzed its performance. The performance comparison results showed that our improved
scheme not only has better security but also has desirable computational and communication costs. Finally,
as an additional contribution, we analysed the security vulnerability of a very recent CLAS scheme in [22]
and proposed targeted countermeasures to enhance its security.
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Appendix A Cryptanalysis and Improvement of Yue et al’s CLAS scheme in [22]
Appendix A.1 Review of the Original Scheme

The CLAS scheme introduced by Yue et al. [22] consists of the following algorithms: System Setup,
Pseudonym ldentity Generation, Partial Private Key Generation, Vehicle Key Generation,
Individual Signature Generation, Single Signature Verification, Aggregated Signature Gen-
eration, and Aggregated Signature Verification. For ease of presentation, we only briefly review their
first six algorithms to support our analysis, which naturally form a CLS scheme.

1. System Setup: Taking a security parameter ( as input, the KGC and TA generate below system
parameters:

(a) Define an g-order cyclic group G = (P).

(b)  Choose hash functions H; : {0,1}* — Z;’, i=0,1,...,4.

() (KGC:) Randomly select a private key a ¢ Z; and calculate a public key PKyg. = aP.

(d) (TA:) Randomly select a private key b € Z; and calculate a public key PK;, = bP.

(e) KGC and TA store a and b, respectively, and publish public parameters ppa=
{G, P, q, PKige, PKia, H; ).

2. Pseudonym Identity Generation: A vehicle V; with real identity RID; interacts with TA to generate
a pseudonym PID; for a validity period T;.

(a) V; randomly picks x; € Z; and calculates X; = x;P, TID; = RID; ® Ho(x; Tpyp), and submits
{X;, TID;} to TA.

(b) TAextracts RID; = TID; ® Hy(bX;), computes pseudonym PID; = RID; ® H,(bX;, T, t;),and
sends {PID;, X;, T;, t; } to KGC, where T; is the validity period for PID; and t; is current times-
tamp.

3. Partial Private Key Generation: After checking the validity of T; and t;, the KGC randomly
picksr; € Z; and computes R; = r; P, hgz) = Hy(PID;, R;, PKyge, Xi, Ty), di = 1 + ahgz), andD; =d; ®
Hy(aX;). Then, it sends the tuple {PID;, D;,R;, T;, t;} to V;.

4. Vehicle Key Generation: Vi  recovers d;=D;®Hy(x;PKe.) and hgz) =
H,(PID;, R;, PKygc, X, T;). Note that d; can be checked by d;P = R; + hl(.z)PKkgc. If and only if d; is
valid, V; accepts its private key SK; = (x;, d;) and public key PK; = (X;, R;).

5. Signing: To sign a message m; € {0,1}* at time t;, V; performs the following:

(a) Selectu; € Z; at random and calculate U; = u;P.

(b)  Calculate b = Hy(m;, PID;, PK;, PKyg, t;) and ht*) = H,(m;, PID;, PK;, Uy, t;).

(c) Computes; =u; + dihlo) + xihlw and set the signature o; = (U, s;).

6. Single Signature Verification: Given {PID;, PK;, m;, g;, T;, t; }, the verifier checks the freshness
of #;. Then it recovers h\”) = Hy(PID;, R;, PKyge, X, Ti), '™ = Hy(my, PID;, PK;, PKyge, t;), and
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h§4) = Hy(m;, PID;, PK;, U;, t;). It accepts the signature if s;P = U, + hl@(R,- + hgz)PkgC) + h§4)X,-
and rejects otherwise.

Appendix A.2 Security Analysis to [22]

In [22], Yue et al. stated that their design is secure against both Type 1 and Type 2 attackers. Here, we
show that a Type 1 attacker .#; possesses the capability to produce a verifiable signature for any fraudulent
message, thereby compromising the unforgeability property inherent in their cryptographic construction.
Let the vehicle V; with pseudonym PID,; be the target device attacked by .%;. Given public parameters ppa =
{G, P, q, PKyqc, PKy4, H; } and V;’s publickey PK; = (X, R;), # canalso access V;’s secret value x;. Suppose
that . wants to generate a forgery o;" on a message m; attime t;, as shown in Fig. Al,.#; operates as follows:

(1) Compute h'*) = Hy(PID;, R;, PKige, X, Ti) and h'> = Hy(my, PID;, PK;, PKges £;).
(2)  Pick peZ; atrandom and set U; = BP - hf3)(Ri + hfz)Pkgc).

(3) Compute h§4)* = Hy(m!,PID;,PK;,U},t;) and s} = f + hf4)x,».

(4) Setits forgery o = (U}, s} ).

\
\

! | Type 1 Forgery Attack
7y

*

| :
! 1
i
: m; !
\ {PID;, PK;, m;,0;, T;, t; }: ! )
i 1
E ‘ ! &
' AR ' ’;
! £
1 I N
,
\ f& j e
N Malicious Attacker - _
=
=
Intercept
A
o {PID;, PK;, m;, 03, T;, t; } ® ﬂ
Signer Verifier
(V) (RSU and other vehicle V)

Figure Al: An example of the Type 1 attack
Now, the correctness of o] is checked by:

siP=(B+h™Mx)P=pP+hVxP
= U; + hO (R + kP Py) + BV X,

Due to the insecurity of the underlying CLS scheme, their CLAS construction cannot achieve
unforgeability.

Appendix A.3 Improvement
In [22], a verifier checks a received signature through the equation s;P = U; + hf3)(Ri + hgz)Pkgc) +

hl(.4)X,-. However, due to the lack of binding between U; and h§3), the attacker .#; can use the algebraic
relationship in the equation to bypass the KGC'’s private key a (corresponding to Py, = aP).
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To patch this vulnerability, a simple suggestion is to include U; in computing hf3). That is, ht(.3) =

H;(m;, PID;, PK;, PK} goo Uis ti ). Following Yue et al’s proof approach in [22], the modified scheme can be
easily proven to be secure. The modification does not add any additional computational cost.
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