
echT PressScience

Doi:10.32604/cmc.2025.073441

ARTICLE

An Efficient Certificateless Authentication Scheme with Enhanced Security
for NDN-IoT Environments

Feihong Xu1, Jianbo Wu1,*, Qing An1,*, Fei Zhu1,2, Zhaoyang Han3 and Saru Kumari4

1Hubei Engineering Research Center for BDS-Cloud High-Precision Deformation Monitoring, School of Artificial Intelligence,
Wuchang University of Technology, Wuhan, 430223, China
2School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, 430200, China
3College of Information Science & Technology, Nanjing Forestry University, Nanjing, 210037, China
4Department of Mathematics, Chaudhary Charan Singh University, Meerut, 250004, Uttar Pradesh, India
*Corresponding Authors: Jianbo Wu. Email: 120160287@wut.edu.cn or 120161684@wut.edu.cn; Qing An. Email: anqing@wut.edu.cn
Received: 18 September 2025; Accepted: 15 December 2025; Published: 10 February 2026

ABSTRACT: The large-scale deployment of Internet of Things (IoT) technology across various aspects of daily life
has significantly propelled the intelligent development of society. Among them, the integration of IoT and named data
networks (NDNs) reduces network complexity and provides practical directions for content-oriented network design.
However, ensuring data integrity in NDN-IoT applications remains a challenging issue. Very recently, Wang et al.
(Entropy, 27(5), 471(2025)) designed a certificateless aggregate signature (CLAS) scheme for NDN-IoT environments.
Wang et al. stated that their construction was provably secure under various types of security attacks. Using theoretical
analysis methods, in this work, we reveal that their CLAS design fails to meet unforgeability, a core security requirement
for CLAS schemes. In particular, we demonstrate that their scheme is vulnerable to a malicious public-key replacement
attack, enabling an adversary to produce authentic signatures for arbitrary fraudulent messages. Therefore, Wang
et al.’s design cannot achieve its goal. To address the issue, we systematically examine the root causes behind the
vulnerability and propose a security-enhanced CLAS construction for NDN-IoT environments. We prove the security
of our improved design under the standard security assumption and also analyze its practical performance by comparing
the computational and communication costs with several related works. The comparison results show the practicality
of our design.

KEYWORDS: IoT; certificateless signature; public-key replacement attack; data integrity; aggregation

1 Introduction
The Internet of Things (IoT) has seamlessly integrated into our daily lives, transforming industries and

urban infrastructure with its interconnected smart systems. However, the widespread interconnection of IoT
devices and the rapid growth of data volume pose significant challenges to the security and efficiency of
communication systems. To tackle these problems, named data networking (NDN) has gained recognition
as an innovative content-centric communication framework, distinguished by its unique strengths [1,2].
Departing from conventional address-centric network models, NDN adopts a data-centric paradigm enabled
by name-driven routing protocols, delivering superior flexibility, scalability, and native security features.
In short, NDN shifts the model from host-to-host communication, like the current Internet Protocol
(IP), to a data-centric model where users request content by name. However, integrating NDN and IoT
contexts introduces multifaceted security complexities. Recall that data is the core resource of NDN-IoT

Copyright © 2026 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
https://doi.org/10.32604/cmc.2025.073441
https://www.techscience.com/doi/10.32604/cmc.2025.073441
mailto:120160287@wut.edu.cn
mailto:120161684@wut.edu.cn
mailto:anqing@wut.edu.cn

2 Comput Mater Contin. 2026;87(1):75

applications, necessitating robust protective measures to safeguard its security. In real-world scenarios,
however, data frequently traverses insecure public networks, and faces numerous security threats [3,4]. A
key security requirement involves verification mechanisms where data receivers must validate the source’s
trustworthiness and confirm the data integrity throughout its transmission path [5]. In addition, an observer
in NDN may be able to monitor which content names are being requested, potentially revealing sensitive
information. Therefore, user’s privacy should also not be ignored.

Digital signatures is an essential cryptographic mechanism for guaranteeing both data integrity and
source authentication. Moreover, in high-throughput applications such as vehicular ad hoc networks and
named data networking (NDN) networks, there are a large number of digital signatures that require efficient
validation, which puts higher performance requirements on digital signatures. The aggregate signature
scheme, initially put forward by Boneh et al. [6], presents an optimal solution by enabling the compression
of n individual signatures into one consolidated form. This approach facilitates batch verification while
significantly reducing bandwidth consumption.

Boneh et al.’s framework relies on public key infrastructure (PKI), and its actual deployment faces
challenges due to the substantial overhead associated with key management. Alternative aggregate signature
schemes using identity-based cryptography have emerged [7] to address PKI’s limitations; however, identity-
based setting suffers from the inherent key-escrow issue. The certificateless paradigm [8] elegantly resolves
both concerns by employing a hybrid key generation model: the key generation center (KGC) supplies partial
secret information while users independently select additional secret components, with public keys derived
from the user’s public information [9]. Due to its merits, recent years have witnessed significant academic
interest in certificateless aggregate signature (CLAS) schemes for IoT applications [10,11].

1.1 Related Work & Motivation
To date, a number of CLAS schemes have been designed for IoT applications. Early schemes were

designed based on bilinear pairing [12,13], requiring expensive computational costs. Cui et al. [14] designed
a pairing-free CLAS scheme for vehicular ad hoc networks. However, their design cannot resist malicious-
but-passive KGC attacks (i.e., called as Type 2 attacks) [15]. Xu et al. [16] put forward another CLAS scheme
without pairings for VANETs. Zhu et al. [17] pointed out the security vulnerability of [16] in resisting the Type
2 attack and constructed a new scheme with enhanced security. However, their work was further pointed
out by Yang et al. [18] to have a security vulnerability of the public-key replacement attack (i.e., called as
Type 1 attacks). In [18], Yang et al. then proposed an improved CLAS scheme with new aggregate algorithm,
which ensures the validity of all individual signatures participating in the aggregation. But the performance
is a weakness of their design. In addition, Zhu and Guan [19] put forward an authentication scheme with
conditional privacy protection for vehicular ad-hoc networks based on a CLAS scheme. However, their work
cannot achieve Type 1 security [20]. A recent comprehensive survey of CLAS schemes can be found in [21].

More recently, Yue et al. [22] proposed a CLAS scheme for VANETs. However, their design is compu-
tationally inefficient and cannot ensure resistance to Type 1 attacks, where an adversary can systematically
generate fraudulent signatures for arbitrary messages (refer to Appendix A). This vulnerability fundamen-
tally compromises the unforgeability property, which is a core security requirement for any CLAS schemes.
In addition, Wang et al. [23] designed a CLAS scheme for NDN-IoT environments. Wang et al. initially
asserted the security of their CLAS construction. Our analysis reveals, however, that their implementation
remains vulnerable to public-key replacement attacks. That is, their schemes can not ensure data integrity,
thus cannot be deployed in real-world NDN-IoT applications.

Contribution. To solve data security and efficiency problems in NDN-IoT applications, we put forward
a new CLAS scheme. The key contributions of this work are outlined below:

Comput Mater Contin. 2026;87(1):75 3

1. By presenting a concrete public-key replacement attack, we explored the security vulnerability of a very
recent CLAS scheme in [23] proposed for NDN-IoT environments.

2. We systematically examine the root causes behind the vulnerability in [23] and propose an improved
CLAS design.

3. We prove the security of our design based on the cryptographic assumption, and analyze its perfor-
mance. The performance comparison results demonstrate that the improved CLAS scheme not only has
better security but also has desirable computational and communication costs. Therefore, our design is
suitable for NDN-IoT environments.

4. As an additional contribution, in Appendix A, we analyze the security flaw of a very recent CLAS
construction in [22] and propose targeted countermeasures to enhance its security.

Organization. The subsequent sections of this paper are structured as the following: Section 2 intro-
duces the foundational concepts and preliminaries. In Section 3, we review Wang et al.’s scheme in [23] and
put forward our security analysis. In Section 4, we introduce our enhanced design with its rigorous security
analysis. We evaluate the performance of our proposal in Section 5 and conclude the work in Section 6.
In Appendix A, we provide a retrospective analysis of Yue et al.’s construction in [22], including identified
security weaknesses and proposed response strategies.

2 Preliminaries
Here, we introduce some required preliminaries, such as notations and elliptic curve discrete logarithm

problem (ECDLP).

2.1 Notations
Some notations are listed in Table 1.

Table 1: Notations and descriptions

Notations Descriptions Notations Descriptions
IoT Internet of Things NDN Named data networking
PKI Public key infrastructure KGC Key generation center

CLAS Certificateless aggregation signature ECDLP Elliptic curve discrete logarithm problem
λ System security parameter ppa System public parameters

Pk gc Public key of the KGC s Private key of the KGC
IDi/PIDi Identity/Pseudonym of entity i Di Partial private key of entity i
(PKi , SKi) Public/private key pair of sensor i ti Timestamp
(mi , σi) Message-signature pair of i σ Aggregated signature for n entities

2.2 ECDLP
Let G be an q-order cyclic elliptic curve group and P be a generator of G. Given (P, αP) ∈ G for some

unknown α ∈ Z∗q , the ECDLP is to find α.

3 Security Attack to Wang et al.’s CLAS Scheme in [23]
As shown in Fig. 1, there are several entities in [23]. The KGC is responsible for building the system.

An end device (ED) can register as a producer or consumer in the network system by interacting with
KGC. Acting as a vital element for secure data forwarding, the NDN router checks the integrity of data

4 Comput Mater Contin. 2026;87(1):75

packets during transmission. It conducts signature verification on the embedded producer details within the
data packets. Moreover, it supports batch processing of multiple signatures from multiple end devices. As a
data requester, the consumer can send Interest packets to request needed data or services. In addition, the
producer, which corresponds to the producer entity in NDN, is in charge of generating data in the NDN-IoT
environment. It employs sensor devices to gather information like soil moisture levels, vehicle locations, and
indoor temperatures.

Figure 1: Wang et al’s system structure. The figure is adopted from [23]. Line 1 depicts an instance of how a consumer
seeks data forwarding from an NDN router. Line 2 showcases the procedure where a consumer requests data packets
from multiple producers. Line 3 presents the interaction between terminal devices and the KGC for registration
purposes, along with the process of creating an aggregate signature and sending data packets through the NDN router

The CLAS scheme proposed by Wang et al. [23] mainly formed by the following algorithms: System

Setup, Device Pseudonym Generation, Device Keys Generation, Signing, Single Signature

Verification, and Aggregated Signature Verification. We now briefly review their algorithms to
support our analysis.

1. System Setup: Taking a security parameter ζ as input, the KGC sets up the system as below:
(a) Define an q-order cyclic group G = ⟨P⟩.

Comput Mater Contin. 2026;87(1):75 5

(b) Randomly select a master private key α ∈ Z∗q and calculate a public key PKk gc = αP.
(c) Choose three hash functions Hi ∶ {0, 1}∗ → Z

∗
q , i = 1, 2, . . . , 3.

(d) Store α secretly and publish public parameters ppa = {G, P, q, PKk gc , Hi}.
2. Device Pseudonym Generation: In this algorithm, a terminal device EDi with real identity IDi

interacts with KGC to generate a pseudonym PIDi = {AIDi2, Ti} for a validity period Ti .
(a) EDi randomly picks ei ∈ Z∗q and computes Ei = ei P, Fi = ei Pk gc , and AIDi1 = IDi ⊕ Fi . Then, it

sends {Ei , Fi , AIDi1} to the KGC.
(b) KGC recovers IDi = AIDi1 ⊕ Ei , computes AIDi2 = H1(Ti , αAIDi1) ⊕ IDi , and sends PIDi =

{AIDi2, Ti} to EDi .
3. Device Keys Generation:

(a) EDi randomly picks xi ∈ Z∗q and computes Xi = xi P.
(b) KGC picks ri ∈ Z∗q at random, computes Ri = ri P, h(2)i = H2(PIDi , Ri , Pk gc), di = ri + αh(2)i , and

provides EDi with the partial private key Di = (di , Ri).
(c) EDi computes h(2)i = H2(PIDi , Ri , Pk gc), Ki = h(2)i Xi + Ri , and sets its private key SKi = di +

h(2)i xi and public key PKi = (Ki , Ri).
4. Signing: To sign a message mi ∈ {0, 1}∗ at time ti , EDi performs the following:

(a) Pick ui ∈ Z∗q at random and calculate Ui = ui P and h(3)i = H3(mi , PIDi , PKi , Ui , ti).
(b) Compute Vi = ui + h(3)i SKi and set σi = (Ui , Vi) as the signature.

5. Single Signature Verification: Given {PIDi , PKi , mi , σi , ti}, the verifier verifies the freshness of
ti , recovers h(2)i = H2(PIDi , Ri , Pk gc), and h(3)i = H3(mi , PIDi , PKi , Ui , ti). It accepts the signature if
Vi P = Ui + h(3)i (Ki + h(2)i Pk gc) and rejects otherwise.

6. Signature Aggregation: For n messages {PIDi , PKi , mi , σi , ti} from n EDi , the verifier computes
an aggregated signature σag = (U , V), where U = ∑n

i=1 Ui and V = ∑n
i=1 Vi .

7. Aggregation Verification: To check the validity of σag = (U , V), verifier verifies first checks whether
ti is fresh. Then, it recovers h(2)i and h(3)i for i = 1, 2, . . . , n. It accepts the signature if V P = U +
∑n

k=1 h(3)i ((Ki + h(2)i Pk gc) and rejects otherwise.

3.1 Security Analysis to [23]
The first five algorithms in [23] naturally form a CLS scheme and the remaining algorithms are used to

perform batch verification of multiple signatures. For ease presentation, our analysis focuses on their CLS
scheme. For a CLS scheme, two distinct types of attackers should be considered, i.e., public-key replacement
attacker (called as Type 1 attacker) and malicious-but-passive KGC (called as Type 2 attacker). In particular,
a Type 1 attacker knows a target user’s secret value. However, the attacker cannot access the user’s partial
private key. A Type 2 attacker knows the KGC’s private key but does not allowed to access the target user’s
secret value. For more security definitions and security models, please refer to [23].

In [23], Wang et al. stated that their design can achieve both Type 1 and Type 2 security. In the following,
we show that a Type 1 attacker F1 possesses the capability to produce a verifiable signature for any fraudulent
message, thereby compromising the unforgeability property inherent in their cryptographic construction.
Let the device EDi with pseudonym PIDi be the target device attacked by F1. Given public parameters
ppa = {G, P, q, PKk gc , Hi} and EDi ’s public key PKi = (Ki , Ri), F1 can also access EDi’s secret value xi .
Suppose that F1 tries to generate a forgery σ∗i on a message m∗i at time ti , as shown in Fig. 2, F1 operates
as follows:

(1) Compute h(2)i = H2(PIDi , Ri , Pk gc).

6 Comput Mater Contin. 2026;87(1):75

(2) Pick β ∈ Z∗q at random and set K∗i = βP − h(2)i Pk gc .
(3) Set PK∗i = (K∗i , Ri) as the replaced public key.
(4) Select u∗i ∈ Z∗q at random and compute U∗i = u∗i P, h(3)∗i = H3(m∗i , PIDi , PK∗i , U∗i , ti), and V∗i = u∗i +

h(3)∗i β.
(5) Set σ∗i = (U∗i , V∗i) as the forged signature.

Figure 2: An example of the Type 1 attack

Now, the correctness of σ∗i is checked by:

V∗i P = (u∗i + h(3)∗i β)P = u∗i P + h(3)∗i βP

= U∗i + h(3)∗i (K∗i + h(2)i Pk gc).

Since the underlying CLS scheme is insecure, the CLAS construction is therefore cannot
achieve unforgeability.

4 Our Improvement

In [23], a verifier checks a received signature through the equation Vi P = Ui + h(3)i (Ki + h(2)i Pk gc).
However, due to the lack of binding between Ki and h(2)i , a F1 attacker can use the algebraic relationship in
the equation to bypass the KGC’s private key α (corresponding to Pk gc).

To patch this vulnerability, our improvement is as follows:

1. The algorithms System Setup and Device Pseudonym Generation are the same as the origi-
nal scheme.

2. Device Keys Generation:
(a) EDi randomly picks xi ∈ Z∗q and computes Xi = xi P.
(b) KGC picks ri ∈ Z∗q at random, computes Ri = ri P, h(2)i = H2(PIDi , Xi , Ri , Pk gc), di = ri + αh(2)i ,

and securely provides EDi with the partial private key Di = (di , Ri).
(c) EDi sets its private key SKi = (xi , di) and public key PKi = (Xi , Ri).

Comput Mater Contin. 2026;87(1):75 7

3. Signing: To generate a signature on message mi ∈ {0, 1}∗ at time ti , EDi performs the following:
(a) Randomly pick ui ∈ Z∗q and calculate Ui = ui P and h(3)i = H3(mi , PIDi , PKi , Ui , ti).
(b) Compute Vi = ui + h(3)i (xi + di) and set the signature σi = (Ui , Vi).

4. Single Signature Verification: Given {PIDi , PKi , mi , σi , ti}, the verifier checks whether ti is
fresh. It then recovers h(2)i = H2(PIDi , Xi , Ri , Pk gc) and h(3)i = H3(mi , PIDi , PKi , Ui , ti). It accepts the
signature if Vi P = Ui + h(3)i (Xi + Ri + h(2)i Pk gc) and rejects otherwise. The correctness:

Vi P = (ui + h(3)i (xi + di))P = ui P + h(3)i (xi + di))P
= Ui + h(3)i (xi P + di P) = Ui + h(3)i (Xi + Ri + h(2)i Pk gc).

5. Signature Aggregation: The algorithm is the same as the original scheme.
6. Aggregation Verification: To check the validity of σag = (U , V), the verifier checks whether ti

is fresh. Then, it recovers h(2)i and h(3)i for i = 1, 2, . . . , n. It accepts the signature if V P = U +
∑n

i=1 h(3)i (Xi + Ri) + (∑n
i=1 h(3)i h(2)i)Pk gc and rejects otherwise. The correctness:

V P = (
n
∑
i=1

Vi)P =
n
∑
i=1
(ui + h(3)i (xi + di))P =

n
∑
i=1
(Ui + h(3)i (Xi + Ri + h(2)i Pk gc))

=
n
∑
i=1

Ui +
n
∑
i=1

h(3)i (Xi + Ri + h(2)i Pk gc) = U +
n
∑
i=1

h(3)i (Xi + Ri) + (
n
∑
i=1

h(3)i h(2)i)Pk gc .

Following Wang et al.’s proof approach in [23], the modified scheme can be easily proven to be secure.
To avoid a lot of repetitive proof work, we omit the proof process here. Compared to the original scheme,
the improvement adds one point multiplication, one point addition, and a general hash operation. This is
acceptable since the modification achieves greater security.

4.1 Security Proof
Here, we proof the security of our improved design. Note that for ease presentation, our proof directly

focuses on our underlying CLS scheme. Following the proof idea in [23,24], the improved CLS design is
resistant to forgery attacks against Type 1 and Type 2 adversaries.
Theorem 1: The improved CLS scheme is secure against any Type 1 adversary if ECDLP is hard.
Proof: This theorem demonstrates that if a Type 1 adversary A1 compromises the underlying CLS scheme,
there must exist an adversary B capable of resolving the ECDLP. Now, A1 and B performs the following:

• Stage-1:B operates as System Setup to obtain system parameters ppa = {G, P, q, PKk gc , Hi}, where
Pk gc = αP for some unknown α ∈ Z∗q . It sends ppa to A1. For simplicity, let PIDi∗ be A1’s target identity.
During the forgery game, A1 keeps a series of lists to store the query results. In the initial stage, all lists
are empty.

• Stage-2: In this stage, B responds to A1’s adaptive queries as below.
H2-Query: For a H2 query on (PIDi , Ri , Pk gc), if the item (PIDi , Xi , Ri , Pk gc , h(2)i) can be found in the
list LH2 , B returns h(2)i to A1. Otherwise, B picks h(2)i ∈R Z

∗
q , inserts (PIDi , Xi , Ri , Pk gc , h(2)i) to LH2 ,

and responds h(2)i to A1.
H3-Query: For a H3 query on (mi , PIDi , PKi , Ui , ti), if the item (mi , PIDi , PKi , Ui , ti , h(3)i) exists in
the list LH3 , B returns h(3)i to A1. Otherwise, B picks h(3)i ∈R Z

∗
q , inserts (mi , PIDi , PKi , Ui , ti , h(3)i) to

LH3 , and responds h(3)i to A1.

8 Comput Mater Contin. 2026;87(1):75

Secret value-Query: A1 can issue such query on PIDi . B searches the tuple (PIDi , xi , Xi) from the
list Lsv and sends it to A1. Otherwise, B selects xi ∈R Z

∗
q , stores (PIDi , xi , Xi) to Lsv , and responds xi

to A1.
Partial private key-Query: A1 can issue any partial secret key query regarding PIDi . If PIDi =
PIDi∗ , B aborts. Otherwise, B searches the list Lpsk to find (PIDi , di , Ri) and send it to A1. If the tuple
(PIDi , di , Ri) does not exist in Lpsk and the tuple (PIDi , Xi , Ri , Pk gc , h(2)i) does not exist in LH2 , B
selects di , h(2)i ∈R Z

∗
q , computes Ri = di P − h(2)i Pk gc , and sets h(2)i = H2(PIDi , Xi , Ri , Pk gc). A updates

lists LH2 and Lpsk and provides A1 with (PIDi , di , Ri). Public key-Query: Once B receives A1’s query
on PIDi (PIDi = PIDi∗), B checks if (PIDi , xi , Xi , di , Ri) exists in the list Lke y . If it exists, B returns
(Xi , Ri). Otherwise, B runs as Secret value-Query and Partial private key-Query to generate and
update (PIDi , xi , Xi , di , Ri), and then returns (Xi , Ri).
Public key replacement-Query: Once B receives a query for some (IDi , PKi , PK′i) from A1, B
searches the tuple (IDi , PKi) from Lke y and replaces it with (PIDi , �, X′i , di , Ri).
Signing-Query: Upon receiving A1’s query on (mi , PIDi), B performs as below. If PIDi ≠ PIDi∗ ,
B scans the lists to obtain the required parameters and runs as Signing to produce a signature
σi = (Ui , Vi) as the response. Otherwise, B picks h(2)i , h(3)i , Vi ∈R Z

∗
q , sets Ui = Vi P − h(3)i (Xi + Ri +

h(2)i Pk gc), and returns σi = (Ui , Vi).
• Stage-3: Eventually, F1 either admits failure or returns its forgery σ∗i = (U∗i , V∗i) on m∗i .

If σ∗i is a valid forgery under (PID∗i , m∗i), then V∗i P = U∗i + h(3
∗)

i (X∗i + Ri + h(2
∗)

i Pk gc) holds. By
applying the forking lemma in [25], B replays A1 with the same random tape, but provides two
distinct values of H3. A1 can output another valid signature σ∗i = (U∗i , V∗

′

i). Hence, we have V∗
′

i P =
U∗i + h(3

∗)
i (X∗i + Ri + h(2

∗
′

)
i Pk gc). Therefore, B calculates α = (V∗i − V∗i

′)(h(3
∗)

i (h(2
∗)

i − h(2
∗
′

)
i))−1 as a

solution to ECDLP. ◻

Theorem 2: The improved CLS scheme is secure against any Type 2 adversary if ECDLP is hard.
Proof: The proof follows a similar approach to that of Theorem 1 and is thus omitted for brevity. ◻
Theorem 3: The improved CLS scheme achieves conditional privacy-preserving.
Proof: In our design, the anonymity of the end device is assured by the pseudonym PIDi . Recall that PIDi =
{AIDi2, Ti}, where AIDi2 = H1(Ti , αAIDi1) ⊕ IDi , AIDi1 = IDi ⊕ Fi , Fi = ei Pk gc , Ei = ei P, ei ∈ Z∗q , and Ti
is the valid period. To extract the real identity IDi , the attacker must compute H1(Ti , αAIDi1). However,
computing H1(Ti , αAIDi1) means that the attacker must know α and AIDi1. Note that α is the private key
of the KGC. Meanwhile, according to the above equation, to compute AIDi1, the attacker needs to recover
ei from Ei = ei P, which is solving the ECDLP. Due to the hardness of the ECDLP, it is evident that no such
attacker can reveal IDi . However, in scenarios where an end device fails to operate correctly or triggers an
operational issue, the KGC can trace IDi to take appropriate action in a timely manner.

In Signing, to generate a signature on a message, three distinct random numbers ei , xi , and ui are
generated by the end device. The inherent randomness of these random numbers ensures that the attacker
cannot correlate anonymous identities or associate disparate signatures produced by the same end device,
thereby achieving unlinkability in our improvement. The combination of the above properties implies the
proof. ◻

5 Performance Analysis
This section analyzes the performance of our design by comparing its computational and communi-

cation costs with recent schemes in [17,22,23]. We adopt the experiment parameters provided in [23] for

Comput Mater Contin. 2026;87(1):75 9

our analysis, which was tested on a Raspberry Pi 3B+ device under the Curve25519 elliptic curve, achieving
128-bit security level. Specifically, the running time for different operations is as follows: general hash
Th = 0.0729 ms, point addition operation Tpa = 0.1652 ms, and point multiplication operation Tpm =
23.4405 ms.

Computational costs. Taking the algorithm Signing in our improved scheme as an example, it
executes one point multiplication operation and one general hash operation to generate the signature. Hence,
the total computational cost is Tpm + Th = 23.5134 ms. Similarly, we count the cost for the remaining schemes
and record the computational costs in Table 2.

Table 2: Comparison of computation cost with related works

Scheme Signing Single signature
verification Aggregation verification Communication

cost

[17] Tpm + 3Th 4Tpm + 3Tpa + 3Th (4n + 4)Tpm + 3nTpa + 3nTh 4∣G∣ + 2∣Z∗q ∣ + 8
≈ 23.6592ms ≈ 94.4763ms ≈ 94.4763n + 93.7620ms = 200 bytes

[23] Tpm + Th 3Tpm + 2Tpa + 2Th (2n + 1)Tpm + 2nTpa + 2nTh 3∣G∣ + 2∣Z∗q ∣ + 8
≈ 23.5134ms ≈ 70.7977ms ≈ 47.3572n + 23.4405ms = 168 bytes

[22] Tpm + 2Th 4Tpm + 3Tpa + 3Th (3n + 5)Tpm + (4n + 4)Tpa + (3n + 3)Th 3∣G∣ + 2∣Z∗q ∣ + 8
≈ 23.5863ms ≈ 94.4763ms ≈ 71.2010n + 118.0820ms = 168 bytes

Ours Tpm + Th 3Tpm + 3Tpa + 2Th (n + 2)Tpm + 2nTpa + 2nTh 3∣G∣ + 2∣Z∗q ∣ + 8
≈ 23.5134ms ≈ 70.9639ms ≈ 23.9167n + 46.8810ms = 168 bytes

In Signing, the cost of our design is the same as that of [23] and lower than that of [17] (i.e.,
23.6592 ms) and [22] (i.e., 23.5863 ms). In Verification, the schemes in [17,22] require a relatively high
computational cost. Though the cost of our scheme is slightly higher than that of [23], the gap between them
is quite small (i.e., 0.1652 ms). In addition, as can be seen from the table and Fig. 3, our scheme achieves
the smallest computational cost in Aggregate Verification. Therefore, our scheme has better security and
desirable computational cost.

0 50 100 150 200

0

0.5

1

1.5

2
·104

Number of signatures (n)

Ti
m

e
co

st
(i

n
m

s)

[17]
[23]
[22]
Ours

Figure 3: Computational costs comparison between the improved CLAS scheme and [17,22,23] in aggregation
verification phase

10 Comput Mater Contin. 2026;87(1):75

Communication costs. Based on the above curve parameters, the length of G and Z
∗
q can be

represented by 32 bytes and 32 bytes, respectively [26,27]. We assume that the size of both the identity and
the timestamp is 4 bytes. In our design, the signer needs to send {PIDi , PKi , mi , σi , ti} to the verifier, where
PIDi = {AIDi2, Ti}, PKi = (Xi , Ri), and σi = (Ui , Vi). Since Xi , Ri , Ui ∈ G and AIDi2, Vi ∈ Z∗q , the cost is
3∣G∣ + 2∣Z∗q ∣ + 8 = 32 × 5 + 8 = 168 bytes. Similarly, Table 2 counts the communication costs of these schemes.
The above results indicate that the communication cost required for the scheme in [17] is 200 bytes, while
other schemes, including ours, only require 168 bytes.

In summary, our improved scheme not only has better security but also has desirable computational
and communication costs.

Discussion
In Wang et al.’s design in [23], the main reason why their proposal has the security vulnerability under

Type 1 attack is that the verification equation Vi P = Ui + h(3)i (Ki + h(2)i Pk gc) in the verification algorithm
has some special algebraic relationship (i.e., Ki and h(2)i are independent and do not affect each other). As
we analyzed in Section 3.1, the Type 1 attacker uses such an algebraic relationship to replace Ki by setting
K∗i = βP − h(2)i Pk gc , where the random β ∈ Z∗q . Hence, the attacker can bypass the KGC’s private key α
(corresponding to Pk gc = αP).

In our improvement, we have made corresponding adjustments to the device private-public key pair
generation method, signature generation process, and verification equation, avoiding the problems found
in Wang et al.’s design. The above performance analysis shows that compared with existing work, our
improvement has reached the optimal state in signature generation, signature batch verification processing,
and communication cost. However, our work cannot not achieve optimal performance in terms of single
signature verification. This is a cost for our solution in achieving high security. To address this limitation, a
feasible approach is to combine certificateless cryptosystems with lightweight hash-based message authenti-
cation code [28] to construct new privacy preserving authentication schemes. However, However, this may
require a new security model.

6 Conclusion
In this effort, we explored the security vulnerability of a very recent CLAS scheme in [23] proposed

for NDN-IoT environments. By presenting a specific Type 1 attack, our analysis demonstrates how attackers
can use their scheme to forge legitimate signatures for fraudulent environmental data. This manipulation
allows malicious actors to deceive consumers, thereby guiding them to make wrong decisions. In view of
this, we have systematically examined the root causes behind the vulnerability in [23] and proposed an
improved CLAS design to secure NDN-IoT applications. We proved its security based on the cryptographic
assumption, and analyzed its performance. The performance comparison results showed that our improved
scheme not only has better security but also has desirable computational and communication costs. Finally,
as an additional contribution, we analysed the security vulnerability of a very recent CLAS scheme in [22]
and proposed targeted countermeasures to enhance its security.

Acknowledgement: None.

Funding Statement: This work was supported in part by the Hubei Engineering Research Center for BDS-Cloud High-
Precision Deformation Monitoring Open Funding (No. HBBDGJ202507Y), in part by the National Natural Science
Foundation of China (No. 62377037).

Comput Mater Contin. 2026;87(1):75 11

Author Contributions: Conceptualization, Feihong Xu, Fei Zhu, Saru Kumari; Methodology, Jianbo Wu, Qing An;
Writing—original draft, Feihong Xu and Fei Zhu; Writing—review & editing, Feihong Xu, Jianbo Wu, Qing An,
Zhaoyang Han, and Saru Kumari. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: Not applicable.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

Appendix A Cryptanalysis and Improvement of Yue et al.’s CLAS scheme in [22]

Appendix A.1 Review of the Original Scheme
The CLAS scheme introduced by Yue et al. [22] consists of the following algorithms: System Setup,

Pseudonym Identity Generation, Partial Private Key Generation, Vehicle Key Generation,
Individual Signature Generation, Single Signature Verification, Aggregated Signature Gen-

eration, and Aggregated Signature Verification. For ease of presentation, we only briefly review their
first six algorithms to support our analysis, which naturally form a CLS scheme.

1. System Setup: Taking a security parameter ζ as input, the KGC and TA generate below system
parameters:
(a) Define an q-order cyclic group G = ⟨P⟩.
(b) Choose hash functions Hi ∶ {0, 1}∗ → Z

∗
q , i = 0, 1, . . . , 4.

(c) (KGC:) Randomly select a private key a ∈ Z∗q and calculate a public key PKk gc = aP.
(d) (TA:) Randomly select a private key b ∈ Z∗q and calculate a public key PKta = bP.

(e) KGC and TA store a and b, respectively, and publish public parameters ppa =
{G, P, q, PKk gc , PKta , Hi}.

2. Pseudonym Identity Generation: A vehicle Vi with real identity RIDi interacts with TA to generate
a pseudonym PIDi for a validity period Ti .
(a) Vi randomly picks xi ∈ Z∗q and calculates Xi = xi P, TIDi = RIDi ⊕H0(xi Tpub), and submits

{Xi , TIDi} to TA.
(b) TA extracts RIDi = TIDi ⊕H0(bXi), computes pseudonym PIDi = RIDi ⊕H1(bXi , Ti , ti), and

sends {PIDi , Xi , Ti , ti} to KGC, where Ti is the validity period for PIDi and ti is current times-
tamp.

3. Partial Private Key Generation: After checking the validity of Ti and ti , the KGC randomly
picks ri ∈ Z∗q and computes Ri = ri P, h(2)i = H2(PIDi , Ri , PKk gc , Xi , Ti), di = ri + ah(2)i , and Di = di ⊕
H0(aXi). Then, it sends the tuple {PIDi , Di , Ri , Ti , ti} to Vi .

4. Vehicle Key Generation: Vi recovers di = Di ⊕H0(xi PKk gc) and h(2)i =
H2(PIDi , Ri , PKk gc , Xi , Ti). Note that di can be checked by di P = Ri + h(2)i PKk gc . If and only if di is
valid, Vi accepts its private key SKi = (xi , di) and public key PKi = (Xi , Ri).

5. Signing: To sign a message mi ∈ {0, 1}∗ at time ti , Vi performs the following:
(a) Select ui ∈ Z∗q at random and calculate Ui = ui P.
(b) Calculate h(3)i = H3(mi , PIDi , PKi , PKk gc , ti) and h(4)i = H4(mi , PIDi , PKi , Ui , ti).
(c) Compute si = ui + di h(3)i + xi h(4)i and set the signature σi = (Ui , si).

6. Single Signature Verification: Given {PIDi , PKi , mi , σi , Ti , ti}, the verifier checks the freshness
of ti . Then it recovers h(2)i = H2(PIDi , Ri , PKk gc , Xi , Ti), h(3)i = H3(mi , PIDi , PKi , PKk gc , ti), and

12 Comput Mater Contin. 2026;87(1):75

h(4)i = H4(mi , PIDi , PKi , Ui , ti). It accepts the signature if si P = Ui + h(3)i (Ri + h(2)i Pk gc) + h(4)i Xi
and rejects otherwise.

Appendix A.2 Security Analysis to [22]
In [22], Yue et al. stated that their design is secure against both Type 1 and Type 2 attackers. Here, we

show that a Type 1 attacker F1 possesses the capability to produce a verifiable signature for any fraudulent
message, thereby compromising the unforgeability property inherent in their cryptographic construction.
Let the vehicle Vi with pseudonym PIDi be the target device attacked by F1. Given public parameters ppa =
{G, P, q, PKk gc , PKta , Hi} and Vi ’s public key PKi = (Xi , Ri), F1 can also access Vi ’s secret value xi . Suppose
that F1 wants to generate a forgery σ∗i on a message m∗i at time ti , as shown in Fig. A1, F1 operates as follows:

(1) Compute h(2)i = H2(PIDi , Ri , PKk gc , Xi , Ti) and h(3)i = H3(mi , PIDi , PKi , PKk gc , ti).
(2) Pick β ∈ Z∗q at random and set U∗i = βP − h(3)i (Ri + h(2)i Pk gc).
(3) Compute h(4)∗i = H4(m∗i , PIDi , PKi , U∗i , ti) and s∗i = β + h(4)i xi .
(4) Set its forgery σ∗i = (U∗i , s∗i).

Figure A1: An example of the Type 1 attack

Now, the correctness of σ∗i is checked by:

s∗i P = (β + h(4)i xi)P = βP + h(4)i xi P

= U∗i + h(3)i (Ri + h(2)i Pk gc) + h(4)i Xi .

Due to the insecurity of the underlying CLS scheme, their CLAS construction cannot achieve
unforgeability.
Appendix A.3 Improvement

In [22], a verifier checks a received signature through the equation si P = Ui + h(3)i (Ri + h(2)i Pk gc) +
h(4)i Xi . However, due to the lack of binding between Ui and h(3)i , the attacker F1 can use the algebraic
relationship in the equation to bypass the KGC’s private key a (corresponding to Pk gc = aP).

Comput Mater Contin. 2026;87(1):75 13

To patch this vulnerability, a simple suggestion is to include Ui in computing h(3)i . That is, h(3)i =
H3(mi , PIDi , PKi , PKk gc , Ui , ti). Following Yue et al.’s proof approach in [22], the modified scheme can be
easily proven to be secure. The modification does not add any additional computational cost.

References
1. Daniel E, Tschorsch F. IPFS and friends: a qualitative comparison of next generation peer-to-peer data networks.

IEEE Commun Surv Tutorials. 2022;24(1):31–52. doi:10.1109/comst.2022.3143147.
2. Benmoussa A, Kerrache CA, Lagraa N, Mastorakis S, Lakas A, Tahari AEK. Interest flooding attacks in named data

networking: survey of existing solutions, open issues, requirements, and future directions. ACM Comput Surv.
2023;55(7):139:1–37. doi:10.1145/3539730.

3. Mazhar T, Irfan HM, Haq I, Ullah I, Ashraf M, Shloul TA, et al. Analysis of challenges and solutions of IoT
in smart grids using AI and machine learning techniques: a review. Electronics. 2023;12(1):242. doi:10.3390/
electronics12010242.

4. Mazhar T, Talpur DB, Shloul TA, Ghadi YY, Haq I, Ullah I, et al. Analysis of IoT security challenges and its solutions
using artificial intelligence. Brain Sci. 2023;13(4):683. doi:10.3390/brainsci13040683.

5. Zhu F, Yi X, Abuadbba A, Luo J, Nepal S, Huang X. Efficient hash-based redactable signature for smart grid
applications. In: ESORICS 2022. Copenhagen, Denmark; 2022 Sep 26–30. Vol. 13556. Cham, Switzerland: Springer;
2022. p. 554–73.

6. Boneh D, Gentry C, Lynn B, Shacham H. Aggregate and verifiably encrypted signatures from bilinear maps. In:
EUROCRYPT 2003. Warsaw, Poland; 2003 May 4–8. Vol. 2656. Cham, Switzerland: Springer; 2003. p. 416–32.

7. Shen L, Ma J, Liu X, Wei F, Miao M. A secure and efficient ID-based aggregate signature scheme for wireless sensor
networks. IEEE Internet Things J. 2017;4(2):546–54. doi:10.1109/jiot.2016.2557487.

8. Al-Riyami SS, Paterson KG. Certificateless public key cryptography. In: ASIACRYPT 2003. Taipei, Taiwan; 2003
Nov 30–Dec 4. Vol. 2894. Cham, Switzerland: Springer; 2003. p. 452–73.

9. Shim K. A secure certificateless signature scheme for cloud-assisted industrial IoT. IEEE Trans Ind Informatics.
2024;20(4):6834–43. doi:10.1109/tii.2023.3343437.

10. Yang W, Wang S, Mu Y. An enhanced certificateless aggregate signature without pairings for E-healthcare system.
IEEE Inter Things J. 2021;8(6):5000–8. doi:10.1109/jiot.2020.3034307.

11. Aljarwan AZA, Ngadi MA. Review of certificateless authentication scheme for vehicular ad hoc networks. IEEE
Access. 2025;13:100074–94. doi:10.1109/access.2025.3576926.

12. Mei Q, Xiong H, Chen J, Yang M, Kumari S, Khan MK. Efficient certificateless aggregate signature with conditional
privacy preservation in IoV. IEEE Syst J. 2021;15(1):245–56. doi:10.1109/jsyst.2020.2966526.

13. Cahyadi EF, Su T, Yang CC, Hwang M. A certificateless aggregate signature scheme for security and privacy
protection in VANET. Int J Distributed Sens Networks. 2022;18(5). doi:10.1177/15501329221080658.

14. Cui J, Zhang J, Zhong H, Shi R, Xu Y. An efficient certificateless aggregate signature without pairings for vehicular
ad hoc networks. Inf Sci. 2018;451–452:1–15. doi:10.1016/j.ins.2018.03.060.

15. Kamil IA, Ogundoyin SO. An improved certificateless aggregate signature scheme without bilinear pairings for
vehicular ad hoc networks. J Inf Secur Appl. 2019;44(1):184–200. doi:10.1016/j.jisa.2018.12.004.

16. Xu G, Zhou W, Sangaiah AK, Zhang Y, Zheng X, Tang Q, et al. A security-enhanced certificateless aggregate
signature authentication protocol for InVANETs. IEEE Netw. 2020;34(2):22–9. doi:10.1109/mnet.001.1900035.

17. Zhu F, Yi X, Abuadbba A, Khalil I, Huang X, Xu F. A security-enhanced certificateless conditional
privacy-preserving authentication scheme for vehicular ad hoc networks. IEEE Trans Intell Transp Syst.
2023;24(10):10456–66. doi:10.1109/tits.2023.3275077.

18. Yang W, Fan J, Song K, Zheng Y, Zhang F. An efficient and practical conditional privacy-preserving aggregate
authentication for vehicular ad-hoc networks. IEEE Trans Intell Transp Syst. 2024;25(12):20256–67. doi:10.1109/
tits.2024.3474210.

19. Zhu D, Guan Y. Secure and lightweight conditional privacy-preserving identity authentication scheme for VANET.
IEEE Sensors J. 2024;24(21):35743–56. doi:10.1109/jsen.2024.3431557.

https://doi.org/10.1109/comst.2022.3143147
https://doi.org/10.1145/3539730
https://doi.org/10.3390/electronics12010242
https://doi.org/10.3390/electronics12010242
https://doi.org/10.3390/brainsci13040683
https://doi.org/10.1109/jiot.2016.2557487
https://doi.org/10.1109/tii.2023.3343437
https://doi.org/10.1109/jiot.2020.3034307
https://doi.org/10.1109/access.2025.3576926
https://doi.org/10.1109/jsyst.2020.2966526
https://doi.org/10.1177/15501329221080658
https://doi.org/10.1016/j.ins.2018.03.060
https://doi.org/10.1016/j.jisa.2018.12.004
https://doi.org/10.1109/mnet.001.1900035
https://doi.org/10.1109/tits.2023.3275077
https://doi.org/10.1109/tits.2024.3474210
https://doi.org/10.1109/tits.2024.3474210
https://doi.org/10.1109/jsen.2024.3431557

14 Comput Mater Contin. 2026;87(1):75

20. Zhu F, Hu Y, Ren Y, Han B, Yang X. Public-Key replacement attacks on lightweight authentication schemes for
resource-constrained scenarios. Cyber Secur Applicat. 2025;3:100102. doi:10.1016/j.csa.2025.100102.

21. Verma RK, Khan AJ, Kashyap SK, Chande MK. Certificateless aggregate signatures: a comprehensive survey and
comparative analysis. J Univers Comput Sci. 2024;30(12):1662–90. doi:10.3897/jucs.116249.

22. Yue Q, Jiang W, Lei H. A lightweight certificateless aggregate signature scheme without pairing for VANETs. Sci
Rep. 2025;15(1):23663. doi:10.1038/s41598-025-08656-1.

23. Wang C, Wu H, Gan Y, Zhang R, Ma M. ECAE: an efficient certificateless aggregate signature scheme based on
elliptic curves for NDN-IoT environments. Entropy. 2025;27(5):471. doi:10.3390/e27050471.

24. Xu F, Liu S, Yang X. An efficient privacy-preserving authentication scheme with enhanced security for IoMT
applications. Comput Commun. 2023;208:171–8. doi:10.1016/j.comcom.2023.06.012.

25. Pointcheval D, Stern J. Security arguments for digital signatures and blind signatures. J Cryptol. 2000;13(3):361–96.
doi:10.1007/s001450010003.

26. Sasdrich P, Güneysu T. Implementing Curve25519 for side-channel-protected elliptic curve cryptography. ACM
Trans Reconfigurable Technol Syst. 2015;9(1):3:1–15. doi:10.1145/2700834.

27. Tanksale V. Efficient elliptic curve diffie-hellman key exchange for resource-constrained IoT devices. Electronics.
2024;13(18):3631. doi:10.3390/electronics13183631.

28. Katz J, Lindell Y. Introduction to modern cryptography. 2nd ed. Philadelphia, PA, USA: CRC Press; 2014.

https://doi.org/10.1016/j.csa.2025.100102
https://doi.org/10.3897/jucs.116249
https://doi.org/10.1038/s41598-025-08656-1
https://doi.org/10.3390/e27050471
https://doi.org/10.1016/j.comcom.2023.06.012
https://doi.org/10.1007/s001450010003
https://doi.org/10.1145/2700834
https://doi.org/10.3390/electronics13183631

	An Efficient Certificateless Authentication Scheme with Enhanced Security for
obreakspace NDN-IoT Environments
	1 Introduction
	2 Preliminaries
	3 Security Attack to Wang et
obreakspace al.'s CLAS Scheme in
obreakspace [myhyperlink ref-2323]
	4 Our Improvement
	5 Performance Analysis
	6 Conclusion
	Appendix A Cryptanalysis and Improvement of Yue et
obreakspace al.'s CLAS scheme in
obreakspace [myhyperlink ref-2222]
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

