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ABSTRACT: Lung cancer remains a major global health challenge, with early diagnosis crucial for improved patient
survival. Traditional diagnostic techniques, including manual histopathology and radiological assessments, are prone
to errors and variability. Deep learning methods, particularly Vision Transformers (ViT), have shown promise for
improving diagnostic accuracy by effectively extracting global features. However, ViT-based approaches face challenges
related to computational complexity and limited generalizability. This research proposes the DualSet ViT-PSO-SVM
framework, integrating a ViT with dual attention mechanisms, Particle Swarm Optimization (PSO), and Support Vector
Machines (SVM), aiming for efficient and robust lung cancer classification across multiple medical image datasets. The
study utilized three publicly available datasets: LIDC-IDRI, LUNA16, and TCIA, encompassing computed tomography
(CT) scans and histopathological images. Data preprocessing included normalization, augmentation, and segmenta-
tion. Dual attention mechanisms enhanced ViT’s feature extraction capabilities. PSO optimized feature selection, and
SVM performed classification. Model performance was evaluated on individual and combined datasets, benchmarked
against CNN-based and standard ViT approaches. The DualSet ViT-PSO-SVM significantly outperformed existing
methods, achieving superior accuracy rates of 97.85% (LIDC-IDRI), 98.32% (LUNA16), and 96.75% (TCIA). Cross-
dataset evaluations demonstrated strong generalization capabilities and stability across similar imaging modalities. The
proposed framework effectively bridges advanced deep learning techniques with clinical applicability, offering a robust
diagnostic tool for lung cancer detection, reducing complexity, and improving diagnostic reliability and interpretability.
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1 Introduction
The global death toll from lung cancer amounts to about 1.8 million fatalities each year, according to

current reports [1]. The 5-year survival rate for early-stage lung cancer is greater than that for advanced-stage
lung cancer. Patients with stage IA lung cancer have a high 5-year survival rate exceeding 75% [2]. Medical
experts currently manually analyze radiological and histopathological diagnostic tools to identify suspicious
findings. The manual diagnostic process requires significant labor input and is subject to observer subjectiv-
ity, which diminishes its reliability [3]. The application of deep learning techniques in machine learning has
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transformed the way medical specialists examine images in their field of practice [3]. CNNs are the preferred
choice for image recognition applications because they achieve high accuracy. The primary drawback of
Convolutional Neural Networks (CNNs) is their limited ability to analyze local area patterns, which hinders
their capacity to capture the broader image context [4]. Vision Transformer (ViT), which overcame this
limitation by establishing effective long-range image relationships through attention mechanisms [5]. The
high computational requirements of ViT designs prompt scientific teams to research low-maintenance
versions of these architectural models [6]. The combination of ViT models with optimization methods
that employ the PSO technique improves both diagnostic performance and simplifies feature complexity
levels [7]. This research project builds on promising recent methods by designing a combined model for
lung cancer diagnosis. Laboratory results show that the ViT architecture performs effectively for medical
image classification, whereas the existing literature reports limited use of these architectures in lung cancer
histopathology analysis. Current deep learning methods using CNNs demonstrate limited ability to extract
global features, according to research by [8]. The standard configurations of ViT models require significant
computational power, which limits their implementation in clinical settings due to the control of available
computational resources [9]. This study implements the DualSet ViT-PSO-SVM framework to address these
problems. The proposed diagnosis system achieves improved performance in lung cancer identification
by leveraging ViT for efficient feature extraction, PSO for feature optimization, and SVM for reliable
classification. The study enhances both clinical reliability and generalizability by merging two separate
histopathological datasets. The primary objective of this study is to develop and validate a novel deep learning
model for accurately diagnosing lung cancer using histopathological imaging. Specifically, the study aims to:

• To design and implement the DualSet ViT-PSO-SVM model, which integrates ViT, PSO, and SVM for
efficient and robust classification.

• To integrate two different histopathological image datasets to increase model generalization and clinical
utility in diverse medical settings.

• To evaluate and benchmark the proposed model’s accuracy, efficiency, and computational complexity
against existing CNN-based and standard ViT methods.

• To apply explainable artificial intelligence (XAI) techniques, such as Grad-CAM, to ensure clinical
interpretability and validate model decisions from a medical perspective.

Achieving these objectives will establish a clinically relevant framework that enables pathologists to
make precise lung cancer diagnoses from histopathology images, thereby facilitating timely intervention and
improving patient outcomes. Although hybrid methods involving deep feature access, metaheuristic feature
selection, and classifiers have been evaluated in other fields of study, including cervical and breast cancer,
their direct application to lung cancer remains under-researched. The CT images of the lung pose their own
challenges, including high anatomical diversity, weak nodule morphology, and a tendency to overlap with
benign lesions. These factors make standard CNN or Transformer pipelines ineffective. Our study helps
close this gap by proposing a DualSet ViT-PSO-SVM model specifically for lung cancer detection. The dual-
attention (self-attention and CBAM) version of the Vision Transformer can capture both the global and
local thoracic context, as well as the finer details of the nodule. Concurrently, redundant high-dimensional
ViT embeddings are removed via Particle Swarm Optimization to improve discriminative power. Lastly,
Support Vector Machine offers better classification performance with limited, imbalanced training data
than the softmax classifier, which is more often employed in previous work. As far as we can tell, this is
the first publication to (i) translate this hybrid paradigm to the lung CT datasets and (ii) test it on three
public benchmarks (LIDC-IDRI, LUNA16, and TCIA) and, as such, prove its novelty, generalizability, and
clinical importance.
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The rest of the paper is structured as follows: Section 2 provides a comprehensive literature review
on existing lung cancer detection methods, ViT architectures in medical imaging, and the significance of
attention mechanisms. Section 3 details the datasets used and the preprocessing methods, and describes the
proposed DualSet ViT-PSO-SVM methodology, including the ViT architecture, dual attention mechanisms,
feature optimization via PSO, and classification with SVM. Section 4 presents experimental results, including
detailed performance metrics, cross-dataset analyses, Grad-CAM visualizations, and comparative evalua-
tions against state-of-the-art models. Finally, Section 5 concludes the paper, summarizing key contributions,
discussing limitations, and proposing future research directions.

2 Background

2.1 Lung Cancer Detection Techniques
Lung cancer detection has traditionally involved radiological imaging and histopathology analysis. Var-

ious computational methods, including traditional image processing, deep learning-based CNN methods,
and attention-based approaches, have been developed to enhance the diagnostic process. Early lung cancer
detection primarily employed classical image processing techniques to extract morphological and textural
features. Recent studies have highlighted the importance of advanced attention mechanisms for capturing
subtle and discriminative patterns in medical images, which aligns with our approach of integrating dual
attention within the ViT backbone to improve lung cancer classification. Furthermore, traditional machine
learning approaches, such as SVMs, random forests, and k-NN, have been employed in computer-aided diag-
nosis systems for lung cancer, relying primarily on handcrafted image features for lesion classification [10].
However, these approaches heavily rely on domain-specific expert knowledge, and their performance sig-
nificantly varies with imaging conditions and feature extraction quality [11]. CNNs have revolutionized lung
cancer detection by automatically learning complex image features without the need for extensive manual
feature engineering. Chaunzwa et al. [12] developed a deep learning framework using CNN architectures for
automated classification of lung adenocarcinoma subtypes from histopathological images, demonstrating
high accuracy and reduced inter-observer variability. CNNs provide superior performance compared to
standard image processing, yet they face limitations due to their small receptive fields and limited ability
to capture global connections in medical images [13]. Medical images have improved performance with
deep learning models, as attention mechanisms have been integrated using human vision-inspired methods
to detect global dependencies within these images [14]. Two benefits offered by attention mechanisms
are improvements in diagnostic accuracy for complex tasks, such as cancer classification, and enhanced
regulatory capabilities to focus on essential points of interest. Guan et al. [15] developed an attention-
guided CNN for pulmonary nodule detection, achieving superior accuracy compared to conventional
CNN models by effectively highlighting critical regions for precise localization and diagnosis. Transformer
architectures employing self-attention mechanisms have recently been applied to lung cancer diagnosis tasks,
enabling superior extraction of global features and improved interpretability [16]. Research on optimized and
lightweight variants of Transformer models for clinical use continues due to their promising performance,
though they usually encounter challenges of computational complexity and training efficiency [17].

2.2 ViT in Medical Imaging
Medical imaging analysis has made significant progress with the introduction of ViTs, inspired by

language models, which offer strong capabilities for extracting global features. Medical diagnostics benefit
from self-attention mechanisms in ViTs because these mechanisms directly analyze global context, which
enables the capture of crucial image relationships [18]. Several research studies delivered successful results
by implementing ViT models for medical imaging tasks. Khan et al. [19] created a ViT-based approach
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that identified retinal diseases in fundus images, surpassing other CNN-based standards for accuracy. The
study demonstrated that ViT outperformed in diagnosing features spanning large image areas. The research
showed that ViT models outperform standard CNN architectures in recognizing subtle distinctions in
histopathological structures by effectively capturing global information patterns [20]. Despite their promise,
ViT-based models face significant hurdles in medical applications: they often demand large annotated
datasets and considerable computational resources, limiting their usability in clinical environments [21].
Recent research efforts focus on building lightweight, efficient Transformer models. Medical imaging
transforms with ViT, as this method enhances feature representation compared to CNNs. ViT models require
further research to optimize their clinical application, balancing efficient computing power with diagnostic
quality in medical imaging. In addition to Transformer architectures, new methods in collaborative and
distributed learning have been created. These frameworks have also been suggested to use a weighted
federated learning process that meets privacy-protecting training over multi-center datasets and considers
heterogeneity among local clients [22]. This type of approach is especially applicable to clinical imaging,
where data sharing is limited. Despite such developments, few studies combine ViT representations with
metaheuristic feature selection and classical classifiers to systematically diagnose lung cancer and validate
their results across various public CT and histopathology datasets.

2.3 Attention Mechanisms in Deep Learning
Attention mechanisms, developed initially to enhance the performance of sequence-to-sequence mod-

els in natural language processing, have become fundamental components in improving deep learning
performance across diverse fields, including medical imaging [23]. These mechanisms allow neural networks
to dynamically focus on specific regions of input data, facilitating more informative and accurate predictions.
In deep learning, attention methods primarily fall into two categories: spatial attention and channel attention.
Spatial attention enables models to focus on critical spatial locations in feature maps, significantly improving
accuracy in medical image tasks, such as lesion detection and image segmentation [24]. Channel attention
enables networks to boost their representational power by weighting features based on their significance,
thereby highlighting essential feature channels [25]. Recently, self-attention mechanisms, popularized by
the Transformer architecture, have attracted significant attention for their ability to capture long-range
dependencies in images, thereby overcoming the locality constraints typical of CNNs. Despite their clear
benefits, attention mechanisms typically require increased computational resources, motivating the devel-
opment of lightweight variants. Several deep learning approaches have been proposed for lung cancer
analysis, ranging from CNN-based models to more recent Transformer architectures. Early studies, such
as Multi-view CNN [26], leveraged convolutional architectures to capture spatial information, with the
latter extending evaluation across multiple datasets. DenseNet-based CNN [27] improved feature reuse
but remained limited in scalability and lacked explicit attention modeling. Subsequent research began
incorporating attention mechanisms to enhance feature discrimination, as seen in the Attention-based
CNN [28], which also included multi-dataset validation and basic explainability using visual interpretation.
More advanced architectures, such as the Swin Transformer [29] and Vanilla ViT [30], introduced self-
attention and hierarchical feature learning, enabling improved global context modeling; however, these
studies did not integrate feature optimization techniques, such as PSO or alternative classifiers, like SVM.
Their ongoing integration within medical image analysis continues to drive advances toward accurate,
reliable, and interpretable diagnostic systems. A comparative summary of these methods with respect to
Vision Transformer usage, attention mechanisms, dataset scope, feature optimization, classifier design, and
explainability is provided in Table 1.
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Table 1: Comparative analysis of state-of-the-art lung cancer detection approaches

References ViT CNN-
based

Uses
attention

mechanism

Multi-dataset
evaluation

PSO-based
feature

optimization

SVM
classifier XAI

Multi-view CNN [26] ✗ ✗ ✗ ✓ ✗ ✗ ✗

DenseNet CNN [27] ✗ ✗ ✗ ✗ ✗ ✗ ✗

Attention-based CNN [28] ✓ ✗ ✓ ✓ ✗ ✗ ✓

Swin Transformer [29] ✓ ✗ ✗ ✗ ✗ ✗ ✓

Vanilla ViT [30] ✓ ✗ ✗ ✗ ✗ ✗ ✓

3 Methodology
The proposed system combines Vision Transformers (ViT), Particle Swarm Optimization (PSO), and

Support Vector Machines (SVM) in a three-phase pipeline. The ViT backbone receives first input images,
which are then processed using dual attention (self-attention and CBAM) to generate high-dimensional
feature embeddings. A comprehensive feature vector of the global CLS token representation is constructed by
combining the CBAM-enhanced feature map and the global CLS token representation. Second, this feature
set is optimized using Particle Swarm Optimization, which selects a small subset of features by maximizing
classification fitness on the validation set, thereby reducing redundancy and computational complexity. PSO
is initialized with a population of candidate feature subsets, each evaluated by its classification accuracy,
and is refined to yield the best solution. Lastly, the selected features are fed into a Support Vector Machine
classifier to construct decision boundaries between benign and malignant cases. The SVM uses a radial basis
function kernel, with hyperparameters optimized within each fold to prevent data leakage. Such sequential
integration is such that ViT provides feature richness, PSO provides feature efficiency, and SVM provides
strong classification capabilities. The model’s interpretation process relied on the Gradient-weighted Class
Activation Mapping (Grad-CAM) visualization technique, as displayed in Fig. 1.

Figure 1: Proposed DualSet ViT-PSO-SVM architecture
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3.1 Datasets
This research works with three existing publicly available lung cancer image databases named LIDC-

IDRI [31], LUNA16 [32], and TCIA [33] Lung Cancer datasets. This study uses various annotated lung
image datasets to enable researchers to evaluate the DualSet ViT-PSO-SVM framework. The Lung Image
Database Consortium Image Collection (LIDC-IDRI) incorporates multiple clinical institution-based tho-
racic CT scans for diagnostic and screening use. One thousand eighteen patient images, with annotation
completed by experienced radiologists, show the presence of lung nodules ranging in size from 3 mm to
30 mm. The four independent radiologist evaluators annotated nodules by supplying diagnostic contours in
addition to malignancy detection and morphological description [31]. The database contains 7371 nodules
in high-definition image sections measuring 512 × 512 pixels. Within the LIDC-IDRI database, the Lung
Nodule Analysis 2016 (LUNA16) dataset has been specifically designed to enable lung nodule detection
and nodule classification evaluation. This subset contains 888 CT scans from LIDC-IDRI, excluding those
with ambiguous annotations and scans without nodules. There are 1186 positive nodules in the dataset,
identified by expert radiologists, with dimensions ranging from 3 mm to 30 mm. The database contains
precisely noted measurements of spatial position, together with diameter details, which serve as essential
metrics for evaluating lung cancer detection methods [32]. High-resolution medical images from both CT
scans and histopathological images constitute the primary data set for the The Cancer Imaging Archive
(TCIA) Lung Cancer dataset. The study uses images from the TCIA lung cancer collection, which comprises
high-resolution histopathological images of Non-Small Cell Lung Cancer (NSCLC). The dataset provides
histological classifications and patient clinical metadata, including cancer stage and subtype annotations,
facilitating research on tumor classification and prognosis. This dataset consists of 1325 images captured
from 211 lung cancer patients, each image annotated by experienced pathologists [33]. These three datasets
collectively provide diverse imaging data across CT and histopathology modalities, which are essential for
developing a robust, generalized framework for lung cancer diagnosis.

3.2 Data Preprocessing
To enhance the effectiveness of our lung cancer classification framework, images underwent preprocess-

ing steps, including normalization, augmentation, and segmentation. These steps aim to standardize image
inputs, improve model generalization, and accurately isolate regions of interest (e.g., lung nodules or can-
cerous tissues). Normalization standardizes pixel intensity across all images, facilitating faster convergence
during model training and ensuring consistency across datasets. In this work, min-max normalization was
used to scale pixel intensities to the range [0, 1]. Mathematically, this is expressed by Eq. (1):

Inorm(x , y) = I(x , y) − Imin

Imax − Imin
(1)

where I(x , y) represents the original pixel intensity, Imin is the minimum pixel intensity, and Imax. Imax
is the maximum intensity within the image. To improve the robustness and generalization of the model,
data augmentation techniques were applied, artificially increasing the variability and size of the training set.
Specifically, random rotations, translations, flips, and zooming operations were implemented. Rotating the
images randomly within an angle range θ using Eq. (2).

[x
′

y′] = [
cos(θ) − sin(θ)
sin(θ) cos(θ) ] [

x
y] (2)
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Horizontal flipping was performed by reversing the image pixels horizontally by using Eq. (3).

Iflip(x , y) = I(W − x , y) (3)

Random zooming was executed using scaling transformations by using Eq. (4).

Izoom(x , y) = I (x
s

, y
s
) (4)

where I(x , y) denotes the original pixel intensity, W is the image width, and θ denotes the angle of
rotation, with zoom factor uniformly sampled from a range such as [0.9, 1.1]. Image segmentation was
essential for isolating lung regions and tumor tissues, thereby significantly enhancing the model’s focus on
relevant features. Threshold-based segmentation using Otsu’s method was applied, effectively differentiating
foreground (lung tissue or nodules) from background regions. Otsu’s thresholding aims to minimize the
intra-class intensity variance, defined mathematically by using Eq. (5):

σ 2
w(t) = q1(t)σ 2

1 (t) + q2(t)σ 2
2 (t) (5)

where q1 and q2 are the pixel probabilities for two classes separated by a threshold t, and σ 2
1 and σ 2

2 denote
their respective variances. The optimal threshold t∗ minimizes σ 2

w(t) using Eq. (6).

t∗ = arg min
t
[σ 2

w(t)] (6)

Post-segmentation morphological operations such as erosion and dilation were also used to refine the
segmented boundaries.

3.3 Proposed Methodology
The proposed DualSet ViT-PSO-SVM framework integrates a ViT architecture enhanced by dual

attention mechanisms. The overall pipeline involves extracting deep visual features, optimizing them with
attention modules, and performing accurate lung cancer classification.

3.3.1 ViT Architecture
The ViT is adopted due to its ability to model global contextual information effectively. ViT splits

input images into fixed-size patches, each of which is linearly projected into an embedding space. Given an
input image x ∈ RH×W×C , it is segmented into N patches of size P × P. Each patch is flattened into vectors
xp ∈ R(P

2∗C). The embedding of patches is computed by using Eq. (7).

z0 = [x 1
pE; x2

pE; . . . ; xN
p E] + Epos (7)

where E is the learnable embedding matrix, and Epos represents positional embedding added to maintain
positional information. Transformer encoder layers then process these embeddings, each layer comprising
Multi-head Self-Attention (MSA) and Multilayer Perceptron (MLP) blocks, expressed by using Eqs. (8)
and (9).

z
′

l = MSA(LN (zl−1)) + zl−1 (8)

zl = MLP(LN(z
′

l) + z
′

l (9)

here, LN denotes Layer Normalization, zl−1 represents inputs to the lth layer, and zl is its output.
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3.3.2 Dual Attention Mechanisms
To enhance feature representation, the ViT architecture integrates dual attention mechanisms: Self-

Attention and Channel-Spatial Attention. Self-Attention captures global dependencies by computing
attention weights using queries Q, keys K, and values V , using Eq. (10).

Attention(Q , K , V) = softmax(QKT
√

dk
) (10)

where dk is the dimension of key vectors. We incorporate the Convolutional Block Attention Mod-
ule (CBAM), combining Channel and Spatial attention sequentially. Channel Attention (CA) selectively
highlights important feature channels, by using Eq. (11).

CA(F) = σ (MLP (AvgPool (F)) +MLP (MaxPool (F))) (11)

Spatial Attention (SA) highlights informative spatial locations by using Eq. (12).

SA(F) = σ (Conv2D ([AvgPool (F) ; MaxPool (F)])) (12)

where F represents feature maps, and σ is the sigmoid activation function. Thus, CBAM attention is
calculated by using Eq. (13).

F′ = CA(F) ⊗ F , F′′ = SA(F′) ⊗ F′ (13)

where ⊗ denotes element-wise multiplication.

3.3.3 Integration and Fusion Strategy
The final integration strategy fuses global features from the ViT’s Self-Attention block and enhanced

local features from the CBAM module. This integration creates a robust, multi-scale feature representation
for classification. The fusion feature is represented mathematically as in Eq. (14).

Ffused = [FVi T ; FCBAM] (14)

Finally, PSO selects optimized features from Ffused, and an SVM performs the final lung cancer classi-
fication.

Algorithm 1 summarizes the complete workflow.

Algorithm 1: DualSet ViT-PSO-SVM framework
Input: Lung Cancer Image I
Output: Predicted Class Label y
1. Preprocess image I (Normalization, Augmentation, Segmentation)
2. Divide preprocessed image into N patches.
3. Compute initial patch embeddings with positional encoding.
4. For each Transformer encoder layer l:

a. Compute z′l using Multi-head Self-Attention.
b. Update zl using MLP block.

5. Obtain global Vi T features FVi T .
(Continued)
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Algorithm 1 (continued)

6. Apply CBAM attention modules to FVi T :
a. Channel Attention → Spatial Attention.
b. Obtain enhanced local features FCBAM .

7. Concatenate global and local features:
Ffused ← Concatenate (FVi T , FCBAM)

8. Apply PSO to select optimal features Fopt.
9. Perform classification using optimized SVM classifier:

y ← SV M (Fopt)
10. Visualize predictions using Grad-CAM (Explainability).
Return Predicted Label y

3.4 Model Training and Validation
This section outlines the procedures employed for hyperparameter tuning, model training, validation,

testing, and the metrics used for evaluating the DualSet ViT-PSO-SVM framework. Hyperparameter tuning
was performed systematically using grid-search combined with cross-validation. Key hyperparameters
included. ViT parameters: Number of transformer layers (L ∈ [4, 6, 8]), attention heads (H ∈ [4, 8, 12]),
and embedding dimension (d ∈ [64, 128, 256]). PSO parameters: Number of particles (P ∈ [10, 20, 30]),
maximum iterations (Tmax ∈ [50, 100, 150]). SVM parameters: Regularization parameter C, kernel type
(l inear, RBF), and kernel parameter γ. The optimal parameter combination was selected based on valida-
tion accuracy. The DualSet ViT-PSO-SVM training was conducted using mini-batch gradient descent. Given
a training set [(xi , yi)]Ni=1, the objective was to minimize the cross-entropy loss by using Eq. (15).

L(θ) = − 1
N

N
∑
i=1

C
∑
c=1

yic log(pic) (15)

where yic represents the ground truth label and pic is the predicted probability for class ccc. The Adam
optimizer was employed with a learning rate initialized at 1 × 10−4, batch size of 32, and training epochs
of 100. Early stopping was applied to prevent model overfitting, with patience set at 10 epochs. The dataset
was divided into three subsets: 70% for training, 15% for validation, and 15% for testing. During training,
the validation set assessed model generalization and guided hyperparameter optimisation. After finalizing
the model hyperparameters, the test set was evaluated for performance independently. Validation accuracy
guided the early stopping mechanism, where training ceased when validation accuracy did not improve
over 100 consecutive epochs. The model was trained for 100 epochs with a batch size of 32 using the Adam
optimizer (β1 = 0.9, β2 = 0.999). The initial learning rate was set to 1 × 10−4 and scheduled to decay by a factor
of 0.1 at epochs 50 and 80. To prevent overfitting, early stopping with a patience of 10 epochs was applied based
on validation loss. Weight decay of 1 × 10−5 and dropout (rate = 0.3) were used as regularization strategies.
All experiments were conducted on an NVIDIA Tesla V100 GPU with 32 GB memory, and random seeds
were fixed to ensure reproducibility.

3.5 Evaluation Metrics
The model’s performance was quantified using multiple evaluation metrics, including accuracy

(see Eq. (16)), precision (see Eq. (17)), recall (see Eq. (18)), and F1-score (see Eq. (19)), widely accepted in
medical imaging classification tasks:
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Accuracy = TP + TN
TP + TN + FP + FN

(16)

Precision = TP
TP + FP

(17)

Recall = TP
TP + FN

(18)

F1 Score = 2 × Precision × Recall
Precision + Recall

(19)

here, TP, TN , FP and FN represent True Positive, True Negative, False Positive and False Negative
counts, respectively.

These metrics comprehensively evaluate the model’s ability to classify lung cancer accurately from
medical images.

4 Experimental Results
This section provides detailed experimental evaluations of the proposed DualSet ViT-PSO-SVM

model across three widely recognized lung cancer datasets: LIDC-IDRI, LUNA16, and TCIA Lung Cancer.
Performance metrics include accuracy, precision, recall, and F1-score. In all experiments, the datasets were
divided into 70% training, 15% validation, and 15% testing sets. The splitting was performed at the patient
level to ensure reproducibility and minimize data leakage by not displaying images of the same patient in
more than one subset. This method was also applied on a similar basis in all three situations of LIDC-IDRI,
LUNA16, and TCIA, and the specific patient identifiers in each split. The classification capabilities of the
proposed method were assessed on each dataset. Detailed results and visualization of model predictions are
provided in this section.

Table 2 compares the impact of different loss functions on model performance across three datasets.
The Hybrid Loss function achieves the highest accuracy, precision, recall, and F1-score, demonstrating its
effectiveness in optimizing lung cancer classification. It significantly outperforms Focal Loss and Structure
Loss, particularly in terms of reducing meaning errors and improving feature selection.

Table 2: Model performance comparison using different loss functions

Loss
function Dataset Accuracy

(%)
Precision

(%)
Recall

(%)
F1-Score

(%)
Mean
error

Max
error

Adaptive
error

Mean
feature

selection

Max
feature

selection

Focal loss
LIDC-IDRI 95.80 94.90 95.50 95.20 0.010 0.018 0.925 0.880 0.905

LUNA16 96.45 95.20 96.00 95.60 0.008 0.015 0.940 0.892 0.918
TCIA 94.30 92.75 93.60 93.10 0.012 0.020 0.910 0.875 0.890

Structure loss
LIDC-IDRI 96.75 95.50 96.20 95.85 0.007 0.012 0.955 0.910 0.930

LUNA16 97.10 96.00 96.80 96.40 0.006 0.011 0.960 0.920 0.940
TCIA 95.85 94.60 95.10 94.85 0.009 0.015 0.935 0.900 0.920

Hybrid loss
LIDC-IDRI 97.85 96.92 97.48 97.20 0.005 0.010 0.974 0.940 0.960

LUNA16 98.32 97.76 98.04 97.90 0.004 0.009 0.976 0.950 0.970
TCIA 96.75 95.50 96.20 95.85 0.006 0.012 0.950 0.920 0.940

Table 3 presents segmentation-based performance metrics for different loss functions. Hybrid Loss
consistently achieves higher Mean IoU, Dice Score, and Sensitivity, indicating its superior performance in
lung cancer image segmentation and feature extraction.
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Table 3: Model performance comparison based on used loss functions for training purposes

Approach Dataset Mean
IoU

Max
IoU

Mean
dice

Max
dice

Mean
sensitivity

Max
sensitivity

Mean
specificity

Max
specificity

Focal loss
LIDC-IDRI 0.765 0.812 0.835 0.878 0.920 0.985 0.970 0.990

LUNA16 0.780 0.825 0.848 0.886 0.910 0.980 0.960 0.985
TCIA 0.740 0.798 0.800 0.842 0.890 0.970 0.950 0.980

Structure loss
LIDC-IDRI 0.815 0.862 0.884 0.925 0.940 0.985 0.975 0.995

LUNA16 0.828 0.880 0.896 0.930 0.950 0.988 0.980 0.996
TCIA 0.780 0.845 0.850 0.890 0.920 0.980 0.970 0.995

Hybrid loss
LIDC-IDRI 0.860 0.912 0.906 0.950 0.960 0.990 0.985 0.998

LUNA16 0.875 0.928 0.920 0.955 0.970 0.992 0.990 0.999
TCIA 0.832 0.900 0.890 0.930 0.940 0.985 0.975 0.995

The proposed model demonstrated exceptional effectiveness in classifying the TCIA histopathological
dataset, achieving an accuracy rate of 96.75% and a precision of 95.50%.

Fig. 2a DualSet ViT-PSO-SVM Model on LIDC-IDRI dataset, Fig. 2b DualSet ViT-PSO-SVM Model
on LUNA16 dataset and Fig. 2c DualSet ViT-PSO-SVM Model on TCIA dataset.

Figure 2: Confusion matrix of the DualSet ViT-PSO-SVM on the different datasets

The testing procedure involved applying the proposed DualSet ViT-PSO-SVM model to analyze data
from different medical imaging datasets. A sustainable approach consisted of using the trained model on
datasets independent of what it learned. The model demonstrates its ability to apply results to different
imaging methods and acquisition settings and annotation practices through this analysis.
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For cross-dataset experiments, we followed two evaluation scenarios. In Scenario A, the model trained
on the LIDC-IDRI dataset → tested on LUNA16 and TCIA datasets. In Scenario B, the model trained
on the TCIA histopathological dataset → tested on LIDC-IDRI and LUNA16 datasets. The cross-dataset
performance metrics for Scenario A and Scenario B are summarized in Table 4.

Table 4: Cross-dataset performance for scenarios A & B

Scenario Tested dataset Accuracy (%) Precision (%) Recall (%) F1-Score (%)

A LUNA16 94.75 93.60 93.85 93.72
TCIA 84.50 82.15 81.60 81.87

B LIDC-IDRI 80.25 78.90 77.50 78.19
LUNA16 78.80 76.85 75.45 76.14

Scenario A demonstrated strong performance, particularly when generalizing from LIDC-IDRI to
LUNA16, as both datasets contain similar imaging modalities (CT scans). However, accuracy slightly
dropped (from 97.85% to 94.75%) due to minor differences in annotation criteria and image resolution.
A more noticeable performance decline was observed when tested on the histopathological TCIA dataset,
highlighting modality differences.

Fig. 3a,b depicts confusion matrices of DualSet ViT-PSO-SVM trained on LIDC-IDRI and tested on
LUNA16 and TCIA datasets, respectively.

Figure 3: Cross dataset confusion matrices (Scenario A)

Scenario B showed moderate generalization performance. When transferring knowledge from TCIA
histopathological data to CT-based datasets (LIDC-IDRI, LUNA16), accuracy dropped significantly due to
substantial differences in imaging modalities and underlying tissue characteristics.

Fig. 4 illustrates the cross-dataset evaluation confusion matrices under Scenario A, where the DualSet
ViT-PSO-SVM model was trained on the TCIA histopathological dataset and evaluated on two distinct CT-
based datasets. Fig. 4a shows the confusion matrix when tested on the LIDC-IDRI dataset, demonstrating
good classification performance but with noticeable misclassification between benign and malignant classes
due to differences in modality. Fig. 4b presents the confusion matrix for evaluation on the LUNA16 dataset,
highlighting similar performance trends with accurate predictions accompanied by some misclassifications,
which further indicate challenges when generalizing between different imaging modalities. This degradation
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can be attributed to simple modality differences, in which CT scans capture anatomical structures in
grayscale with varying Hounsfield units. In contrast, histopathology slides have high-resolution color data
that capture the morphology of cells. These differences lead to changes in the distribution of features that
challenge the transferability. Misclassified cases are often made of small or borderline lesions, which are
largely modality-specific. Future studies can alleviate the limitations proposed by domain adaptation, such as
aligning feature distributions across modalities, modality-specific pretraining on large-scale unlabeled data,
and reducing data variability through harmonization (by minimizing the difference between data to grasp
the concept better).

Figure 4: Cross-dataset confusion matrices (Scenario A)

One of the factors that needs to be considered when deploying the model in a real-world scenario
is that the model should be able to generalize to multi-center datasets, which are typically not consistent
regarding the types of scanners, the acquisition protocols, differences in staining (in the case of histopathol-
ogy), and skewed populations of benign and malignant cases. These aspects may cause domain shift and
lead to poor model performance if not addressed. Several approaches can be taken to strengthen this
environment. Firstly, data harmonization and normalization methods may minimize inter-center variability
during pre-processing. Second, it might be possible to adapt the model to new institutional data by domain
adaptation techniques (such as adversarial training, feature alignment, or domain-specific fine-tuning).
Third, acquisition-simulating data augmentation with realistic noise and protocol variations can enhance
resilience to acquisition variations. Lastly, skewed classes can be addressed with imbalance-conscious
training methods, such as focal loss, synthetic minority oversampling, or cost-sensitive learning. To ensure
that this framework can be successfully applied in various clinical settings, it will be essential to incorporate
these strategies into the further development of our framework.

Fig. 5 presents the training and validation loss curves for the DualSet ViT-PSO-SVM model across
four different datasets: LIDC-IDRI, LUNA16, TCIA, and the Combined Dataset (DualSet). Each subplot
illustrates the model’s learning behavior during 100 epochs of training, showing the training loss (blue curve)
and validation loss (red curve).
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Figure 5: Training and validation loss curves of the DualSet ViT-PSO-SVM model across different datasets

In Fig. 5a the training loss starts at approximately 0.8 and declines smoothly, indicating a steady learning
process. The validation loss follows a similar downward trajectory but remains slightly higher than the
training loss, suggesting good generalization with minimal overfitting. Around epoch 50, both losses stabilize
near 0.1, demonstrating the model’s convergence on LIDC-IDRI (CT-based lung nodule dataset).

The model exhibits a sharp decline in training loss, starting from around 0.78 and reaching a plateau near
0.09 by epoch 60 as shown in Fig. 5b. The validation loss stabilizes at a slightly higher value than the training
loss, suggesting the model has learned meaningful features while maintaining good generalization. The
fluctuations in early epochs indicate active feature extraction, a common phenomenon in CT-based datasets.

In Fig. 5c, the training loss initially starts at 0.85 and decreases smoothly, while the validation loss
remains slightly higher, starting at 0.88 before stabilizing near 0.11. This dataset, containing histopathological
images, presents a somewhat different loss curve due to the increased complexity of tissue feature represen-
tation. The model exhibits a stable convergence trend, albeit with minor fluctuations in the validation loss,
suggesting some variability in histopathology image learning.

In Fig. 5d, the training loss curve starts at 0.83, following a smooth exponential decline before leveling off
around 0.1 by epoch 70. The validation loss also follows a consistent pattern, slightly higher than the training
loss but without significant divergence, confirming strong generalization capabilities. The combination of
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CT and histopathological datasets presents a somewhat more complex loss pattern, yet the model adapts well
across modalities.

The recorded drop in performance with the switch to histopathology highlights the significant modality
gap regarding image resolution, texture features, and clinical semantics. This weakness highlights the need for
methods that can explicitly address the issue of cross-domain variability. Several strategies can address this
issue. To minimize the distribution shift between CT and histopathology representations, domain adaptation
algorithms, such as adversarial feature alignment or correlation alignment, may be employed first. Second,
pretraining each encoder on massive unlabeled CT and histopathology data through modality-specific
tasks could enable the encoder to learn domain-relevant features before fine-tuning. Third, cross-modality
generalization can be traded off against within-modality specificity using multi-branch structures, where
individual modality-specific encoders project to a common decision layer. Investigating these strategies is
a significant avenue for future practice, with the potential to enhance strength and clinical utility in the
diagnosis of multimodal lung cancer.

Fig. 6 demonstrates the interpretability of the DualSet ViT-PSO-SVM model predictions using Grad-
CAM (Gradient-weighted Class Activation Mapping) on representative lung cancer images.

Figure 6: Grad-CAM visualization for lung cancer classification

Although the Grad-CAM images in Fig. 6 indicate that the suggested framework has concentrated on
clinically significant areas, the boundaries of the tumor frequently lack clarity, especially when it comes
to small or irregularly shaped lesions. This is a shortcoming because Grad-CAM primarily emphasizes
regions of discriminative features rather than localizing in specific pixels. Consequently, this may lead to
underrepresentation of subtle margins of small nodules, which could affect vocational interpretability in
cases of borderline findings. To address this, future work may be conducted to expand the existing framework
into a hybrid segmentation-classification framework, where a segmentation module initially localizes
tumor regions and subsequent classification is performed. The heatmaps highlight regions of interest that
significantly influence the model’s decision-making. Brighter (warmer) regions indicate areas of higher
importance used by the model in predicting the presence or classification of lung cancer. These visualizations
enhance clinical interpretability by allowing medical professionals to validate the decision-making process
of the deep learning model, building trust and potentially improving diagnostic confidence.
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Table 5 evaluates the impact of each module in the DualSet ViT-PSO-SVM framework. The best per-
formance is observed when all four components (ViT-UNet, Dual Attention, PSO, and SVM) are integrated,
highlighting their collective contribution to improved classification accuracy and segmentation metrics.

Table 5: Model performance analysis based on the effectiveness of different proposed modules

ViT-
UNet

Dual
attention PSO SVM Dataset Accuracy

(%)
Precision

(%)
Recall

(%) F1-Score (%) Mean
IoU

Mean
dice

✓ LIDC-IDRI 94.50 93.20 94.00 93.60 0.750 0.810
✓ ✓ LUNA16 95.20 94.00 94.80 94.40 0.768 0.825
✓ ✓ ✓ TCIA 94.75 93.50 94.30 93.90 0.760 0.820
✓ ✓ ✓ ✓ LIDC-IDRI 97.85 96.92 97.48 97.20 0.860 0.906
✓ ✓ ✓ ✓ LUNA16 98.32 97.76 98.04 97.90 0.875 0.920
✓ ✓ ✓ ✓ TCIA 96.75 95.50 96.20 95.85 0.832 0.890

To evaluate the effectiveness and novelty of our proposed DualSet ViT-PSO-SVM method, we compared
its performance with existing state-of-the-art methods reported in the literature. The comparison focuses on
the accuracy of lung cancer classification, considering recent deep-learning approaches that utilize CNN and
Transformer-based architectures. Table 6 summarizes a comparative analysis of the proposed DualSet ViT-
PSO-SVM framework against state-of-the-art CNN- and Transformer-based models on three benchmark
datasets (LIDC-IDRI, LUNA16, and TCIA). The table reports classification performance (accuracy, precision,
recall, F1-score) along with computational efficiency metrics (average inference time per image and peak
GPU memory usage). Results demonstrate that the proposed method achieves superior accuracy and F1-
score while maintaining inference efficiency comparable to existing Transformer architectures.

Table 6: Comparative analysis of the proposed method with the state-of-the-art

Reference/
Model Dataset (s) Modality Accuracy

(%)
Precision

(%)
Recall

(%)
F1-Score

(%)

Inference
time

(s/Image)

GPU
memory

(GB)
3D CNN [34] LIDC-IDRI CT 91.33 89.25 90.70 89.97 0.018 1.8

Multi-view
CNN [26] LUNA16 CT 92.50 91.10 90.80 90.95 0.020 2.0

DenseNet-based
CNN [27] TCIA Histopathology 93.60 92.80 93.10 92.95 0.015 1.5

Attention-based
CNN [28]

LIDC-
IDRI,

LUNA16
CT 94.20 93.50 94.00 93.75 0.022 2.3

Swin
Transformer [29] TCIA Histopathology 94.85 94.30 94.60 94.45 0.029 3.2

ViT(Vanilla
Transformer) [30] LUNA16 CT 95.60 95.15 95.40 95.27 0.034 3.8

Proposed
DualSet ViT-

PSO-SVM

LIDC-IDRI CT 97.85 96.92 97.48 97.20 0.041 4.1
LUNA16 CT 98.32 97.76 98.04 97.90 0.041 4.1

TCIA Histopathology 96.75 95.50 96.20 95.85 0.041 4.1

The results illustrate that the proposed DualSet ViT-PSO-SVM approach achieves superior performance
compared to existing methods, consistently outperforming traditional CNN-based methods, attention-
enhanced CNNs, and recent Transformer models (including Swin Transformer and vanilla ViT). Specifically,
the proposed method improved the classification accuracy on the LIDC-IDRI dataset to 97.85%, surpassing
the previously best-reported accuracy of 94.20%. On the LUNA16 dataset, the proposed model achieved an
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accuracy of 98.32%, surpassing the previous best of 95.60% using a vanilla ViT. For histopathological images
in the TCIA dataset, our model also demonstrated superior accuracy (96.75%) compared to the previous
best of 94.85% obtained with Swin Transformer. The improved performance can be attributed to the effective
integration of ViT’s global feature extraction capabilities, optimal feature selection using PSO, and robust
classification via SVM. These components collectively enhance diagnostic accuracy, validating the novelty
and efficacy of our proposed framework.

5 Conclusion and Future Work
In this research, we proposed the DualSet ViT-PSO-SVM model, a novel deep-learning approach for

accurate lung cancer classification. The developed model integrates a ViT architecture to capture both
local and global features from lung cancer images. A dual attention mechanism, combining self-attention
and CBAM-based channel-spatial attention, significantly enhanced the quality of extracted features. We
optimized these features using PSO to reduce complexity and achieve greater accuracy. Furthermore,
we employed an SVM classifier to effectively classify lung cancer images from three well-known public
datasets: LIDC-IDRI, LUNA16, and TCIA. Comprehensive experimental evaluations demonstrated superior
performance compared to existing state-of-the-art methods. Cross-dataset evaluation further validated the
generalizability and clinical applicability of our model. Despite the promising results, our proposed method
exhibits certain limitations. The model’s generalization capability across significantly different imaging
modalities, such as CT and histopathological images, showed a decline in performance. Additionally, the
computational complexity associated with ViT architectures may limit practical deployment, especially in
clinical environments with constrained resources. Lastly, although validated extensively on public datasets,
further validation using clinical datasets from multiple institutions is necessary to fully confirm its practical
efficacy. Future studies can address current limitations by developing domain adaptation strategies that
enhance cross-modality robustness, ensuring consistent performance across diverse medical imaging data.
Additionally, it is essential to explore lightweight ViT architectures optimized for efficient real-time diagnosis
and easier clinical deployment. Further validation studies involving larger, multi-center clinical datasets will
provide critical insights into the model’s performance in real-world settings. Finally, expanding explainability
beyond Grad-CAM visualization could further enhance interpretability and promote acceptance among
clinicians, thereby improving clinical decision-making.
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