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ABSTRACT: Defect detection in printed circuit boards (PCB) remains challenging due to the difficulty of identifying
small-scale defects, the inefficiency of conventional approaches, and the interference from complex backgrounds. To
address these issues, this paper proposes SIM-Net, an enhanced detection framework derived from YOLOv11. The
model integrates SPDConv to preserve fine-grained features for small object detection, introduces a novel convolutional
partial attention module (C2PAM) to suppress redundant background information and highlight salient regions, and
employs a multi-scale fusion network (MFN) with a multi-grain contextual module (MGCT) to strengthen contextual
representation and accelerate inference. Experimental evaluations demonstrate that SIM-Net achieves 92.4% mAP, 92%
accuracy, and 89.4% recall with an inference speed of 75.1 FPS, outperforming existing state-of-the-art methods. These
results confirm the robustness and real-time applicability of SIM-Net for PCB defect inspection.

KEYWORDS: Deep learning; small object detection; PCB defect detection; attention mechanism; multi-scale fusion
network

1 Introduction
Printed circuit boards (PCB) are a fundamental infrastructure in the electronics industry, widely applied

in consumer electronics such as smartphones, laptops, and household appliances, as well as in complex
systems like large-scale industrial equipment [1]. As the cornerstone of modern electronic products, the
quality of PCB plays a decisive role in ensuring the reliable operation of electronic components. However,
due to process errors or insufficient quality control during manufacturing, PCB are prone to various defects.
Such defects may cause short circuits, overheating, or even catastrophic failures such as component burning
or explosion, thereby compromising both product safety and service life. Therefore, developing efficient
and accurate automated inspection methods for the rapid identification of minor PCB surface defects is
of great importance, not only for improving product quality but also for ensuring the reliable operation of
electronic devices.

With the continuous advancement of PCB technology, traditional manual inspection and rule-based
automatic optical inspection (AOI) methods have become insufficient, suffering from inefficiency, false
detection, and high costs [2–4]. Although machine vision improves speed and adaptability, it still relies on
manual feature extraction and is sensitive to noise, lighting, and texture variations, which limits its robustness
in real production. Recently, deep learning methods have emerged as the mainstream solution for PCB
defect detection due to their automatic feature extraction, strong generalization, and robustness, as they can
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simultaneously perform defect localization and recognition in an end-to-end manner [5]. Building upon
this trend, researchers have proposed various improvements to adapt deep learning models for PCB defect
detection. For instance, Jiang et al. [6] developed RAR-SSD, a PCB defect detection model that integrates
multi-scale features and attention mechanisms. In this design, surface feature extraction is improved by
employing a lightweight receptive field block (RFB-s) along with an attention module. Consequently, the
fusion of low- and high-level features is carried out via a feature fusion module, which further enhances the
accuracy of detection. Zhang et al. [7] introduced LDD-Net, a lightweight PCB defect detection network
that incorporates multi-scale features. The model has a lightweight feature extraction module, a multi-scale
aggregation network and a lightweight decoupling detection header, which greatly reduces the amount of
calculation while maintained high detection accuracy. However, its performance is slightly compromised
when the specific types of small-scale defects need to be identified.

In summary, reliable detection of PCB surface defects still faces several challenges compared with gen-
eral object detection: (1) the large number of defect categories and their visual similarity to the background
often cause false alarms; (2) defect regions are usually very small, leading to missed detection; (3) existing
models demand high computational resources, while real-time performance is crucial in industrial practice.
To address these issues, this paper focuses on developing an efficient and robust deep learning framework
tailored for PCB defect detection. Although YOLOv11 has shown strong results in generic object detection, its
direct application to PCB inspection is limited under the above constraints. Therefore, we propose SIM-Net,
a model that introduces three targeted improvements over the YOLOv11 baseline. Compared with existing
approaches, the proposed method with these enhancements enables the faster and more accurate detection
of surface defects in PCB, which indicates its potential for application in industrial environments.

The main contributions of this study are summarized as follows:

• The SPDConv module is integrated into the backbone of SIM-Net to enhance the feature representation
of small defect regions. By converting spatial dimensions into channel dimensions, SPDConv [8]
mitigates the loss of fine-grained information and significantly improves the performance in detecting
small-scale defects.

• The hybrid attention mechanism C2PAM emphasizes informative regions while suppressing redun-
dant information. With the convolutional block attention module (CBAM) incorporated [9], C2PAM
captures critical features across multiple dimensions, improving adaptability to complex defect detec-
tion environments.

• MFN is developed to efficiently integrate multi-scale information to enhance the performance in
feature fusion. Built upon the bidirectional feature pyramid network (BiFPN) [10], MFN facilitates
effective inter-level feature interaction. Furthermore, the multi-grain contextual module (MGCT)
expands the receptive field and captures richer contextual information, further accelerating defect
detection inference.

• The complete SIM-Net framework integrates the above modules while considering the unique character-
istics of PCB defects. Experimental results on a PCB defect dataset demonstrate that SIM-Net achieves
superior accuracy and efficiency compared with state-of-the-art models, highlighting its robustness and
potential for real-world industrial deployment.
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2 Related Works
In recent years, deep learning-based algorithms for PCB defect detection have attracted increasing

attention due to rapid advancements in computer vision. These approaches primarily focus on object
detection methods, which are generally categorized into two types: two-stage and one-stage [11].

2.1 Two-Stage Object Detection Algorithms
In two-stage object detection, a set of candidate regions is initially proposed, and their features are

subsequently extracted using convolutional neural networks. A linear binary classifier is then employed to
classify the extracted features, while the bounding box positions are refined through regression optimization
to obtain the final detection results. The typical methods of two-stage object detection include the region-
based convolutional neural network (R-CNN) [12] and its improved version Faster R-CNN [13]. Hu and
Wang [14] developed a PCB defect detection model based on the Faster R-CNN with ResNet50 as the
backbone network, achieving accurate identification of small-scale defects. Li et al. [15] combined the
Hybrid-YOLOv2 architecture with Faster R-CNN, attaining 96.73% accuracy in detecting PCB small defects
and improving production line efficiency by 33%. Li et al. [16] introduced a GAN-based weak defect
generation method and a fusion-controlled Faster RCNN network with attention and EIOU optimization,
achieving superior PCB defect detection performance with a mAP of 98.54%. Chen et al. [17] proposed the
SP-Faster RCNN network integrating split attention and FPN to achieve high-accuracy, real-time detection
of small PCB defects, significantly improving industrial inspection performance. Despite the higher accuracy
achieved by two-stage detection algorithms, their computational cost remains high due to the redundant
information generated during the proposal stage. Furthermore, detection speed is constrained by the
sequential generation and processing of region proposals. Consequently, these limitations render two-stage
methods less practical for real-time, high-throughput detection in industrial manufacturing environments.

2.2 One-Stage Object Detection Algorithms
Involving a regression-based approach, one-stage object detection algorithms directly generate object

classifications and bounding box predictions from input images through a single forward pass. Compared
with two-stage detection methods, they provide higher detection efficiency while requiring fewer compu-
tational resources. Therefore, one-stage object detection algorithms has become a focal area of research in
PCB defect inspection, particularly in industrial environments where real-time performance is essential.
Representative methods in this category include the you only look once (YOLO) [18,19] series and single
shot multibox detector (SSD) [20]. Wang et al. [21] developed an improved one-stage PCB defect detection
method, YOLOX-MSA, derived from the YOLOX algorithm and enhanced with a multi-scale attention
(MSA) mechanism, enabling high-precision, real-time inspection and extending the model to detect small
defects in non-polar materials. Adibhatla et al. [22] presented a PCB defect detection method based on
YOLOv5 to address the instability of traditional manual visual inspection methods; their their approach
achieved a mean average precision (mAP) of 0.895 while optimizing the network structure to reduce
computational costs. Liu and Wen [23] integrated YOLO with MobileNetV2 to form a lightweight, real-
time, and highly portable PCB defect detection network, facilitating deployment in practical industrial
production settings. Xiao et al. [24] proposed the CDI-YOLO algorithm, which incorporates coordinate
attention, DSConv, and Inner-CIoU into YOLOv7-tiny, balancing accuracy, speed, and model efficiency for
PCB defect detection. Wang et al. [25] introduced the YOLO-RLC algorithm, which enhances YOLOv5
with residual large convolution kernels, bidirectional weighted feature fusion, and noise filtering, achieving
97.3% detection accuracy and 76.7 FPS for PCB surface defect detection. Although these studies have made
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considerable progress, several limitations remain. For instance, some methods are less effective for small-
sized defects, which constrains detection accuracy. In addition, inference latency is often increased due to the
introduction of additional parameterized modules or deeper detection structures, compromising real-time
applicability in industrial scenarios. Therefore, a critical challenge in PCB defect detection is to design deep
learning models that achieve high detection accuracy and fast inference speed simultaneously.

3 Methodology

3.1 Overall Framework of SIM-Net
Fig. 1 presents the overall architecture of the proposed SIM-Net algorithm, which is composed of three

key modules: SPDConv, C2PAM, and MFN. (1) Firstly, YOLOv11 is employed as the backbone detector. As
the most recent release in Ultralytics’ YOLO family, YOLOv11 extends YOLOv8 with notable advances in
accuracy, inference speed, and computational efficiency, marking a substantial step forward in real-time
object detection. In this version, the original C2f block of YOLOv8 is replaced by a cross-stage partial module
with kernel size 2 (C3k2), where two lightweight convolutional layers implement the CSP computation
more effectively. In addition, a cross-stage partial with spatial attention (C2PSA) is inserted after the spatial
pyramid pooling–fast (SPPF) module, and two depthwise convolutions (DWConv) are integrated into
the classification branch of the decoupled head. (2) Secondly, to enhance feature extraction, SPDConv is
introduced into the backbone. The space-to-depth (SPD) operation downsamples the feature map X while
retaining all information in the channel dimension. This design alleviates the loss of fine-grained details
and strengthens feature learning, particularly for blurred images or small-scale objects. (3) Thirdly, a novel
C2PAM mechanism is proposed by combining C2PSA with the CBAM module. This hybrid attention guides
the network toward salient regions and significantly improves sensitivity to subtle image details. (4) Finally,
the MFN module is adopted in the neck. Beyond BiFPN, a lightweight MGCT module is embedded to further
refine feature aggregation. By fusing multi-level feature maps, MFN enhances detection accuracy for small
objects in complex or cluttered backgrounds.

3.2 SPDConv Module
SPDConv is composed of an SPD layer and a non-strided convolution layer, designed as an alternative

to conventional strided convolutions and pooling operations in CNNs. The SPD layer re-scales the input
feature map by reducing its spatial resolution while expanding the channel dimension, thereby retaining
information within the channel space. The subsequent non-strided convolution operates on each pixel or
feature individually, primarily to adjust the number of channels. This design aims to preserve fine-grained
details and minimize information loss.

Starting from the initial feature map X, the SPD layer first slices it into multiple sub-maps. Down-
sampling is then performed with a predefined scale factor, dividing X into scale2 sub-feature maps. These
sub-maps are concatenated along the channel axis to form a composite feature map X0. Finally, a non-strided
convolution reduces the channel dimension, producing a new feature map X00. In this study, the scale factor
is set to 2. The overall process of SPDConv is illustrated in Fig. 2.
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Figure 1: The overall architecture of SIM-Net

Figure 2: Illustration of SPDConv when the scale = 2
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In this study, Within the YOLOv11 backbone, SPDConv is inserted after two convolutional layers.
The first SPDConv mitigates the spatial information loss typically caused by traditional downsampling,
compensating for the degradation of gradient features in the backbone. The second SPDConv complements
the output feature map with subsequent upsampled features, thereby enhancing multi-scale semantic rep-
resentation and improving cross-scale feature fusion. Compared with conventional convolution, SPDConv
not only reduces spatial dimensionality but also achieves a higher degree of information retention in the
channel dimension. This property significantly strengthens feature extraction, particularly for detecting
small PCB defects.

3.3 Convolutional Partial Attention Module
Based on convolutional neural networks (CNN), PCB defect detection algorithms can extract multi-

scale local features through convolutional kernels, enabling subtle differences in defect regions to be
effectively captured. To address the difficulty of detecting small-sized PCB defects, this paper proposes a
novel attention module, termed C2PAM. By integrating the C2PSA and CBAM mechanisms, C2PAM directs
the network toward salient regions, enhances sensitivity to fine image details, and suppresses redundant
information. Consequently, it improves the ability to detect objects across multiple scales and locations, while
maintaining robustness in complex environments. The structure of C2PAM is illustrated in Fig. 3.

Figure 3: Illustration of the C2PAM module

The C2PSA module is an advanced feature extraction component embedded in YOLOv11. It strengthens
multi-scale representation by combining the CSP structure with the pyramid squeeze attention (PSA)
mechanism. PSA captures spatial information at different scales by employing convolutional kernels of
varying sizes, while the squeeze-and-excitation (SE) operation adaptively reweights feature channels. This
design improves the network’s focus on targets of diverse scales.

The CBAM module consists of two sequential submodules: channel attention and spatial attention.
Given an input feature map, CBAM first generates a channel attention map and then a spatial attention
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map. By emphasizing informative features along both dimensions, CBAM adaptively refines representations
through element-wise multiplication with the original feature map. This dual-level refinement enables
the network to extract critical information more effectively, thereby enhancing PCB defect detection
performance under complex background conditions.

3.4 Multi-Scale Fusion Network
The accurate detection of small PCB defects remains a significant technical challenge, not only because

of the limited pixel information of small-scale targets but also due to the progressive attenuation of features
as convolutional layers deepen. To address this issue, the MFN module is designed to substantially enhance
small-object detection performance. MFN consists of two core components, BiFPN and MGCT, and is
specifically tailored to strengthen feature fusion, emphasize the representation of small PCB defects, and
improve the network’s ability to handle objects of varying sizes.

BiFPN is an advanced structure derived from feature pyramid networks (FPN) [26] and PANet. FPN
employs a top-down hierarchical design to leverage contextual information and effectively capture small-
target features. PANet extends this by introducing a bottom-up pathway to mitigate the limitation of one-way
information flow. BiFPN further refines these designs by incorporating a weighted bidirectional feature
fusion mechanism, enabling feature exchange across multiple levels and significantly improving multi-scale
object processing. In addition, BiFPN establishes bidirectional connections between adjacent pyramid levels:
high-resolution features are propagated upward through a bottom-up pathway, while low-resolution features
are enhanced downward via a top-down pathway. This bidirectional flow allows the network to capture richer
features across scales. Fig. 4 illustrates a comparison among three types of feature pyramid structures.

Figure 4: Comparison of three types of feature pyramid structures

The MGCT module, proposed in this study, is a lightweight and extensible component, as shown
in Fig. 5. MGCT integrates DWConv with a channel attention mechanism (CAM) to expand the local
receptive field and incorporate global contextual information. This design improves the network’s ability to
recognize multi-scale objects while maintaining manageable computational complexity, making it suitable
for practical deployment. When embedded into the BiFPN structure, MGCT enhances contextual modeling
along the feature fusion pathways and significantly improves the efficiency of multi-scale feature interaction.
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Figure 5: Illustration of the MGCT module

4 Experimental Results

4.1 Datasets
The public PCB defect dataset created by Peking University is comprised of 693 annotated images,

covering six typical defect types: 115 missing holes, 115 mouse bites, 116 open circuits, 116 short circuits,
115 spurs, and 116 spurious copper defects, as illustrated in Fig. 6. However, due to the limited number
of images and the small size of defect targets, this dataset poses certain challenges in model training and
performance evaluation. To enhance dataset diversity and increase the number of images, an augmented
dataset was created through various data augmentation techniques, including cropping, image flipping,
mirroring, translation, image synthesis, and Gaussian blurring. The resulting dataset, which contains 8000
images, is allocated to training, validation, and testing phases in the proportion of 8:1:1. To further evaluate
the generalization capability of the proposed model across different defect detection tasks, we conducted
experiments on the NEU-DET steel surface defect dataset [27]. This dataset contains 1800 annotated images
covering six common categories of steel surface defects, with 1260 images for training and 540 for testing.

Figure 6: Six types of typical PCB defects

4.2 Experimental Environment and Evaluation Criteria
In this study, the experiments were carried out in a software environment comprising PyTorch 1.11.0,

Python 3.8, Ubuntu 20.04, and CUDA 11.3. The hardware setup involved an NVIDIA GeForce RTX 4090
GPU (24 GB) and a 12 vCPU Intel(R) Xeon(R) Platinum 8352V CPU @ 2.10 GHz. The hyperparameters
adopted for model training are summarized in Table 1. To evaluate the effectiveness of SIM-Net, we con-
ducted comparative experiments against several widely used object detection models, including YOLOv5,
YOLOv8, YOLOv10 [28], YOLOv11s, YOLOv11n, YOLOv12n, SSD, and Faster R-CNN. The comparison
models were trained under the same hyperparameter settings as those applied for SIM-Net.
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Table 1: Hyperparameter settings

Parameters Value
Epoch 300

Batch size 64
Input size 640 × 640

Initial learning rate 0.01
Weight_decay 0.0005

Label_smoothing 0

The evaluation metrics employed in this experiment to assess model performance include
precision (P), recall (R), average precision (AP), mAP, F1 score, frames per second (FPS), parameter and
floating-point operations per second (FLOPs). The above estimates will include true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN), Among these metrics, TP represents the
number of positive samples correctly identified, while TN denotes the number of negative samples accurately
classified. FP corresponds to negative samples incorrectly predicted as positive, and FN refers to positive
samples misclassified as negative.

The P measures the proportion of true positives among all predicted positives, thereby reflecting the
model’s ability to minimize false positives. The formula for P is expressed as:

P = TP
TP + FP

(1)

The R metric measures the proportion of correctly identified positive samples relative to all actual
positives, thereby reflecting the model’s ability to detect all instances of a given class. The formula for R is
expressed as:

R = TP
TP + FN

(2)

AP evaluates the prediction accuracy for each class by integrating precision–recall curves. The formula
for AP is given as:

AP = ∫
1

0
P(R)dR (3)

As the mean value of the APs across all classes, the mAP provides a comprehensive measure of the
model’s overall detection accuracy. The formula for mAP is expressed as:

mAP = 1
N

N
∑
i=1

APi (4)

The F1 score, defined as the harmonic mean of precision and recall, serves as a balanced indicator of
model performance that accounts for both false positives and false negatives. The formula for F1 is:

F1 = 2 × Precision × Recall
Precision + Recall

(5)
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As a metric representing the throughput of images processed per second, FPS reflects the computational
speed of the model on a designated hardware platform, with higher values indicating faster detection
capability. The parameter count represents the scale of learnable weights in the network, which directly affects
the storage footprint and memory requirements of the model. FLOPs quantify the computational complexity
of the model, with lower FLOPs indicating reduced computational burden and higher efficiency.

4.3 Experimental Analysis and Comparison
4.3.1 Experimental Validation of SPDConv

With SPDConv integrated into the model, the performance in detecting small PCB defects is enhanced.
Unlike linear deformable convolution (LDConv) [29], which primarily focuses on adaptive receptive fields,
SPDConv introduces spatially adaptive sampling while preserving structural consistency, thereby improving
the model’s ability to capture fine-grained local features of small defects. To validate this approach, a
comparative experiment was conducted against LDConv. Table 2 lists the results of detection perfor-
mance comparison between incorporating SPDConv and LDConv into the YOLOv11n model. Apparently,
YOLOv11n + SPDConv outperforms YOLOv11n + LDConv in precision, recall and mAP. These findings
indicate that SPDConv is more suitable for enhancing YOLOv11n in PCB defect detection, particularly for
small-scale defect scenarios.

Table 2: The performance of the detection model with different convolution

Method P/% R/% mAP@0.5/%
YOLOv11n + LDConv 77.7 71.5 77.6

YOLOv11n + SPDConv 88.9 86.3 89.8

4.3.2 Experimental Validation of C2PAM
By incorporating the C2PAM attention mechanism, the negative impact of complex backgrounds is

alleviated and the salient features of PCB surface defects are more effectively emphasized. In contrast to con-
ventional attention modules such as coordinate attention (CA) [30], efficient channel attention (ECA) [31],
global attention mechanism (GAM) [32], and CBAM, which tend to emphasize either channel or spatial
information in isolation, C2PAM establishes a more comprehensive interaction between positional and
spatial cues. This design enables the network to more accurately localize defect regions. In this study, C2PAM
was compared with several commonly used attention mechanisms. As presented in Table 3, YOLOv11n +
C2PAM achieves mAP@0.5 improvements of 5.1%, 6.3%, 5.5%, and 2.6% over YOLOv11n+CA, YOLOv11n+
ECA, YOLOv11n+GAM, and YOLOv11n+CBAM, respectively, while also outperforming them in precision
and recall. These results demonstrate that C2PAM effectively directs the network’s focus toward critical defect
regions, thereby yielding superior detection performance in PCB surface defect inspection.

4.3.3 Experimental Validation of MFN
In the proposed method of PCB defect detection, multi-scale feature fusion plays a crucial role in

capturing defects of varying sizes. The designed MFN enhances the integration of hierarchical features,
enabling the network to retain fine-grained spatial details while simultaneously strengthening semantic
representation across scales. To assess its effectiveness, MFN was compared with several representative
FPN, including multi-branch auxiliary feature pyramid network (MAFPN) [33], high frequency and spatial
perception feature pyramid network (HSFPN) [34], asymptotic feature pyramid network (AFPN) [35] and
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BiFPN. As reported in Table 4, although YOLOv11n +MFN yields slightly lower precision than YOLOv11n
+MAFPN and YOLOv11n + BiFPN, it achieves superior recall and mAP compared with the other variants.
These results indicate that MFN provides a more balanced trade-off between detection accuracy and
robustness, making it particularly suitable for multi-scale PCB defect detection.

Table 3: The performance of the detection model with different attention mechanisms

Method P/% R/% mAP@0.5/%
YOLOv11n + CA 81.1 83.2 86.1

YOLOv11n + ECA 80 83.3 84.9
YOLOv11n + GAM 78.6 84.7 85.7

YOLOv11n + CBAM 85.3 86.1 88.6
YOLOv11n + C2PAM 89.7 88 91.2

Table 4: The performance of the detection model with different FPN

Method P/% R/% mAP@0.5/%
YOLOv11n +MAFPN 87.5 84.9 89
YOLOv11n +HSFPN 80 83.1 85.3
YOLOv11n + AFPN 81.9 86.5 87.9
YOLOv11n + BiFPN 87.1 85.7 89.5
YOLOv11n +MFN 86.7 88 90.3

4.3.4 Ablation Experiment
To quantify the contribution of each module to model performance, we conducted ablation experiments

on the PCB defect dataset using SIM-Net. Six experimental configurations were designed, where “
√

”
indicates the inclusion of a module and “×” denotes its absence, as summarized in Table 5. The results
demonstrate that although the introduction of SPDConv slightly increased the number of parameters and
computational cost, it effectively alleviated the loss of fine-grained features, leading to a 2.7% improvement
in detection accuracy. Subsequently, the C2PAM attention mechanism, by focusing on multi-dimensional
and multi-scale spatial information, significantly enhanced the model’s perception of complex backgrounds,
improving recall by 2.2% and raising mAP@0.5 by 2%. Nevertheless, detecting small objects remains
challenging due to limited pixel information. Finally, the MFN module further strengthened multi-scale
feature fusion, boosting the model’s representational capacity and achieving an overall accuracy of 92%
with an mAP@0.5 of 92.4%. Moreover, MFN not only enhanced multi-scale feature fusion but also reduced
computational complexity. Notably, the FLOPs of the improved model are only 9.0, highlighting its efficiency
while maintaining high detection accuracy.

Compared with the baseline YOLOv11n, the proposed method achieved notable improvements:
mAP@0.5 increased by 3.4%, precision by 5.8%, recall by 2.6%, and F1-score by 4.2%. As illustrated in Fig. 7,
the enlarged area under the precision–recall curve further validates the effectiveness of the proposed
approach. Overall, the analysis indicates that optimizing YOLOv11n with a single module yields limited gains,
whereas the joint integration of SPDConv, C2PAM, and MFN provides complementary advantages, forming
an efficient SIM-Net framework for PCB defect detection.
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Table 5: Ablation study results of the proposed method

Group SPDConv C2PAM MFN P/% R/% F1/% mAP@0.5/% Params/M FLOPs/G
1 × × × 86.2 86.8 86.46 89.2 2.58 6.3
2

√ × × 88.9 86.3 87.57 89.8 2.84 11.1
3 × √ × 89.7 88 88.9 91.2 2.59 6.3
4 × × √

86.7 88 87.85 90.3 2.66 6.5
5

√ √ × 89.2 89 89.07 91.8 2.84 10.3
6

√ √ √
92 89.4 90.66 92.4 2.92 9.0

Figure 7: P-R curve

4.3.5 Comparison with Other Methods on PCB
To comprehensively evaluate the proposed method in terms of detection accuracy and lightweight

characteristics, SIM-Net was compared with several state-of-the-art detectors, including Faster R-CNN, SSD,
YOLOv5n, YOLOv8n, YOLOv10n, YOLOv11n, YOLOv11s, and YOLOv12n, under identical hyperparameter
settings on the PCB surface defect dataset. As shown in Table 6, with only 2.92M parameters, the proposed
SIM-Net method achieved a remarkably high mAP@0.5 of 92.4%, surpassing Faster R-CNN by 9.8%, SSD
by 8.7%, YOLOv5n by 4.1%, YOLOv8n by 3.6%, YOLOv10n by 3.7%, YOLOv11n by 3.2%, YOLOv11s by 3.8%,
and YOLOv12n by 2.9%. In addition, SIM-Net achieved a high inference speed of 75.1 FPS, which is 1.1 FPS
faster than YOLOv11n, thereby satisfying the requirements of real-time PCB defect detection.
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Table 6: Comparison with others methods on PCB defect dataset

Method Params/M FPS mAP@0.5
/%

Missing_Hole
/%

Mouse_Bite
/%

Open_Circuit
/%

Short
/%

Spur
/%

Spurious_Copper
/%

Faster
R-CNN 108 18.3 81.6 92.9 77.4 80.3 80.4 81.0 77.6

SSD 93.1 39.8 83.7 97.5 76.4 89.7 84.5 76.7 77.3
YOLOv5n 2.50 78.7 88.3 98.3 78.3 88.7 86.1 86.1 91
YOLOv8n 3.00 86.4 88.8 98.6 79 90 88.5 87.3 89.6
YOLOv10n 2.69 74.2 88.7 98.3 81.1 90.8 91 88.5 80.6
YOLOv11n 2.58 73.9 89.2 98.8 80.8 90.6 88.9 85.5 90.5
YOLOv11s 9.41 73.4 88.6 98.4 80.2 90.2 89.3 82.1 90.2
YOLOv12n 2.55 62.2 89.5 99.1 79.8 90.4 88.7 82.6 90.3
OURS 2.92 75.1 92.4 98.3 81.2 91.5 96 94.7 94.2

For each defect category, SIM-Net exhibits robust detection capability across diverse defect types,
achieving particularly 96.0% for short, 94.7% for spurs, and 94.2% for spurious copper. Although the AP for
mouse bites is relatively lower, it still surpasses most competing methods, indicating improved sensitivity to
small and background-similar defects. In summary, the experimental results demonstrate that the proposed
SIM-Net achieves consistent improvements in PCB defect detection, particularly for short circuits, spur, and
spurious copper, where the gains are most pronounced. The method exhibits strong capability in identifying
small-sized defects, while maintaining a favorable balance between detection accuracy, computational
efficiency, and inference speed.

To further substantiate the effectiveness of the proposed SIM-Net, a visual comparison was conducted
with nine representative models on the PCB defect dataset. As shown in the visualization results Fig. 8, most
competing methods exhibited varying degrees of false or missed detections, particularly SSD, YOLOv10n,
and YOLOv12n. In contrast, SIM-Net consistently produced accurate predictions across defects of different
scales, with high confidence scores reinforcing the reliability of its outputs. These findings confirm that
SIM-Net not only achieves superior quantitative performance but also demonstrates robust visual detection
capability, thereby meeting the practical requirements of accurate and efficient PCB surface defect inspection.

Figure 8: Six types of typical PCB defects
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4.3.6 Comparison with Other Methods on NEU-DET
As shown in Table 7, the proposed model SIM-Net demonstrates superior overall performance on the

NEU-DET dataset compared with several methods. Specifically, SIM-Net outperforms all models in this
experiment, achieving 74.2% precision, 72.2% recall and 77.3%mAP@0.5. With only 2.92M parameters, the
model also maintains a compact architecture. Although its detection speed is slightly lower than YOLOv5n
and YOLOv8n, the achieved throughput remains sufficient for real-time industrial defect inspection. The
detection visualizations Fig. 9 further confirm the robustness of SIM-Net, showing its ability to accurately
localize and classify subtle and small-scale steel surface defects.

Table 7: Comparison of experimental results on NEU-DET

Method P/% R/% mAP@0.5/% Params/M FPS FLOPs
YOLOv5n 68.3 70.3 73.4 2.50 78.7 7.1
YOLOv8n 70.5 71.6 75.1 3.00 86.4 8.1
YOLOv11n 69.6 69.6 73.5 2.58 73.9 6.3
YOLOv12n 62.3 69.8 72.8 2.55 62.2 6.3

OURS 74.2 72.2 77.3 2.92 75.1 9.0

Figure 9: The detection visualizations on NEU-DET

5 Conclusion
In this paper, we propose an efficient and accurate method, termed SIM-Net, to address three

major challenges in PCB surface defect detection: complex backgrounds, small defect sizes, and real-time
requirements. First, the SPDConv module is introduced to mitigate the loss of fine-grained information
by transforming spatial dimensions into channel dimensions, thereby preserving detailed features of small
defects. Second, the C2PAM module is designed to capture subtle distinctions in defect regions by jointly
exploiting channel and spatial information, which enhances the model’s discriminative capability under
visually cluttered conditions. Finally, the MFN module is incorporated to strengthen multi-scale feature
aggregation and accelerate inference, enabling more reliable detection of small-scale defects without sac-
rificing speed. Extensive experiments on a benchmark PCB defect dataset demonstrate that the proposed
method achieves a mAP of 92.4%, while meeting real-time detection requirements and outperforming
existing state-of-the-art approaches.

Despite its strong capability for rapid and accurate PCB defect detection, several limitations remain.
The experimental dataset does not fully encompass the complete spectrum of defect categories, nor does
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it adequately represent highly complex or variable industrial environments. Moreover, research on model
lightweighting and compression is still insufficient. Future work can proceed along two main directions.
On the one hand, transfer learning may be employed to enrich the diversity and representativeness of PCB
defect datasets, thereby improving robustness in scenarios involving rare defect types, intricate background
textures, or domain shifts across production lines. This could involve cross-domain adaptation from
related manufacturing datasets and the use of synthetic data generation to alleviate class imbalance. On
the other hand, the computational demands of the model should be further reduced through advanced
compression strategies, such as structured pruning, knowledge distillation, and quantization-aware training.
These approaches would not only enhance detection efficiency but also enable low-latency, low-power
deployment on edge devices, facilitating real-time quality inspection in resource-constrained industrial
settings. Additionally, exploring hardware–algorithm co-optimization may further improve inference speed
and energy efficiency, ensuring scalability for large-scale manufacturing applications.
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