
echT PressScience

Doi:10.32604/cmc.2025.073237

ARTICLE

ISTIRDA: An Efficient Data Availability Sampling Scheme for Lightweight
Nodes in Blockchain

Jiaxi Wang1, Wenbo Sun2, Ziyuan Zhou1, Shihua Wu1, Jiang Xu1 and Shan Ji3,*

1School of Computer Science, School of Cyber Science and Engineering, Engineering Research Center of Digital Forensics, Ministry
of Education, Nanjing University of Information Science and Technology, Nanjing, 210044, China
2School of Software, Shandong University, No. 1500, Shunhua Road, High-Tech Industrial Development Zone, Jinan, 250101, China
3College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 169, Sheng Tai West Road,
Nanjing, 210016, China
*Corresponding Author: Shan Ji. Email: shanji@nuaa.edu.cn
Received: 13 September 2025; Accepted: 12 November 2025; Published: 10 February 2026

ABSTRACT: Lightweight nodes are crucial for blockchain scalability, but verifying the availability of complete block
data puts significant strain on bandwidth and latency. Existing data availability sampling (DAS) schemes either require
trusted setups or suffer from high communication overhead and low verification efficiency. This paper presents
ISTIRDA, a DAS scheme that lets light clients certify availability by sampling small random codeword symbols. Built
on ISTIR, an improved Reed–Solomon interactive oracle proof of proximity, ISTIRDA combines adaptive folding
with dynamic code rate adjustment to preserve soundness while lowering communication. This paper formalizes
opening consistency and prove security with bounded error in the random oracle model, giving polylogarithmic
verifier queries and no trusted setup. In a prototype compared with FRIDA under equal soundness, ISTIRDA reduces
communication by 40.65% to 80%. For data larger than 16 MB, ISTIRDA verifies faster and the advantage widens; at
128 MB, proofs are about 60% smaller and verification time is roughly 25% shorter, while prover overhead remains
modest. In peer-to-peer emulation under injected latency and loss, ISTIRDA reaches confidence more quickly and is
less sensitive to packet loss and load. These results indicate that ISTIRDA is a scalable and provably secure DAS scheme
suitable for high-throughput, large-block public blockchains, substantially easing bandwidth and latency pressure on
lightweight nodes.

KEYWORDS: Blockchain scalability; data availability sampling; lightweight nodes

1 Introduction
Blockchain’s decentralization, immutability, transparency, and traceability have driven impact across

finance [1–3], supply chains [4–6], healthcare [7–9], and digital identity [10–13], enabling more efficient,
secure, and auditable systems [14]. Nevertheless, scalability remains a primary barrier [15]: Ethereum
processes about 60 transactions per second [16], whereas conventional payment rails sustain roughly 1700
TPS and peak near 24,000. The proliferation of decentralized applications (dApps) aggravates congestion
and confirmation delays [17,18], reinforcing the urgency of scalable designs for broad adoption.

The use of lightweight nodes [19,20] is key to blockchain scalability. By storing only block headers, they
cut storage and computation costs, lowering the participation barrier and promoting decentralization [21].
But without full block data, they cannot directly verify transactions and thus rely on a secure data-availability
mechanism. We focus on public blockchains, where full and lightweight nodes coexist and decentralization

Copyright © 2026 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
https://doi.org/10.32604/cmc.2025.073237
https://www.techscience.com/doi/10.32604/cmc.2025.073237
mailto:shanji@nuaa.edu.cn

2 Comput Mater Contin. 2026;87(1):25

hinges on the participation of resource-constrained clients. We assume an open, adversarial peer-to-peer
setting (e.g., Ethereum-like networks), where lightweight nodes cannot trust arbitrary relays and instead
depend on cryptographic data-availability guarantees. This defines our threat model and performance goals,
and differentiates our work from permissioned or consortium settings.

Data availability sampling (DAS) [22] is a core cryptographic technique used to resolve the security and
performance trade-off in blockchain. This technique allows light nodes to efficiently verify the availability of
all data by randomly sampling a small amount of data. This enables light nodes to ensure network security
while maintaining low resource consumption.

However, existing DAS designs face various deployment and performance limitations. Hall-Andersen
et al. proposed two constructions of DAS schemes [23]. One construction uses vector commitments
combined with succinct non-interactive arguments of knowledge (SNARKs), which is sound but com-
putationally expensive and relies on strong cryptographic assumptions. Another, adopted by Ethereum,
uses two-dimensional Reed–Solomon (RS) codes [24] with Kate–Zaverucha–Goldberg (KZG) polynomial
commitment scheme [25], offering good performance at the expense of a heavy trusted setup. More recently,
Hall-Andersen et al. introduced a DAS scheme called FRIDA [26], which is built on FRI [27], a Fast Reed–
Solomon interactive oracle proof of proximity (IOPP). FRIDA does not require trusted setup, but still incurs
high constant factor communication costs and uses a fixed code rate that does not adapt well to different
data scales [28].

To overcome these limitations, we turn to improvements at the IOPP layer. In particular, our work
is inspired by the Shift-to-Improve-Rate (STIR) protocol [29]. STIR improves efficiency by reducing the
polynomial degree and code rate through recursion. However, its fixed folding ratio and code rate can lead
to redundancy or premature shrinking of the query domain. We therefore develop ISTIR, an improved RS
IOPP with adaptive folding and dynamic code-rate adjustment. Building on ISTIR, we design ISTIRDA, a
DAS scheme tailored for high-frequency and large-data settings. The main contributions of this work are
summarized as follows:

• This paper presents a DAS that couples recursive RS degree reduction with dynamic code-rate
adjustment, restructuring the IOPP to cut communication and accelerate verification—effects most
pronounced at large data scales, easing lightweight-node bandwidth pressure.

• This paper proposes an adaptive folding method that selects the folding ratio and adjusts the code rate
of each round based on the data size and security requirements, thereby maintaining efficiency and
avoiding redundant communication. After 16 MB, ISTIRDA is faster than FRIDA in verification speed,
and the gap will become larger and larger as the data size increases.

• This paper provides formal security under standard assumptions and a prototype evaluation: at D = 128
MB, the proof size of ISTIRDA is 60% smaller and the verification time 25% shorter than FRIDA, with
the query complexity, the verification time, and proof size reported.

2 Related Work

2.1 Data Availability and Origin of DAS
Data availability refers to the ability of all participants in a blockchain network to access the data needed

to verify transactions and blocks. This characteristic is crucial for maintaining the network’s decentralization
and trustlessness, enabling nodes to independently verify the blockchain’s history and state. DAS is a method
for verifying data availability without downloading the complete dataset, and is particularly suitable for
lightweight nodes with limited storage capacity.

Comput Mater Contin. 2026;87(1):25 3

The concept of DAS was first introduced by Al-Bassam et al. [22]. In a DAS scheme, a potentially
malicious block proposer encodes the block’s contents into a short commitment com and a larger codeword
π using an erasure code. The commitment com is placed in the block header. To verify that the block data
is available, lightweight nodes randomly sample a few positions in π. If those samples can be obtained
successfully, then with high probability the entire block data is available. Early implementations of this idea
discussed DAS only informally [30–32], without precise security definitions or formal proofs. Hall-Andersen
et al. [23] addressed this gap by formally defining DAS as a cryptographic primitive and introducing erasure-
code commitments as a way to guarantee data availability. They proved that a secure DAS scheme can be
built from any erasure-code commitment that meets certain binding and availability properties.

2.2 Existing DAS Protocols
To improve the efficiency of DAS in practice, Hall-Andersen et al. developed the FRIDA [26], which

applies the FRI protocol to data availability. FRIDA avoids a trusted setup and achieves communication
complexity that grows polylogarithmically with the block size. It was among the first schemes to explicitly
integrate an IOPP into a DAS design, demonstrating that the FRI protocol can be adapted for checking
data availability.

In parallel, Wagner et al. [33] presented PeerDAS, a scheme intended for integration into Ethereum.
PeerDAS uses RS codes in combination with KZG polynomial commitments to enable sampling-based data
availability checks for light clients. Their work describes optimizations for selecting random sample columns
and verifying the corresponding commitments efficiently.

Despite these advances, existing DAS protocols still face scalability challenges. Even schemes with
polylogarithmic complexity (such as FRIDA and PeerDAS) incur substantial communication and verifica-
tion costs when block sizes become very large. Moreover, static choices of code rate or sampling density
may be suboptimal under changing network conditions or adaptive adversaries. These limitations motivate
ISTIRDA. ISTIRDA introduces adaptive folding and dynamic rate adjustment to tune the coding and
sampling process for the data scale and threat model. In effect, ISTIRDA retains the security guarantees of
IOPP-based DAS while significantly lowering communication and verification overhead in high-throughput,
large-block settings. To highlight the advantages of our proposed scheme, Table 1 presents a comparison of
existing schemes.

Table 1: Structured comparison of DAS schemes

Scheme Trusted setup Code family Rate adaptivity Comm. Verifier time
Naive No RS/none None Ω(D) High

Merkle No Hash None O(λ log D) Low
PeerDAS Yes RS + KZG Limited polylog(D) Low
FRIDA No RS/FRI Fixed polylog(D) Good

ISTIRDA No RS/FRI-style Dynamic polylog(D) (smaller const.) Best for D≥16 MB

3 Preliminaries

3.1 Interactive Oracle Proofs of Proximity
Key parameters. Let L ⊆ Σn be a language over alphabet Σ. For x , y ∈ Σn , the Hamming distance

is d(x , y) = ∣{i ∈ [n]∶ xi ≠ yi}∣. Write d(x , L) = miny∈L d(x , y) and define the proximity set Lε = {x ∈ Σn∶
d(x , L) ≤ εn}.

4 Comput Mater Contin. 2026;87(1):25

Completeness. If x ∈ L, an honest P makes V accept with probability at least 1 − δ.
Soundness. If x ∉ Lε , any P′ convinces V with probability at most γ.
Query complexity. Q = ∑r

i=1 qi ≪ n.
Fig. 1 depicts the workflow of an IOPP. IOPP is an interactive protocol between a prover P and a verifier

V that certifies x ∈ Lε with sublinear query access to x. The protocol runs for r rounds with per-round
query budgets q1 , . . . , qr . In round i, ci = Vi(m1 , . . . , mi−1), mi = Pi(ci , x), Qi ⊆ [n], ∣Qi ∣ ≤ qi , and V reads
{x j} j∈Qi and checks consistency with mi . After r rounds V accepts if all checks pass.

In this paper, the sequence {ri} jointly drives adaptive folding and dynamic code-rate adjustment,
contracting the evaluation domain over rounds and reducing communication and verification cost so that
data availability can be certified with sublinear read access.

Figure 1: Workflow of an interactive oracle proofs of proximity

3.2 Reed–Solomon Codes
As visualized in Fig. 2, a message polynomial of degree strictly less than k is evaluated at n pairwise

distinct field points to produce n coded symbols; because RS codes are maximum distance separable, any k
symbols suffice to reconstruct the message.

Let Fq be a finite field and let α1 , . . . , αn ∈ Fq be pairwise distinct. An (n, k, d) RS code
encodes a message polynomial m(x) ∈ Fq[x] with deg m < k (equivalently, deg m ≤ k − 1) by evaluation:
c = (m(α1), . . . , m(αn)), R = k

n . Since RS codes are maximum distance separable, the minimum (Hamming)
distance is dmin = n − k + 1 and the unique-decoding radius is t = ⌊(n − k)/2⌋. Equivalently, encoding admits
the cyclic form c(x) = m(x) x n−k modh(x), for a suitable generator polynomial h(x), where n − k is the
number of parity symbols.

For illustration, take n = 8 and k = 4. Then R = 1
2 and dmin = n − k + 1 = 5, so up to t = ⌊(dmin − 1)/2⌋ =

⌊(n − k)/2⌋ = 2 symbol errors can be uniquely corrected. Increasing redundancy (i.e., decreasing k/n)
improves error-correction capability but raises communication and storage costs. In this paper, dynamic
code-rate adjustment adapts k/n to balance target robustness against resource budgets, selecting appropriate
rates across rounds and data scales.

Comput Mater Contin. 2026;87(1):25 5

data

code 1

code 2

code n

data

encode any k code

data

code 1

code 2

code n

data

encode any k cok de

data

code 1

code 2

code n

data

encode any k code

Figure 2: Illustration of RS codes

4 Our Proposed DAS Protocol

4.1 Overview
Fig. 3 illustrates the end-to-end flow of the proposed protocol: The original data is first Reed-Solomon

encoded to obtain the codeword π, which is then bound to the block header commitment com. This
interaction phase then proceeds, progressing by round i. The prover publicly publishes a queryable view
πi (derived from π through folding/state transfer). The verifier, comprised of two submodules, V1→ tran→
V2, collaborates to initiate sparse queries on πi and perform algebraic and cross-round consistency checks
under the constraints of the public commitment com. tran is responsible for transferring/contracting the
evaluation domain between rounds. Once all checks pass, the extractor extra combines the commitment
with the sampled symbols to recover the original data. If any step fails, the data is deemed unusable.

Encoding

Code extra

V1 V2

V1 V2

i

πi

i

πi

tran

tran

Commitment com Commitment com

Commitment com data

data

Figure 3: Flow of the data availability scheme

In what follows, we refine STIR [29] by removing redundant steps and introducing two mechanisms:
adaptive folding and dynamic code-rate adjustment. Unlike STIR’s fixed folding schedule, ISTIR selects
the folding ratio per round based on the remaining evaluation domain, residual polynomial degree,

6 Comput Mater Contin. 2026;87(1):25

and security/redundancy targets, thereby avoiding late-round over-redundancy and premature domain
contraction; this reduces both evaluation points and communication, especially at large data scales. The
dynamic code-rate rule re-optimizes the rate at each recursion rather than letting it decay on a fixed schedule,
balancing early-round bandwidth savings with stronger late-round soundness. We then analyze the resulting
complexity parameters, which serve as performance indicators for ISTIRDA.

We further prove that ISTIR satisfies opening consistency under our model, ensuring transcripts remain
well-structured across rounds, either close to a valid codeword or rejected, thus precluding attacks that
exploit recursive folding. This security foundation enables the standard transformation from ISTIR to an
erasure-code commitment and, following FRIDA’s framework [26], to a complete DAS scheme, which we
call ISTIRDA.

4.2 Construction of Our Protocol
Table 2 lists the protocol parameters and definitions. The specific protocol execution steps are as follows.

Table 2: Protocol parameters and definitions

Symbol Description
F A finite field.
M The number of iterations (M ∈ N).
d Initial degree parameter (d = 2x for some x ∈ N).

k0, . . . , kM Folding parameters (ki ∈ N, each a power of 2), satisfying d ≥ ∏i ki .
L0, . . . , LM Evaluation domains (Li ⊆ F), each a multiplicative subgroup of F∗ with ∣Li ∣ > d/∏ j≤i k j.
t0, . . . , tM Parameters for repeated sampling (ti ∈ N).

u Additional repetition parameter for outer-domain sampling (u ∈ N).
di Auxiliary variable defined as di ∶= ∏ j<i k j for each i ∈ {0, . . . , M}.

Initialization. Define function f0 ∶ L0 → F as a queried oracle. For an honest execution, the condition
f0 ∈ RS[F , L0, d0] holds true. Thus, the prover can respond accurately to oracle queries about polynomial f0.
This polynomial belongs to the space F<d0[X] and is restricted to domain L0.

Initial Folding Step. The verifier randomly selects a folding scalar rfold
0 from the field F and transmits it.

Interactive Protocol Rounds. For round index i = 1, . . . , M:

(a) Prover Polynomial Folding Transmission: The prover computes and submits the folded func-
tion hi ∶ Li → F. Under honesty, hi corresponds exactly to the evaluated folding polynomial ĥi ∶=
PolyFold(fi−1 , ki , rfold

i−1) on domain Li .
(b) The verifier selects random points: rout

i ,1 , . . . , rout
i ,u from domain Li outside previously queried positions.

(c) For these out-of-domain queries: The verifier receives responses βi ,1 , . . . , βi ,u from the prover. Under
honest conditions, each response is computed as βi , j = gi(rout

i , j).
(d) ISTIR-specific Communication: The verifier sends a random scalar rISTIR,comm

i ∈ F and points for
queries rISTIR,query

i ,1 , . . . , rISTIR,query
i ,t i

∈ Li−1.
(e) The prover transmits a prediction message, denoted Filli ∶ {0, 1}∗ → F, which is defined

as a polynomial. In the honest execution, this message is constructed by the prover as
Hi = {rISTIR,comm

i , rISTIR,query
i ,1 , . . . , rISTIR,query

i ,t i
}, and h′i = PolyQuotient(hi , Hi), and satisfies

Filli(rISTIR,query
i , j) = h′i(rISTIR,query

i , j)(if rISTIR,query
i , j ∈ Li).

Additionally, in an honest execution, the prover computes and transmits the polynomial

Comput Mater Contin. 2026;87(1):25 7

f ′i ∈ F<di [X] whose degree is corrected with respect to the challenge and folding set:
f ′i = DegCor(di , rISTIR,comm

i , hi , di − ∣Hi ∣). With the current round complete, the protocol transitions
into the next phase at index i + 1.

Final Round. At this stage, the prover outputs a polynomial ρ ∈ F<dM [X] consisting of dM coefficients.
When acting honestly, the polynomial satisfies ρ̂ = Fold(fM , kM , rfold

M).
Verifier Decision Phase. The verifier executes the following verification steps:

(a) Iterative Verification Procedure: For i = 1, . . . , M:
i. For each j ∈ [ti−1], the verifier evaluates Fold(fi−1 , ki−1 , rfold

i−1)(rISTIR,query
i−1, j). To do so, fi−1 must

be accessed at all ki−1 evaluation points in Li−1, where the relation xki−1 = rISTIR,query
i−1, j holds.

ii. Construct the query set Hi = {rISTIR,comm
i , rISTIR,query

i ,1 , . . . , rISTIR,query
i ,t i−1 }, and define a

response mapping Ansi ∶ Hi → F such that Ansi(rISTIR,comm
i , j) = βi , and for each j, we have

Ansi(rISTIR,query
i , j) = Fold(fi−1 , ki−1 , rfold

i−1)(rISTIR,query
i−1, j). Based on these assignments, the verifier

virtually computes the polynomial h′i = Quotient(hi , Hi , Ansi).
iii. Define a virtual oracle function f ′i : f ′i = DegCor (di , rISTIR,comm

i , hi , di − ∣Hi ∣).
In practice, any query to f ′i is redirected to hi if the input point is not in Hi , or to Filli otherwise.

(b) Consistency Check for the Final Folding Step:
i. Randomly select evaluation points rfinal

1 , . . . , rfinal
m ∈ LM .

ii. For each j ∈ [m], verify that ρ (rfinal
j) = Fold (fM , kM , rfold

M) (rfinal
j) holds.

iii. Cross-validate with Ansi : for all i ∈ {1, . . . , M} and x ∈ Hi ∩ Li , evaluate hi(x) and ensure
hi(x) = Ansi(x).

Algorithm 1 gives the Fiat-Shamir compact form of the interactive protocol described above, where the
challenge is derived in the random oracle model via rt = Hash(Tr). Throughout, we define ft ≡ kt (folding
factor/rate), τmin denotes the decoding margin, requiring (1 − ρ)/2 ≥ τmin.

Algorithm 1: ISTIR/IOPP (FS-compact)
Require: data D, field Fq , code (n0, k0) with ρ0=k0/n0, domain L0, terminal size Nmin, margin τmin
Ensure: Accept or Reject

1: Pack D→m; π0←RS_Encode(m); com←Commit(π0); Tr←(com); t←0
2: while ∣Lt ∣ > Nmin do
3: rt←Hash(Tr) ⊳ FS challenge
4: Choose (ft , ρt+1 , qt) with ∣Lt ∣/ ft ≥Nmin and (1 − ρt+1)/2≥τmin
5: (πt+1 ,Wt)←Fold(πt , ft , rt); Tr←Tr ∥ (πt+1 ,Wt)
6: Sample St⊆Lt , ∣St ∣=qt via rt; open πt ∣St ,Wt ∣St vs. com; if fail then return Reject
7: Lt+1←Lt/ ft ; t←t+1
8: end while
9: Final low-degree/proximity check on πt over Lt; if fail then Reject

10: return Accept

Complexity Parameters.
The protocol involves a total of 2M + 1 communication rounds. During each round indexed by i ∈

{1, . . . , M}, the prover transmits the folded polynomial hi with length ∣Li ∣, a set of out-of-domain responses
βi ,1 , . . . , βi ,u , and the oracle function Filli , which contains at most ti−1 + u symbols.

8 Comput Mater Contin. 2026;87(1):25

In the final stage, the prover additionally sends dM = d/∏M
j=0 k j field elements. Hence, the total proof

size accumulates to∑M
i=1 (∣Li ∣ + u + ti−1) + d

∏M
j=0 k j

. On the verifier’s side, it processes t0 queries, each requiring
the evaluation of k0 points. Since the same set of k0 points is always accessed as a unit, this allows for treating
them as a single composite symbol, and the input query cost in this alphabet is thus t0. For subsequent
rounds i ∈ {1, . . . , M}, the verifier issues ti queries to the folded polynomial: Fold(fi−1 , ki−1 , rfold

i−1), which
necessitates reading ki−1 grouped symbols from the previous function fi−1.

In addition, the verifier may submit up to ∣Hi ∣ ≤ ti−1 individual queries to fi . When i = 1, these queries
directly access terminal data. For i > 1, however, fi represents a virtual layer, where each access is rerouted
either to a single point evaluation of Filli−1, or to a corresponding position in hi−1, which again involves
accessing ki−1 symbols. Because the ki symbols are accessed simultaneously, they can be compressed into a
single higher-level symbol. Therefore, the query complexity of the proof string is 2 ⋅ ∑M

i=1 ti .

4.3 Opening Consistency
4.3.1 Defining the Suitable Transcript Set

In an interactive ISTIR protocol, a partial transcript is any prefix of the interaction between the prover
and the verifier.

The lucky set consists of partial prover transcripts that satisfy algebraic collision and proximity
conditions. In round i the prover sends Hi−1; let H∗i be a nearest codeword. If there exists an algebraic hashhρi

such that hρi
(Hi−1) collides with hρi

(H∗i), and the designated blockwise distance and post-folding proximity
conditions hold, then the transcript up to round i is lucky.

Formally, the lucky set contains all partial transcripts for which either hρ(Hi−1) = hρ(H∗i−1) or the
folding step honestly reduces the distance.

Definition 1 (Lucky Set for ISTIR). Define the unique decoding radius as δ∗ = (1 − ρ)/2. The collection
of partial prover transcripts referred to as the lucky set is given by Lucky = LuckyColl ∪ LuckyDist, with the
components defined by the following steps:

A partial transcript of the form (H0, ρ1 , . . . , Hi−1 , ρi) is said to belong to LuckyColl if the following
two criteria are satisfied simultaneously:

(a) The symbol vector Hi−1 resides within the decoding radius of the ball around code Ci−1, i.e.,
δB(Hi−1 , Ci−1) ≤ δ∗, where H∗i−1 ∈ Ci−1 denotes the nearest codeword.

(b) There exists some element ui ∈ Li such that the evaluations of the hash function coincide, i.e.,
hρi
[Hi−1](ui) = hρi

[H∗i−1](ui), while for some ui−1 ∈ Li−1, the deviation is nonzero: q(ui−1) = ui−1 ⋅
(Hi−1(ui−1) −H∗i−1(ui−1)) ≠ 0.

Furthermore, a partial transcript (H0, ρ1 , . . . , Hi−1 , ρi , Ci) is classified into LuckyDist if at least one
of the following holds: either the previous layer lies exactly on the boundary, i.e., δB(Hi−1 , Ci−1) = δ∗, and
the hash proximity satisfies δ(hρi

[Hi−1], Ci) ≤ δ∗; or alternatively, the hashed distance is strictly closer, i.e.,
δ(hρi

[Hi−1], Ci) < δB(Hi−1 , Ci−1) ≤ δ∗.
The definition of the bad set is relative to the lucky set. A partial transcript is considered part of the

bad set if it is not contained in the lucky set and satisfies certain specific “bad” conditions. These conditions
include: the prover’s final oracle message does not match the intended codeword; or in some round, the oracle
deviates from its expected codeword; or the oracle is closer to an incorrect codeword and fails to preserve
the folding structure.

Comput Mater Contin. 2026;87(1):25 9

Definition 2 (Bad Set in ISTIR). The unique decoding radius is given by δ∗ = (1 − ρ)/2. We define the
Bad set of a partial transcription (H0, ρ1 , H1 , . . . , ρr , Hr) as the set of all transcripts for which all prover
round prefixes are in the Lucky set and which also meet at least one of the following criteria:

(a) Hr ≠ Cr .
(b) there exists some i ∈ {0, . . . , r − 1} such that δB(Hi , Ci) > δ∗.
(c) for every i ∈ {0, . . . , r − 1}, the inequality δB(Hi , Ci) ≤ δ∗ holds; however, there exists some i ∈ [r]

such that H∗i ≠ hρi
[H∗i−1], where H∗i denotes the unique nearest codeword of Hi .

4.3.2 Four Fundamental Properties of Opening Consistency
No Luck. We need to show that for every i ∈ [k] (where k denotes the total number of rounds in ISTIR),

and for any subset of 2i − 1 elements of partial verifier transcripts T, the probability that their extension
reaches the lucky set is bounded.

During every round of interaction, the verifier selects a random challenge, and the prover replies based
on that challenge. By analyzing the folding of functions, hash operations, and codeword distances within
the ISTIR protocol, we can compute the probability that a transcript is extended into the lucky set under
certain conditions. For example, given T = (H0, ρ1 , ⋅ ⋅ ⋅ , Hi−1), when the verifier issues a new challenge ρi ,
we analyze the conditions under which T ○ ρi enters the lucky set. This may involve the behavior of function
Hi−1 and its nearest codeword under the hash operation, as well as considerations of blockwise and other
relevant distance conditions. Ultimately, we derive an upper bound for Prρi [T ○ ρi ∈ Lucky].

Lemma 1 (No Luck). ISTIR satisfies the No Luck property, and ε1 ≤ 2(F−1)∣L0 ∣
∣F∣

.
Proof. Fix i ∈ [r], and let T = (H0, ρ1 , ρ2 . . . , Hi−1) be a partial verifier transcript. Consider ρi ∈ F

sampled uniformly at random. We aim to upper-bound the probability that T ○ ρi ∈ Lucky. For the LuckyColl

case, we claim: Prρi [T ○ ρi ∈ LuckyColl] ≤ (F − 1)∣L0∣
∣F∣ . To prove this, we bound the probability over each

input ui ∈ Li causing LuckyCollui
. By union bound: Prρi [T ○ ρi ∈ LuckyColl] ≤ ∑ui∈Li Prρi [LuckyCollui

].

In what follows, fix an arbitrary ui ∈ Li and Prρi [LuckyCollui
] ≤ F − 1

∣F∣ . Since ∣Li ∣ ≤ ∣L0∣, this suffices.

To define LuckyCollui
, as the event that arises precisely when the following two conditions are met:

hρi
[Hi−1](ui) = hρi

[H∗i−1](ui) and {(ui−1 , Hi−1(ui−1))}ui−1∈q−1(ui) ≠ {(ui−1 , H∗i−1(ui−1))}ui−1∈q−1(ui). This
implies two distinct polynomials of degree at most (F − 1) agree on a point. Let p, p∗ ∈ FF denote the
coefficient vectors of Hi−1 and H∗i−1 under the hash operation hρi

. If we can show p ≠ p∗, the proof is
complete. Let ui−1,1 , . . . , ui−1,F ∈ Li−1 be the preimage set of ui . Define the associated Vandermonde matrix
Vui ∈ FF×F with j-th row (1, ui−1, j , . . . , uF−1

i−1, j), which is invertible.
Define hui , h∗ui

∈ FF as the evaluation vectors of Hi−1 and H∗i−1 on ui−1,1 , , . . . , ui−1,F , respectively. If
LuckyCollui

occurs, then hui ≠ h∗ui
, and thus: p = V−1

ui
hui ≠ V−1

ui
h∗ui

= p∗, so p ≠ p∗, which contradicts their
equality under hρi

. Therefore, the probability that this happens for any ui is at most 1/∣F∣ per degree-F
collision, and across (F − 1) degrees we get the desired bound. This completes the proof. ◻

Bad is Rejected. Suppose T = (H0, ρ1 , ⋅ ⋅ ⋅ , Hk) be a transcript with T ∈ Bad. Our goal is to show that
the probability Prρk+1 [VH0 ,H1 , ⋅ ⋅ ⋅ ,Hk(ρ1 , ⋅ ⋅ ⋅ , Hk , ρk+1) = 1] is bounded.

If a transcript T lies in the bad set, then by the definition of Bad, it either contains a final prover message
that is inconsistent with the code, or it contains some intermediate round where distance-related conditions
or folding operations do not permit switching arguments. We analyze the verifier’s acceptance probability
across these cases. For example, if the final prover message does not lie within the code, then according to

10 Comput Mater Contin. 2026;87(1):25

the ISTIR verification rule, the verifier’s probability of accepting during the final check should be negligibly
small. More generally, for the other types of badness, we can analyze the verifier’s decision process and the
structure of the code to upper-bound this acceptance probability.

Lemma 2 (Bad is Rejected). ISTIR satisfies the property that any transcript labeled as “Bad” will be
rejected by the verifier during the opening consistency process.

Proof. Consider T = (H0, ρ1 , H1 , . . . , ρr , Hr) such that T ∈ Bad, as defined in Definition 2. Let ρr+1 =
u0 ←$ L0 be a freshly sampled point from the domainL0, and execute the verifier’s procedure on the extended
transcript T ○ u0. The goal is to establish an upper bound on the probability that the verifier accepts. We
proceed by analyzing two scenarios. Firstly, suppose Hr ∉ Cr○ . In this situation, the verifier clearly rejects.

Now consider the case where Hr ∈ Cr○ . According to the definition of Bad, there must exist some
index i ∈ {0, . . . , r − 1} such that the decoding distance exceeds the unique radius, i.e., δB(Hi , Ci) > δ∗, or
alternatively, all such distances satisfy δB(Hi , Ci) ≤ δ∗ for i ∈ {0, . . . , r − 1}, but there is some i ∈ [r] for
which the decoding of Hi disagrees with the intended image under the hash, i.e., H∗i ≠ hρi

(H∗i−1), where H∗i
is the unique codeword closest to Hi . This completes the proof. ◻

Suitability is Close. Let T = (H0, ρ1 , . . . , Hk) denote a transcript that satisfies the conditions of both
Bad and Lucky sets. We aim to show that H0 (or more generally, the function or codeword involved) is within
decoding radius, i.e., δ(C , H0) ≤ δ∗.

According to the definitions of suitable transcripts, as well as those of Lucky and Bad sets, we analyze
how the ISTIR protocol operations in each round affect the distance between functions and codewords.
We demonstrate that all the operations composing a suitable transcript induce only limited growth in
codeword distance. For example, in a particular round, the folding or hashing operations may only slightly
alter the proximity between functions and their corresponding codewords. By combining such structural
and distance-preserving properties, and leveraging the metric’s definition, we conclude that the transcript
satisfies the “Suitability is Close” property.

Lemma 3 (Suitable is Close). ISTIR satisfies the “suitability is close” of opening consistency.
Proof. Suppose T = (H0, ρ1 , . . . , Hr) is suitable to both the bad set and the lucky set. This suitability

implies that T ∉ Bad, and none of its prefixes belong to Lucky. According to the definitions of Bad and
Lucky, we can conclude that δB(Hi , Ci) ≤ δ∗ holds. Then, by applying Lemma 2 from [26], it follows that
δ(Hi , Ci) ≤ δ∗. In particular, this inequality also holds for H0, which completes the proof. ◻

Inconsisteny is Rejected. Suppose T = (H0, ρ1 , . . . , Hk) is suitable to both the bad set and the
lucky set. Suppose H∗0 ∈ C is the only codeword nearest to H0. If there exists an index j ∈ Q0(T ○ ρk+1)
such that H0 j ≠ H∗0 j,then it must be shown that the transcript does not satisfy the verifier’s checks:
V H0 ,H1 , . . . ,Hk(ρ1 , . . . , Hk , ρk+1) = 0. When an inconsistency arises with respect to the unique closest code-
word, we analyze the verifier’s decision process and the verification rules of the ISTIR protocol. Since the
verifier performs function queries and corresponding checks in each round, we demonstrate—by analyzing
these operations and studying the inconsistency detection mechanism—that the verifier is capable of
identifying such inconsistencies and rejecting the transcript.

Lemma 4 (Inconsistency is Rejected). ISTIR satisfies the property of inconsistency rejection for
opening consistency.

Proof. Recall that suitability implies T ∉ Bad and none of its prefixes lie in Lucky. Suppose H∗i ∈ Ci is
the only codeword nearest to Hi . By the definition of Bad, we know H∗i = hρi

[H∗i−1] for every i ∈ [r]. Now,
consider using ρr+1 = u0 ∈ L0 to complete the transcript T. For each i ∈ [r], let ui be the value queried by the
ISTIR verifier, defined by ui = q(ui−1).

Comput Mater Contin. 2026;87(1):25 11

Now, there must exist a query location x ∈ Q0(T ○ u0) ⊆ L0 such that H∗0 (x) ≠ H0(x), and we aim to
prove that the completed transcript T ○ u0 is rejected by the verifier. Let i∗0 be the smallest index in {0, . . . , r}
such that for a queried location u′i ∈ Li , the verifier’s query yields Hi0(u′i0

) ≠ H∗i0
(u′i0

). Notice this index
exists since we assumed Hr = H∗r .

Moreover, since there exists a query x ∈ Q0(T ○ u0) ⊆ L0 with H∗0 (x) ≠ H0(x), we have i0 > 0. Such
an assumption cannot be reconciled with the fact that T ○ u0 is accepted. Then, we get the equality ∀i ∈
[r], Hi(ui) = Interpolate (ρi , {(ui−1 , Hi−1(ui−1)) ∣ ui−1 ∈ q−1(u)}), where Inter pol ate(z, U) receives z ∈ F
and U ⊆ F

2, putting the unique polynomial P(z) of a degree less than ∣U∣ that satisfies P(x) = y for all
(x , y) ∈ U . Therefore, we derive hρi0

[Hi0−1](ui0) = Hi0(ui0) = H∗i0
(ui0). Furthermore, we have H∗i0

(ui0) =
hρi0

[H∗i0−1(ui0)], because for all i we have H∗i0
= hρi0

[H∗i0−1].Therefore hρi0
[Hi0−1](ui0) = hρi0

[H∗i0−1](ui0).
By the definition of the minimal index i0, there must also exist a query location u′i0−1 ∈ Li0−1

satisfying q(u′i0−1) = ui0 and Hi0−1(u′i0−1) ≠ H∗i0−1(u′i0−1). Therefore, we conclude (H0, ρ1 , . . . , Hi0−1 , ρi0) ∈
LuckyCol l ⊆ Lucky, which contradicts the suitability assumption of transcript T. This completes the
proof. ◻

We formally state the opening consistency property of ISTIR in the next theorem.
Theorem 1 (Opening Consistency of ISTIR). ISTIR satisfies opening consistency relative to the formal

definitions of Bad and Lucky provided in Definitions 1 and 2, with error bounds ε1 and ε2, where ε1 ≤ 2(F−1)∣L0 ∣
∣F∣

and ε2 ≤ 1 − δ∗.

5 Performance
In this section, we conduct a detailed performance evaluation of ISTIRDA. Our evaluation metrics

include communication cost, verification time and Time-to-Confidence (TTC). For communication cost and
verification time, the schemes compared include Naive, Merkle, FRIDA, and ISTIRDA. Naive and Merkle
are used as baseline schemes. Our experimental environment is built on a single machine, equipped with
an Intel Core i7-9750H CPU running at 2.6 GHz, 16 GB of RAM, and a 64-bit Ubuntu 14.04 LTS operating
system. We use Python 3.8 for implementation. This setup ensures reliable and accurate results. To illustrate
system-level behavior, we measure TTC and compare only FRIDA and ISTIRDA. Because ISTIRDA targets
permissionless public blockchains, we evaluate it in a controlled peer-to-peer emulation rather than a live
network. One proposer process and 10–460 light-client processes run on a single physical host, and we inject
latency and packet loss via Linux tc/netem to approximate wide-area blockchain conditions. This preserves
the protocol’s logical one-to-many dissemination while giving us strict control over network parameters.
We report TTC, defined as the wall-clock time for a light client to reach the target availability confidence.
TTC is measured under fixed protocol and network parameters (block size, sampling rate λ, quorum size
k, round-trip latency) while varying only the number of light clients and the packet loss rate. A limitation
is that single-host emulation is not a substitute for a geographically distributed deployment or a public
testnet; Section 6 outlines ongoing work on multi-host and public Ethereum-compatible testnet evaluation.

5.1 Communication Cost
For different encoded data sizes D = ∣Data∣, we compare the commitment size, encoding size, commu-

nication complexity per query, and the total communication complexity of being able to reconstruct the data
with probability at least 1 − 2−40.

Fig. 4 presents a performance comparison among ISTIRDA, FRIDA, and other baseline schemes (Naive,
Merkle) under different data sizes (D = 1, D = 32, D = 128 MB), with respect to four evaluation metrics:
Commitment size (KB), Encoding (MB), Communication cost per query (KB), and Total communication

12 Comput Mater Contin. 2026;87(1):25

cost (MB). The communication cost incurred by ISTIRDA exhibits a significant advantage over that of
the FRIDA scheme. Specifically, as the data size increases, the communication cost of FRIDA ranges from
1.25 to 2.46 times that of ISTIRDA. This advantage becomes even more pronounced in scenarios with
large-scale data.

Naive Merkle FRIDA ISTIRDA

2
−4

2
−2

2
0

2
2

2
4

2
6

2
8

Commitment [KB]

D = 1 MB

D = 32 MB

D = 128 MB

Naive Merkle FRIDA ISTIRDA

2
1

2
3

2
5

2
7

2
9

2
11

Encoding [MB]

D = 1 MB

D = 32 MB

D = 128 MB

Naive Merkle FRIDA ISTIRDA

2
1

2
4

2
7

2
10

2
13

2
16

Per Query [KB]

D = 1 MB

D = 32 MB

D = 128 MB

Naive Merkle FRIDA ISTIRDA

2
1

2
3

2
5

2
7

2
9

2
11

2
13

2
15

Total [MB]

D = 1 MB

D = 32 MB

D = 128 MB

Figure 4: Performance comparison of data availability schemes across multiple metrics and data sizes

5.2 Time Cost
Prover computational time. In our tested dataset, the prover’s computational time for ISTIRDA is

slightly longer compared to FRIDA. According to measurements, its slowdown ranges from approximately
0.64 to 0.95 times. As shown in Table 3, when processing data of size ∣Data∣ = 16 MB, ISTIRDA takes 36.63
s to generate a proof sequentially, whereas FRIDA requires only 29.52 s.

Table 3: Prover and verifier computational costs for ISTIRDA and FRIDA under different data sizes

1MB 16 MB 32 MB 64 MB 128 MB
Prover cost (s): ISTIRDA 3.83 36.63 63.01 98.69 210.31
Prover cost (s): FRIDA 3.97 29.52 59.37 147.21 320.89

Verifier cost (ms): ISTIRDA 2.67 3.90 3.93 3.98 4.15
Verifier cost (ms): FRIDA 3.18 3.82 4.37 4.77 5.06

Verifier computational time. The data shows that when the data size D = 1 MB, FRIDA’s verification
time is shorter than that of ISTIRDA. At D = 16 MB, the verification times of both schemes are comparable.
However, for data sizes exceeding 16 MB, ISTIRDA’s verification time becomes shorter than FRIDA’s, and the
gap continues to widen as the data size increases. The underlying reason for this phenomenon is that when

Comput Mater Contin. 2026;87(1):25 13

D < 16 MB, ISTIRDA’s folding operation introduces computational overhead that outweighs its efficiency
advantages. For larger data sizes, the folding operation’s computational overhead increases slowly. Its growth
rate is significantly lower than the verifier’s data complexity growth. Therefore, for data sizes exceeding 16
MB, ISTIRDA’s verification time is significantly lower than that of FRIDA.

5.3 Time-to-Confidence
Fig. 5 shows how the time to reach a confident decision varies with node count and packet loss. We

observe that as node count and packet loss increase, FRIDA’s TTC rises sharply, indicating that it becomes
increasingly sensitive to load concentration. In contrast, ISTIRDA’s TTC curve is much flatter, indicating
that its distributed P2P collaborative architecture shares the load and maintains relatively fast convergence
to confidence. Thus, under large-scale or degraded network conditions, ISTIRDA exhibits a clear robustness
advantage over FRIDA.

Figure 5: Heatmaps of TTC. The x-axis represents node count, the y-axis represents packet loss rate, and the color
gradient indicates the time to reach a confident inference. (a) FRIDA; (b) ISTIRDA

6 Conclusion and Future Work
ISTIRDA improves upon DAS through rate-adaptive RS-IOPP (ISTIR), reducing the evaluation scope

without sacrificing reliability. Experiments demonstrate that ISTIRDA significantly reduces communication
and verifier time compared to Naive, Merkle, and FRIDA, especially for large data sizes (e.g., >16 MB), while
only adding a small amount of prover overhead. TTC results demonstrate that, under matched reliability
and typical bandwidth/loss conditions, ISTIRDA reaches the target availability confidence level faster, and
its advantage increases with increasing block size or deteriorating network conditions. This makes ISTIRDA
a reliable, scalable, and secure choice for lightweight clients.

This work demonstrates both the theoretical soundness and the practical feasibility of ISTIRDA for
public blockchains using a controlled peer-to-peer emulation. Future efforts will move beyond single-
machine tc/netem simulations toward physical multi-node testbeds and public testnets instrumented for
heterogeneous latency, churn, and loss. A prototype light client integrated into an existing blockchain client
(e.g., Geth or Nethermind) will enable end-to-end measurements of bandwidth, CPU/memory footprint,
TTC, and failure modes under live consensus dynamics. The comparative scope will expand to emerging
data availability designs, including 2D erasure-coded DA chains and ML-guided adaptive sampling to
dynamically optimize parameters like folding ratio in response to network conditions, thereby maximizing

14 Comput Mater Contin. 2026;87(1):25

efficiency while preserving soundness. These evaluations will stress-test scalability and robustness across data
scales and adversarial conditions. Finally, compatibility with Layer-2 systems will be explored by sampling
published batch data and exposing a lightweight API for provers and light clients, with experiments mapping
batch size, sampling rate, and security margins to L1/L2 throughput and latency.

Acknowledgement: The authors thank the Key Lab of Education Blockchain and Intelligent Technology, Ministry of
Education for supporting this study.

Funding Statement: This work was supported in part by the Research Fund of Key Lab of Education Blockchain and
Intelligent Technology, Ministry of Education (EBME25-F-08).

Author Contributions: Conceptualization, Jiaxi Wang; methodology, Jiaxi Wang; validation, Jiaxi Wang; investigation,
Wenbo Sun; resources, Ziyuan Zhou; writing—original draft preparation, Jiaxi Wang; writing—review and editing,
Shihua Wu; visualization, Jiaxi Wang; supervision, Shan Ji; project administration, Jiang Xu; funding acquisition, Shan
Ji. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: Not applicable.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Chang V, Baudier P, Zhang H, Xu Q, Zhang J, Arami M. How Blockchain can impact financial services—

the overview, challenges and recommendations from expert interviewees. Technol Forecast Soc Change.
2020;158(6):120166. doi:10.1016/j.techfore.2020.120166.

2. Patel R, Migliavacca M, Oriani ME. Blockchain in banking and finance: a bibliometric review. Res Int Bus Finance.
2022;62(4–5):101718. doi:10.1016/j.ribaf.2022.101718.

3. Kowalski M, Lee ZWY, Chan TKH. Blockchain technology and trust relationships in trade finance. Technol
Forecast Soc Change. 2021;166:120641. doi:10.1016/j.techfore.2021.120641.

4. Han Y, Fang X. Systematic review of adopting blockchain in supply chain management: bibliometric analysis and
theme discussion. Intl J Prod Res. 2024;62(3):991–1016. doi:10.1080/00207543.2023.2236241.

5. Surucu-Balci E, Iris Ç, Balci G. Digital information in maritime supply chains with blockchain and cloud platforms:
supply chain capabilities, barriers, and research opportunities. Technol Forecast Soc Change. 2024;198(16):122978.
doi:10.1016/j.techfore.2023.122978.

6. Ren Y, Leng Y, Qi J, Sharma PK, Wang J, Almakhadmeh Z, et al. Multiple cloud storage mechanism based on
blockchain in smart homes. Fut Gener Comput Syst. 2021;115(3):304–13. doi:10.1016/j.future.2020.09.019.

7. Miao J, Wang Z, Wu Z, Ning X, Tiwari P. A blockchain-enabled privacy-preserving authentication management
protocol for Internet of Medical Things. Exp Syst Appl. 2024;237(1):121329. doi:10.1016/j.eswa.2023.121329.

8. Samadhiya A, Kumar A, Arturo Garza-Reyes J, Luthra S, del Olmo García F. Unlock the potential: unveiling the
untapped possibilities of blockchain technology in revolutionizing Internet of medical things-based environments
through systematic review and future research propositions. Inf Sci. 2024;661(14):120140. doi:10.1016/j.ins.2024.
120140.

9. Zhou X, Huang W, Liang W, Yan Z, Ma J, Pan Y, et al. Federated distillation and blockchain empowered secure
knowledge sharing for Internet of medical Things. Inf Sci. 2024;662(4):120217. doi:10.1016/j.ins.2024.120217.

10. Yan Z, Zhao X, Liu YA, Luo XR. Blockchain-driven decentralized identity management: an interdisciplinary review
and research agenda. Inf Manag. 2024;61(7):104026.

11. Al Sibahee MA, Abduljabbar ZA, Ngueilbaye A, Luo C, Li J, Huang Y, et al. Blockchain-based authentication
schemes in smart environments: a systematic literature review. IEEE Internet Things J. 2024;11(21):34774–96. doi:10.
1109/jiot.2024.3422678.

https://doi.org/10.1016/j.techfore.2020.120166
https://doi.org/10.1016/j.ribaf.2022.101718
https://doi.org/10.1016/j.techfore.2021.120641
https://doi.org/10.1080/00207543.2023.2236241
https://doi.org/10.1016/j.techfore.2023.122978
https://doi.org/10.1016/j.future.2020.09.019
https://doi.org/10.1016/j.eswa.2023.121329
https://doi.org/10.1016/j.ins.2024.120140
https://doi.org/10.1016/j.ins.2024.120140
https://doi.org/10.1016/j.ins.2024.120217
https://doi.org/10.1109/jiot.2024.3422678
https://doi.org/10.1109/jiot.2024.3422678

Comput Mater Contin. 2026;87(1):25 15

12. Shen H, Wang T, Chen J, Tao Y, Chen F. Blockchain-based batch authentication scheme for internet of vehicles.
IEEE Trans Veh Technol. 2024;73(6):7866–79. doi:10.1109/tvt.2024.3355711.

13. Wang C, Wang C, Shen J, Vasilakos AV, Wang B, Wang W. Efficient batch verification and privacy-preserving data
aggregation scheme in V2G networks. IEEE Trans Vehicular Technol. 2025;74(8):12029–12041. doi:10.1109/tvt.2025.
3552494.

14. Sun L, Wang Y, Ren Y, Xia F. Path signature-based XAI-enabled network time series classification. Sci China Inform
Sci. 2024;67(7):170305. doi:10.1007/s11432-023-3978-y.

15. Rebello GAF, Camilo GF, de Souza LAC, Potop-Butucaru M, de Amorim MD, Campista MEM, et al. A survey on
blockchain scalability: from hardware to layer-two protocols. IEEE Commun Surv Tutor. 2024;26(4):2411–58.

16. Yaish A, Qin K, Zhou L, Zohar A, Gervais A. Speculative denial-of-service attacks in ethereum. In: 33rd USENIX
Security Symposium (USENIX Security 24). Philadelphia, PA, USA: USENIX Association; 2024. p. 3531–48.

17. Ren Y, Lv Z, Xiong NN, Wang J. HCNCT: a cross-chain interaction scheme for the blockchain-based metaverse.
ACM Trans Multimed Comput Commun Appl. 2024;20(7):1–23. doi:10.1145/3594542.

18. Sheng X, Wang C, Shen J, Sattamuthu H, Radhakrishnan N. Verifiable private data access control in consumer
electronics for smart cities. IEEE Consumer Electron Magaz. 2025;14(6):100–6. doi:10.1109/mce.2024.3524750.

19. Chatzigiannis P, Baldimtsi F, Chalkias K. SoK: blockchain light clients. In: Eyal I, Garay J, editors. Financial
cryptography and data security. Cham, Switzerland: Springer International Publishing; 2022. p. 615–41. doi:10.1007/
978-3-031-18283-9_31.

20. Zong J, Wang C, Shen J, Su C, Wang W. ReLAC: revocable and lightweight access control with blockchain for smart
consumer electronics. IEEE Trans Consumer Electron. 2024;70(1):3994–4004. doi:10.1109/tce.2023.3279652.

21. Zamyatin A, Avarikioti Z, Perez D, Knottenbelt WJ. TxChain: efficient cryptocurrency light clients via contingent
transaction aggregation. In: Garcia-Alfaro J, Navarro-Arribas G, Herrera-Joancomarti J, editors. Data privacy
management, cryptocurrencies and blockchain technology. Cham, Switzerland: Springer International Publishing;
2020. p. 269–86. doi:10.1007/978-3-030-66172-4_18.

22. Al-Bassam M, Sonnino A, Buterin V, Khoffi I. Fraud and data availability proofs: detecting invalid blocks in light
clients. In: Borisov N, Diaz C, editors. Financial cryptography and data security. Berlin/Heidelberg, Germany:
Springer; 2021. p. 279–98. doi:10.1007/978-3-662-64331-0_15.

23. Hall-Andersen M, Simkin M, Wagner B. Foundations of data availability sampling. IACR Commun Cryptol.
2023;1(4):79. doi:10.62056/a09qudhdj.

24. Reed IS, Solomon G. Polynomial codes over certain finite fields. J Soc Ind Appl Math. 1960;8(2):300–4. doi:10.1137/
0108018.

25. Kate A, Zaverucha GM, Goldberg I. Constant-size commitments to polynomials and their applications. In: Abe
M, editor. ASIACRYPT 2010: Advances in Cryptology. Vol. 6477. Berlin/Heidelberg, Germany: Springer; 2010. p.
177–94. doi: 10.1007/978-3-642-17373-8_11.

26. Hall-Andersen M, Simkin M, Wagner B. FRIDA: data availability sampling from FRI. In: Reyzin L, Stebila D,
editors. Advances in Cryptology–CRYPTO 2024. Cham, Switzerland: Springer Nature; 2024. p. 289–324 doi: 10.
1007/978-3-031-68391-6_9.

27. Ben-Sasson E, Bentov I, Horesh Y, Riabzev M. Fast reed-solomon interactive oracle proofs of proximity. In:
Chatzigiannakis I, Kaklamanis C, Marx D, Sannella D, editors. 45th International Colloquium on Automata,
Languages, and Programming (ICALP 2018). Vol. 107. Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum für
Informatik; 2018. p. 14:1–7.

28. Ben-Sasson E, Carmon D, Ishai Y, Kopparty S, Saraf S. Proximity gaps for reed-solomon codes. In: 2020 IEEE 61st
Annual Symposium on Foundations of Computer Science (FOCS). Piscataway, NJ, USA: IEEE; 2020. p. 900–9.

29. Arnon G, Chiesa A, Fenzi G, Yogev E. STIR: reed-solomon proximity testing with fewer queries. In: Reyzin L,
Stebila D, editors. Advances in Cryptology—CRYPTO 2024. Cham, Switzerland: Springer Nature; 2024. p. 380–413.
doi: 10.1007/978-3-031-68403-6_12.

30. Yu M, Sahraei S, Li S, Avestimehr S, Kannan S, Viswanath P. Coded merkle tree: solving data availability attacks
in blockchains. In: Bonneau J, Heninger N, editors. Financial cryptography and data security. Cham, Switzerland:
Springer International Publishing; 2020. p. 114–34. doi:10.1007/978-3-030-51280-4_8.

https://doi.org/10.1109/tvt.2024.3355711
https://doi.org/10.1109/tvt.2025.3552494
https://doi.org/10.1109/tvt.2025.3552494
https://doi.org/10.1007/s11432-023-3978-y
https://doi.org/10.1145/3594542
https://doi.org/10.1109/mce.2024.3524750
https://doi.org/10.1007/978-3-031-18283-9_31
https://doi.org/10.1007/978-3-031-18283-9_31
https://doi.org/10.1109/tce.2023.3279652
https://doi.org/10.1007/978-3-030-66172-4_18
https://doi.org/10.1007/978-3-662-64331-0_15
https://doi.org/10.62056/a09qudhdj
https://doi.org/10.1137/0108018
https://doi.org/10.1137/0108018
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-031-68391-6_9
https://doi.org/10.1007/978-3-031-68391-6_9
https://doi.org/10.1007/978-3-031-68403-6_12
https://doi.org/10.1007/978-3-030-51280-4_8

16 Comput Mater Contin. 2026;87(1):25

31. Sheng P, Xue B, Kannan S, Viswanath P. ACeD: scalable data availability oracle. In: Borisov N, Diaz C, editors.
Financial cryptography and data security. Berlin/Heidelberg, Germany: Springer; 2021. p. 299–318. doi:10.1007/
978-3-662-64331-0_16.

32. Nazirkhanova K, Neu J, Tse D. Information dispersal with provable retrievability for rollups. In: Proceedings of
the 4th ACM Conference on Advances in Financial Technologies, AFT ’22. New York, NY, USA: ACM; 2023.
p. 180–97. doi:10.1145/3558535.3559778.

33. Wagner B, Zapico A. A documentation of Ethereum’s PeerDAS. Cryptology ePrint Archive. 2024.

https://doi.org/10.1007/978-3-662-64331-0_16
https://doi.org/10.1007/978-3-662-64331-0_16
https://doi.org/10.1145/3558535.3559778

	ISTIRDA: An Efficient Data Availability Sampling Scheme for Lightweight Nodes in Blockchain
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Our Proposed DAS Protocol
	5 Performance
	6 Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

