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ABSTRACT: Distributed Denial of Service (DDoS) attacks are one of the severe threats to network infrastructure,
sometimes bypassing traditional diagnosis algorithms because of their evolving complexity. Present Machine Learning
(ML) techniques for DDoS attack diagnosis normally apply network traffic statistical features such as packet sizes and
inter-arrival times. However, such techniques sometimes fail to capture complicated relations among various traffic
flows. In this paper, we present a new multi-scale ensemble strategy given the Graph Neural Networks (GNNs) for
improving DDoS detection. Our technique divides traffic into macro- and micro-level elements, letting various GNN
models to get the two corase-scale anomalies and subtle, stealthy attack models. Through modeling network traffic
as graph-structured data, GNNs efficiently learn intricate relations among network entities. The proposed ensemble
learning algorithm combines the results of several GNNs to improve generalization, robustness, and scalability.
Extensive experiments on three benchmark datasets—UNSW-NB15, CICIDS2017, and CICDDoS2019—show that
our approach outperforms traditional machine learning and deep learning models in detecting both high-rate and
low-rate (stealthy) DDoS attacks, with significant improvements in accuracy and recall. These findings demonstrate
the suggested method’s applicability and robustness for real-world implementation in contexts where several DDoS
patterns coexist.

KEYWORDS: DDoS detection; graph neural networks; multi-scale learning; ensemble learning; network security;
stealth attacks; network graphs

1 Introduction
In the last few years, Distributed Denial of Service (DDoS) attacks have appeared as one of the most

disruptive as well as dangerous cyber threats, aiming at crucial online services and infrastructures of the
network [1]. DDoS attacks are now applied by hackers and they are complicated to guard against. This
is the technology of attack obtained from the Denial of Service (DoS) attack. These types of attacks are
launched by coordinated botnets that are shared and remotely controlled [2]. DDoS attack integrates several
computer devices to send a huge number of consecutive attacks. Such attacks maliciously originate from
several systems, making it not possible for the sources of computer/network to present services to their
established customers. Normally, this is stated as a service that interrupts/suspends connections to the
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Internet, therefore decreasing network performance. So, this could make the network paralyzed [3]. Such
attacks that flood networks with bad traffic could cause financial losses, strict service downtime, and ruin
an organization’s reputation. Traditional DDoS diagnosis techniques, like methods based on signature and
anomaly, sometimes struggle to control such attacks’ significant and ever-evolving aspects, especially when
met with low-rate/stealthy traffic models [4].

The general system of diagnosis is important for diagnosing and mitigating DDoS attacks efficiently.
Such a system must be able to analyze the two aggregated traffic models and particular traffic flows for
recognizing anomalies that might show an attack. Analyzing aggregated traffic presents perspectives into
the whole network, while checking particular flows of traffic aids in recognizing suspicious activity between
2 endpoints. Integrating such insights allows a flexible diagnosis system to differentiate between legal
traffic and bad attacks [5]. The DDoS diagnosis system should achieve a trade-off among (i) the delay
caused by the large amount of traffic under analysis (to provide sufficient overview for controlling potential
malicious models), and (ii) the reactivity required to implement accurate mitigation and security policies
before consequential damage occurs. Such attacks target exhausting target systems’ resources through
overwhelming them with huge traffic volumes/exploiting subtle vulnerabilities via stealthy, low-rate models.
Traditional DDoS diagnosis techniques that basically depend on strategies based on signature/statistical,
sometimes deal with adapting to the attack strategies’ evolving aspect, especially while coping with micro-
level (low-rate) attacks, which mimic legal traffic/large-scale (macro) attacks, which are quickly shared over
several resources [6]. So, conventional ML methods generally operate on flat feature representations, failing
to get complicated structural and relational models in network traffic [7]. Such restrictions hinder their
capability in diagnosing coordinated/anomalous manners that span over various network temporal and
spatial levels [8].

With the emergence of ML and DL methods, some researchers have examined their ability for DDoS
diagnosis. ML models like Support Vector Machines (SVM), K-Nearest Neighbors (KNN), and Random
Forest (RF) were used for classifying network traffic given the statistical attributes; however, such techniques
sometimes deal with complicated interactions among network entities. More recently, DL models such
as Recurrent Neural Networks (RNN) and Convolutional Neural Networks (CNN) illustrated satisfactory
outcomes, leveraging their capability for automatically learn high-level features from raw data. Although
such models generally treat the data, they overlook the inherent relations among nodes of the network [9].

Strategies based on graphs have appeared as an efficient solution to overcome the traditional techniques’
restrictions. Graph Neural Networks (GNNs) have obtained attention because of their capability to model
complicated, relational data. In the DDoS diagnosis context, GNNs could get relations between different
network nodes (like users, servers, routers) and also learn hidden relations which traditional ML models
might overlook. Some research presented GNNs’ usage for network traffic analysis, illustrating that GNNs
perform better than conventional methods through getting more intricate dependencies in data [10].

To address the challenges in accurately detecting DDoS attacks and improving scalability, we present
a new strategy based on multi-scale feature extraction using Graph Neural Networks (GNNs). Our main
opinion is to divide network traffic into macro-level and micro-level parts, with every part showing various
models of attack. Macro-level models get large-scale, high-volume traffic spikes normal to DDoS attacks,
while micro-level models concentrate on diagnosing more subtle and low-rate attacks, which might be hard
to recognize using traditional techniques. By leveraging GNNs’ power to model network traffic as graph-
structured data, our technique could efficiently learn the two large-scale traffic models and hidden relations
among network nodes, which are important for recognizing attacks.

Also, we develop an ensemble learning approach, integrating several models of GNN for developing a
robust and accurate NIDS. The proposed ensemble strategy integrates the strengths of multiple GNN models
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by aggregating their multi-scale extracted features, which enhances detection accuracy while reducing the
risk of overfitting. This makes it particularly effective for handling large-scale network traffic and diverse
DDoS attack patterns.

For assessing our presented technique’s efficiency, we perform tests on a broadly applied benchmark
set of data: UNSW-NB15. Our outcomes show that the presented multi-scale GNN ensemble strategy
importantly performs better than traditional ML and DL models in terms of recall, accuracy, and capability
in diagnosing the two high-rate and low-rate DDoS attacks. The capability of controlling the two macro- and
micro-level attack models makes our technique highly flexible and appropriate for real-life development in
active network areas.

The present study makes the following main contributions:

• We present a new strategy that divides network traffic into macro- and micro-level models, making the
system able to efficiently detect the two large-scale and stealthy DDoS attacks. Macro-level attributes
target broad and high-volume attack models, while micro-level features concentrate on subtle, low-rate
anomalies that sometimes evade traditional diagnosis systems.

• Our model leverages various Graph Neural Network (GNN) architectures—Graph Convolutional
Networks (GCN), Graph Attention Networks (GAT), and GraphSAGE—each used at various levels
(global, local, intermediate). The model lets general traffic manners’ learning, from immediate node
interactions to wider network-wide models.

• We transform raw traffic data into graph structures where nodes show entities (like IP
addresses/sessions) and edges show communication links. The representation gets the complicated
network traffic relational aspect and presents rich context to diagnose anomalous behavior.

• We combine several GNNs’ predictions by applying ensemble learning methods like stacking, voting,
and weighted averaging. Such an approach increases robustness, decreases overfitting, and develops the
model’s generalization capability over various DDoS attacks.

• Against traditional models that are biased to high-volume attacks, our strategy can recognize the two
huge botnet-based floods and stealthy, low-rate DDoS models, developing real-life applicability in active
network areas.

This study is organized as follows: In Section 2, we review related work in DDoS detection. Section 3
presents the details of the proposed multi-scale GNN ensemble approach. Section 4 discusses the experimen-
tal setup and datasets used. Section 5 presents the results and analysis of our experiments. Finally, Section 6
concludes the paper and outlines future research directions.

2 Related Work
DDoS diagnosis has been a crucial study domain for many years, and different methods have been

presented for recognizing and mitigating the attacks. Traditionally, DDoS diagnosis techniques could
be largely grouped into anomaly and signature-based, as well as hybrid strategies. Methods based on
signature depend on predefined attack models and are highly efficient for familiar attack kinds; however,
they fail to diagnose new/evolving attack approaches. On one hand, anomaly-based methods concentrate
on recognizing deviations from normal network behavior, making them more appropriate to diagnose
unfamiliar attacks. Although they sometimes suffer from high false-positive rates, particularly in active
network areas. Hossain [11] presented the strategy based on an ensemble for DDoS diagnosis, applying an
RF classifier integrated with a new feature selection technique. His work considers the main restrictions
in background DDoS diagnosis systems, like high false positive rates and traditional classifiers’ inability
to model complicated models of traffic. For developing performance, Hossain provided a hybrid feature
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selection approach that combines principal component analysis (PCA), correlation analysis, and mutual
information. His study bolsters ensemble learning and robust feature selection efficiency in developing
DDoS diagnosis abilities. Yin et al. [12] presented a new model known as MSCBL-ADN to diagnose
low-rate distributed denial-of-service (LDDoS) attacks, which are especially problematic because of their
stealthy aspect and minimal traffic footprint. Their strategy combines multi-scale CNNs and bidirectional
Long Short-Term Memory (Bi-LSTM) networks for considering restrictions in diagnosis accuracy and
computational effectiveness in present techniques. Particularly, CNNs are applied for extracting spatial
features, while Bi-LSTMs get temporal dependencies. The arbitration algorithm is developed for re-weighting
extracted features’ significance, pursued by a 2-block dense connection network for the last classification.
Al-Dulaimi et al. [13] defined multiple frameworks to diagnose Distributed Denial of Service (DDoS) attacks
by leveraging symmetrical models in network traffic and feature shares. Their technique integrates Tree
Convolutional Neural Network (Tree-CNN) to get hierarchical symmetrical dependencies with a deep
autoencoder, which decreases noise while preserving latent structural symmetries. Also, they presented a
Leader-Guided Velocity-Based Spiral Optimization mechanism for optimizing the two autoencoder and
Tree-CNN parameters, striking an efficient balance among exploration and exploitation in optimization.
Wang et al. [14] presented a 2-step diagnosis and mitigation framework for DDoS attacks in Software Defined
Networking (SDN) areas, considering issues of high computational cost, ineffective use of features, and usage
of bandwidth in traditional strategies. Their technique starts with coarse-grained diagnosis applying traffic
statistics from SDN switch ports, followed by a refined diagnosis step applying a Multi-Dimensional Deep
Convolutional Classifier (MDDCC). MDDCC leverages wavelet decomposition and CNNs for extracting
detailed multi-dimensional features from traffic data. Such features are used for accurate potential attack
traffic classification. Also, the strategy incorporates graph-theoretic methods and restrictive policies to
trace and isolate attacks’ sources of attacks in the network. Sunge et al. [15] concentrated on developing
internet security via predictive models’ improvement, being able to recognize high-risk online behavior
and influential security features. Identifying generic models, restrictions, and challenges of class imbalance
prevalent in internet security prediction, they presented developed ML methods’ usage—Graph Neural
Networks (GNNs) and Categorical Boosting (CatBoost). The research used a dataset including 11,055 records
with 30 features and binary classification labels (safe vs. not safe). To consider the imbalance in class
share, they developed the SMOTE method before model training. Their work boldly combines feature
selection and advanced classification models, which is significant for developing internet security prediction
systems, precision, and reliability. Ref. [16] presented a DL-driven intrusion detection architecture especially
aimed at recognizing Distributed Denial of Service (DDoS) attacks in cloud computing and network areas.
Their strategy contains basic steps: data preprocessing and balancing, applying a Conditional Generative
Adversarial Network (CGAN) for handling class imbalance and classification, by applying a Stacked Sparse
Denoising Autoencoder (SSDAE) optimized with a Firefly-Black Widow (FA-BW) multiple mechanism.
This work concentrates on the effectiveness of integrating DL with hybrid optimization methods to enhance
cybersecurity in against DDoS attacks. Zhang et al. [17] defined a hyperbolic-embedding strategy for network
anomaly diagnosis on graph-structured data. They embed network graphs into hyperbolic space where
hierarchical and relational structures are naturally obtained, and also define the new gain agent given the
commonality metrics for preserving relative distances while calculating edge weights. For dealing with
labeled anomalies, they develop methods of data augmentation. Their tests show that optimizing edge-weight
features in this hyperbolic embedding shows considerably better gains in anomaly diagnosis performance
than concentrating on node features alone, making the technique robust and scalable for complicated areas
of the network. Feng et al. [18] improved the stacked ensemble learning architecture known as Stacked
Ensemble Learning-Based Detection Model for Multiscale Network Attacks (SEDAT) to diagnose highly
concealed, multiscale network intrusions. Firstly, they made a new multiscale intrusion manner dataset
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featuring 3 attack scales and 2 probabilistic attack models. Their SEDAT model applies an RF-driven feature
selection stage pursued by several autoencoder-based learners to get and show differing attack manner scales.
By integrating such autoencoders in an ensemble, SEDAT adapts to complicated, multiscale traffic models
that single models normally miss. Yang et al. [19] presented a developed IDS and developed a multi-scale
CNN framework for capturing network traffic features at differing resolutions. Their technique defines multi-
step preprocessing pipeline which integrates SMOTE and Edited Nearest Neighbors (ENN) for addressing
class imbalance and sample overlap with a 3-step feature selection approach—RF significance scoring,
Recursive Feature Elimination, Information Gain—for optimizing performance and decreasing complexity.
Talukder et al. [20] presented a new strategy for network IDS through integrating different methods for
considering issues of dimension decrease, imbalanced data, and feature embedding. Our model leverages
the Random Oversampling (RO) technique for dealing with data imbalance, uses feature embedding via
K-means and GM clustering outcomes, and develops Principal Component Analysis (PCA) for dimension
decrease. We assessed our model’s performance with 4 prominent ML mechanisms, XGB, RF, DT, and ET,
for binary and multilabel classification research. Hnamte et al. [21] defined an innovative strategy for the
diagnosis of DDoS leveraging a DNN framework rooted in DL rules. The presented model shows a scalable
and adaptable architecture, making meticulous network traffic data analysis able to discern intricate models
indicative of DDoS attacks. To confirm our method’s effectiveness, rigorous assessments were performed
applying authentic real-life traffic data. Outcomes unequivocally demonstrate our DNN-driven strategy
superiority across traditional DDoS diagnosis methods. The present study keeps considerable promise to
bolster network security, especially in the active software-defined network (SDN) areas’ landscape. Ref. [22]
modeled long-term multivariate time-series predicting modeling architecture in Gaussian fuzzy information
granules light. The model contains under multivariate time series’ granulation technique and a neural
network model, which integrates a backpropagation neural network, a long short-term memory neural
network, and a transformer for long-term prediction, where a fuzzy information granule segmentation
technique exists with polynomials as the main line and a novel representation technique for fuzzy info
granules. Yao et al. [23] presented the unsupervised anomaly detection system that uses a Bidirectional
Generative Adversarial Network (BiGAN) and learns latent representations of typical IoT data using the
Wasserstein distance and cycle-consistency. This method relies only on standard data for training and may
have trouble identifying more complex or mixed attack patterns, even while it lowers the false positive
rate and increases scalability through fog computing deployment. Li et al. [24] uses a Transformer-based
architecture that enhances temporal dependencies by combining self-attention and an enhanced Inception
module for multi-scale spatial feature extraction with a BiGRU. This approach’s primary benefit is its capacity
to capture temporal and spatial correlations, which results in excellent performance in binary and multi-
class classification tasks. Nevertheless, this is accomplished at the expense of increased computing and
training resources as well as architectural complexity. Nuiaa et al. [25] present a proactive feature selection
(PFS) model that is based on an optimization technique inspired by nature. They test the model using a
number of machine learning classifiers on the CICDDoS2019 dataset. Through optimal feature selection,
their approach increases detection rate and decreases false positive rate; nevertheless, it is mostly dependent
on the quality of the input characteristics chosen and does not have automatic feature extraction. Devi
et al. [26] suggested a Federated Learning-based Lightweight IDS (FL-LIDS) for Wireless Sensor Networks
(WSNs) that uses a hybrid CNN + LSTM to identify DDoS attacks in real-time while preserving privacy
and consuming minimal resources. The approach is appropriate for contexts with limited resources since
it delivers high detection rates and minimal latency. However, it is primarily intended for WSNs, adds
overhead for coordination, and could not be as effective against really sophisticated assaults. Devi et al. [27]
introduced a lightweight DCGAN-based intrusion detection system (IDS) for WSNs was presented. It was
trained using the WSN-BFSF dataset and improved the identification of unknown and novel threats while
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keeping computational costs low. It achieves real-time applicability and great accuracy (94%). Evaluation on
a single dataset, increased training complexity, and possible susceptibility to complicated or quickly evolving
DDoS attacks are some of the limitations. Recent techniques, such as SEDAT [18] and MSCBL-ADN [12],
use multiscale strategies to increase intrusion detection. SEDAT uses stacked ensemble autoencoders with
RF-based feature selection on handmade data to address multiscale attack behaviors, but lacks relational
modeling. MSCBL-ADN combines CNNs and Bi-LSTM layers to process spatial-temporal patterns, which
are excellent for LDDoS attacks but rely on sequence data. In contrast, our method employs a graph-
based architecture to explicitly describe interactions between network components, with a multi-scale GNN
ensemble used to discover both structural and temporal anomalies. Furthermore, our model’s heterogeneous
combination of GCN and GAT addresses both global and local attention processes, increasing adaptability
and scalability in a wide range of DDoS scenarios. In spite of progress made in DDoS diagnosis, some
issues exist for controlling attacks variety and complexity in real-life areas. Multi-scale and graph-driven
strategies integrated with ensemble learning represent a promising avenue for improving the performance
and scalability of DDoS diagnosis systems. Such observations motivate our presented multi-scale GNN
ensemble strategy that looks for: (1) modeling network traffic as hierarchical graphs at hybrid scales, (2)
integrating light GNNs (GCN, GAT, GraphSAGE, GIN) via effective ensemble approaches, (3) maintaining
real-time feasibility, high accuracy, and low false positives in production network areas. Table 1 presents
recent DDoS diagnosis methods comparative overview, highlighting main advantages and limitations.

Table 1: Comparison of recent DDoS detection methods

Ref. Year Method Datasets Advantages Limitations

HOssain [11] 2023

Ensemble-based
Random Forest

with hybrid
feature selection
(correlation, MI,

PCA)

CIC-DDoS2019 Robust feature set
reduces overfitting

Relies on
handcrafted

features, ensemble
RF may struggle

with concept drift

Yin
et al. [12] 2024

MSCBL-ADN:
Multi-scale CNN
+ Bi-LSTM with
arbitration and
dense blocks for

LDDoS

ISCX-2016-
SlowDoS

Captures both
spatial and temporal

patterns, excellent
time efficiency

Tailored to LDDoS
only, requires

careful tuning of
arbitration weights

Al-
Dulaimi &

Türk-
ben [13]

2025

Tree-CNN +
deep

autoencoder +
velocity-based

spiral
optimization

UNSW-NB15,
CIC-

IDS2017/18

Exploits symmetry
in features,

near-perfect
accuracy on

multiple datasets

High computational
cost, optimization

adds complexity and
runtime overhead

(Continued)
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Table 1 (continued)

Ref. Year Method Datasets Advantages Limitations

Wang
et al. [14] 2024

Two-stage SDN
framework:

coarse detection
via port stats,
then MDDCC

(wavelet + CNN)
+ graph-based

tracing

the public SDN
dataset

Minimal data use in
the first stage,

real-time source
isolation

Dependent on SDN
infrastructure,

wavelet + graph
steps increase

pipeline complexity

Sunge
et al. [15] 2024

GNN + CatBoost
for internet

safety prediction;
SMOTE for class

balance

11k-record URL
dataset

Integrates graph
structure and

gradient boosting,
identifies key traffic

features

Focused on
URL-safety rather

than DDoS, limited
to binary “safe/not

safe” domain

Horestani
et al. [16] 2024

CGAN for data
balancing +
SSDAE with
Firefly–Black

Widow
optimization

CICDDoS2019

Effective
class-imbalance
handling, hybrid

optimizer improves
SSDAE performance

CGAN training can
be unstable, SSDAE
+ FA-BW adds

training complexity

Zhang
et al. [17] 2025

Hyperbolic
embedding of

network graphs
+ commonality-
based gain factor

+ data
augmentation

CICIDS and
UNSW, and one

real-world
dataset

Captures
hierarchical

relationships, strong
anomaly detection

gains

Embedding
overhead, less

intuitive
interpretation of

hyperbolic distances

Feng
et al. [18] 2024

SEDAT:
RF-based feature

selection +
ensemble of

autoencoders

synthetic
multiscale
intrusion
dataset

Adapts to multiscale
attacks, >5%

accuracy gain over
baselines

Requires synthetic
dataset

construction,
ensemble

complexity

Yang
et al. [19] 2025

Improved
multi-scale CNN
+ SMOTE +

ENN
preprocessing +

three-stage
feature selection

CICIDS2017,
KDDCUP99,
UNSW-NB15

Robust to class
overlap

Heavy
preprocessing

pipeline, depends
on multiple

feature-selection
stages

(Continued)
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Table 1 (continued)

Ref. Year Method Datasets Advantages Limitations

Talukder
et al. [20] 2024

Combined
approach with

Random
Oversampling,
KMeans/GM

feature
embedding, and

PCA

UNSW-NB15,
CIC-IDS-2017,

and
CIC-IDS-2018

Tackles class
imbalance,

dimensionality
reduction effectively
using clustering and

PCA

Generalizability may
be limited without
testing on diverse
real-world traffic

Hnamte
et al. [21] 2024

DNN-based
DDoS detection
for SDN using

real-world traffic
data

UNSW-
NB15,InSDN,
CICIDS2018,
and Kaggle

DDoS

Strong performance
on DDoS detection
with deep learning;
adaptable to SDN

environments

Focused only on
DDoS; lacks

coverage of other
attack types or

general NIDS tasks

Wang
et al. [22] 2024

Multivariate
time-series

forecasting using
fuzzy granules +

LSTM +
Transformer

combo

UNSW-NB15

Innovative use of
fuzzy information

granulation,
advanced temporal

modeling for
long-term
prediction

Complex model
architecture; focus is
more on forecasting

rather than direct
intrusion detection

Yao
et al. [23] 2023

Unsupervised
BiGAN with
Wasserstein
distance and

cycle-
consistency

(deployed in fog
environment)

UNSW-NB15,
CIC-IDS2017

Reduces false
positive rate; learns

latent
representations of

normal traffic;
scalable due to fog

computing
deployment

Trained only on
normal data

(unsupervised); may
struggle with

sophisticated or
mixed attack

patterns

Li
et al. [24] 2024

Transformer +
Improved

Inception +
Self-Attention +

BiGRU

CIC-IDS2017,
CICDDoS2019

Captures long-range
spatial and temporal

correlations;
performs well on

binary and
multi-class tasks

Complex
architecture;
requires large

computational and
training resources

(Continued)
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Table 1 (continued)

Ref. Year Method Datasets Advantages Limitations

Nuiaa
et al. [25] 2022

Proactive Feature
Selection (PFS)

with ML
classifiers (KNN,

RF, SVM)

CICDDoS2019

Improved detection
rate and low

false-positive rate
through optimal
feature selection;
easy to combine

with classical ML
algorithms

Relies heavily on
manual feature
selection; lacks

automatic feature
extraction via deep

learning

Devi
et al. [26] 2025

Federated
Learning-based
Lightweight IDS
(FL-LIDS) with
hybrid CNN +

LSTM

TON-IoT

Real-time DDoS
detection, low
resource usage,

privacy-preserving,
high detection rates,
low latency, scalable

Designed mainly for
WSNs, coordination

overhead in
federated setup, may

struggle with
complex or mixed

attacks

Devi
et al. [27] 2024

Lightweight
DCGAN-based

IDS
WSN-BFSF

Detects
new/unknown
attacks, high

accuracy (94%), low
computational cost,

suitable for
real-time

deployment

Evaluated on a
single dataset,
higher training

complexity,
potential sensitivity

to rapid traffic
changes or

sophisticated D

3 Background on Graph Neural Networks
Graph Neural Networks (GNNs) are DL models designed for operating on graph-structured data. A

graph includes nodes (vertices) and edges (connections among nodes), which could show broad relational
data. GNNs are especially efficient for tasks where data shows natural graph structure, like recommen-
dation systems, social networks, and molecular structures, as in our case, analyzing network traffic for
DDoS diagnosis.

The main opinion behind GNNs is learning every node representation in a graph by aggregating
information from its neighbors. It is performed via message-passing stages, where every node updates its
state by taking features of its neighboring nodes and the edges connecting them into consideration. The
process lets GNN get local and global graph structures that are important for tasks like graph classification,
node classification, and link prediction.

The GNN framework normally includes elements:

• Node Representation: Every node in the graph is shown by a vector of features that encodes its features.
In a network traffic context, such attributes contain flow characteristics, packet statistics, and temporal
info on traffic.
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• Message Passing: The Basic operation in GNNs is message passing, where every node aggregates info
from its neighbors. The aggregation could be done by applying various tasks like sum, mean/max,
followed by a transformation via a neural network layer.

• Graph Convolution: Like convolutions in CNNs, graph convolutions are used for aggregating neighbor-
hood info. The graph convolution function is modelled for controlling graph neighborhoods’ variable
size and structure, making it appropriate for irregularly structured data.

• Aggregation and Update: After the message is conveyed, the node’s feature vector is updated given the
aggregated info. Such an update is normally done by applying layer of neural network (like a completely
connected layer) followed by a non-linear activation function.

• Readout/Pooling: After some message passing layers, the last node representations are aggregated to
achieve a global graph representation. It could be applied for graph-level functions like classifica-
tion/regression/for downstream functions such as DDoS attack diagnosis.

GNN Variants
During the years, some GNN variations were presented to consider various issues and improve

their performance:
Graph Convolutional Networks (GCN) [26]: One of the most popular GNN variants, GCNs define

a graph convolution term that uses convolutions to graph data. In GCNs, every node’s representation
is updated by aggregating its neighbors’ features in localized behavior. GCNs illustrated success in node
classification functions.

Equations below define the GCN layer update principle:

H(l+1) = σ(D̃− 1
2 ÃD̃−

1
2 H(l)W(l)) (1)

That H(l) and H(l+1) are GCN layer input and output feature matrices, in turn; D̃ shows graph degree
matrix that is a diagonal matrix where entries related to neighbors’ number for every node; Ã shows
normalized graph adjacency matrix that is achieved by adding self-connections to the adjacency matrix A and
normalizing it applying square root is a non-linear activation function, like sigmoid/Rectified Linear Unit
(ReLU). The update principle could be interpreted as its neighbors’ nodes weighted average. GCN update
principle node-wise insight is defined by:

h(l+1)
i = σ

⎛
⎝ ∑jεN(i)

ci jW(l)h(l)
j
⎞
⎠

(2)

That h(l)
i and h(l+1)

i are input and output representations of node i or i + 1 at layer l. N(i) is the neighbor
set of node i. ci j is a normalization agent described as ci j = 1√

∣N(i)∣
√
∣N( j)∣

. The node-wise update principle
could be interpreted as a weighted node’s representation and its neighbors’ representations, where weights
are assigned by the normalization agent ci j.

Graph Attention Networks (GAT) [27]: GATs define the attention mechanism in GNNs, letting the
model determine various weights to various neighbors in the aggregation process. It aids GATs to concentrate
on the most informative nodes and has been illustrated for developing performance in graph-driven tasks.

The equation below defines the GAT layer update principle:

h(l)
i = σ

⎛
⎝∑jεNi

ai jW(l)h(l)
j
⎞
⎠

(3)
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That h(l)
i is node i feature vector at layer l; σ is a non-linear activation function, like ReLU; Ni is the

neighbors set of node i; aij is attention weight among nodes i and j; W(l) is weight matrix at layer l.
GraphSAGE (Graph Sample and Aggregation) [28]: Against traditional GNNs, which apply whole

neighbors in the graph, GraphSAGE defines sampling a fixed-size neighborhood term for every node to
develop scalability in huge graphs. The aggregated info from the sampled neighborhood is applied to update
the node’s representation.

GraphSAGE conducts local neighborhood sampling and aggregation to create the sampled nodes’
embeddings. The stage of sampling presents advantages in that the computational and memory complexity
is constant, considering the graph size. As the target node, v ∈ V, is assigned, a stable neighborhood set, uk,
is sampled as:

u0 = {v}
uk = ⋃

vεuk−1
S(Av , N k), k = 1, 2, . . . , k (4)

That Aν is the neighboring nodes set of ν, and Nk is the sample size at depth k. S(Aν , Nk) is a
sampler from a unique share U(1, deg(v)) as a default setting. So, the receptive single node domain
increases considering layers’ number, K, size of⋃K

k=1 uk is∏K
k=1 N k . After sampling, we aggregate the nodes’

embeddings in the sampled set to basic node v.
The basic node embeddings, h0

u for a sampled set u, are input node features xv with M dimensions:

h0
u = xv ,∀v ∈ {v} ∪ u1 ∪ ⋅ ⋅ ⋅ ∪ uk (5)

The mean concat aggregator averages embeddings, hk−1
ν∈N(u), of the neighboring nodes, N(u), of a

sampled node u set. After that, the aggregated neighbor embedding is integrated by concatenation with the
embedding hk−1

u of a node u for determining the novel embedding hk
u into the node. When concatenation is

shifted into the addition, this becomes the mean add aggregator.

f or k = 1, 2, . . . , K do
f or u ∈ {v} ∪ u1 ∪ ⋅ ⋅ ⋅ ∪ uK−k do

hk
u = σ

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

W k
v ∑

vεN(u)

hk−1
v
∣v∣
⎞
⎠
∥ (W k

u hk−1
u )
⎫⎪⎪⎬⎪⎪⎭

(6)

That W k
v and W k

u with a size of M′ × M at the first layer and M′ × M′ at the left layers are weight
matrices which are divided between nodes in network layer k. M′ is a hidden feature dimension, σ(⋅) is a
non-linear function, like the rectified linear part, described as max(0, x). operator ∣∣ shows two vectors. Then,
novel embedding, hk

u , is normalized. After completing K-layer processing, the last embedding vector, hk
u , is

made. It goes to the grouping layer for predicting C-classes. The GraphSAGE model is trained for decreasing
classification cross-entropy loss.

L ( ŷ, y) = − ∑
uεV

C
∑
i=1

yi log ŷi ,∀y ∈ Y (7)

Graph Isomorphism Networks (GIN) [29]: GINs are modelled for developing expressive GNNs’
power. Through applying a simple but highly expressive aggregation task, GINs could differentiate among
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various graph structures more efficiently, making them appropriate for functions needing fine-grained
graph comparisons.

Graph Isomorphism Network (GIN) is one of the most promising GNN variations; the discrimina-
tive/representational power is the same as the Weisfeiler-Lehman (WL) graph isomorphism test power. GIN
could be updated based on the formula below:

hI+1
i = MLPl ⎛

⎝
(1 + εl) hl

i + ∑
jεNi

hl
j
⎞
⎠

(8)

That h0
i = Ai, εl is learnable parameter, MLP is a Multilayer Perceptron. Eq. (8) illustrates that: (1) GIN

replaces the mean aggregator over traditional GNN nodes with a total aggregator; (2) GIN adds an MLP after
aggregating node features from nodes’ neighborhoods; (3) in GIN, every neighbor contributes equally to the
central node update. In addition, GIN concatenates nodes’ representation information over whole model
layers for the last representation based on the formula below:

hG = CONCAT
⎛
⎝

L
∑

v∈G ,k=0
hk

v
⎞
⎠

(9)

That v, G are in turn a node and a graph. CONCAT(⋅) shows concatenate function. This was shown
theoretically and experimentally that GIN has more discriminative/representational graph structures power
than the last GNN models.

4 Proposed Method
We propose a multi-scale ensemble strategy based on Graph Neural Networks (GNNs) for DDoS

detection, aiming to handle both large-scale and stealthy low-rate attacks effectively. In this strategy, network
traffic data is partitioned into macro- and micro-level subsets, where macro-level data corresponds to large
traffic surges typical of flood-based attacks, while micro-level data focuses on subtle traffic variations seen
in stealthy or low-rate attacks. Each subset is processed by a dedicated GNN model that learns the relational
structures within its respective scale.

Following the feature extraction phase, ensemble learning techniques such as bagging or boosting are
employed to combine the outputs of these GNN models, leveraging the strengths of individual models while
reducing the risk of overfitting. This approach allows the system to capture complex dependencies in network
traffic data that traditional threshold-based or signature-based detection methods often overlook. By
integrating multi-scale analysis and ensemble learning, the proposed method improves detection accuracy
and scalability while maintaining adaptability to evolving DDoS attack strategies in large-scale network
environments as shown in Fig. 1.
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Figure 1: Block diagram of the proposed method

4.1 System Architecture
The presented system framework for DDoS attack diagnosis is given the graph network traffic repre-

sentation that nodes and edges are related to entities in the network and their interactions, in turn. The
graph-driven modeling lets the system to efficiently get structural and temporal dependencies inherent in
network communications. Every node might show a host, IP address, and a session based on analysis. Edges’
granularity reflects communication among nodes and are weighted applying metrics like packet counts,
byte volumes/session durations. The representation transforms traditional tabular network data into a rich
structure that makes deeper perspectives able into potential anomalies.

Where A is traffic graph adjacency matrix that every entry Aij equals the observed communication
weight wij (e.g., packet count/byte volume) among node i and node j, zero when no direct link presents. The
matrix X gathers d-dimensional feature of whole N nodes’ vectors.

Ai j =
⎧⎪⎪⎨⎪⎪⎩

wi j . i f nodes i and j communicate .
0. otherwise X ∈ RN×d .A ∈ RN×N (10)

4.2 Multi-Scale GNN Framework for Micro and Macro Attack Detection
The main issue in diagnosing DDoS is the ability to recognize the two big-scale (macro) and stealthy

(micro) attacks. Macro attacks are characterized by high-volume traffic from several resources aiming single
victim, sometimes causing noticeable spikes in traffic and connectivity models. Against, micro attacks are
low-rate and stealthy by nature, often flying under the radar by mimicking legitimate traffic patterns. These
attacks might manifest as abnormal short-duration sessions/small traffic bursts from a single host which are
hard to diagnose with traditional techniques.

For considering such issues, we present multi-scale Graph Neural Network (GNN) architecture that
analyzes graph of network at various locality levels. It contains every node’s local (1-hop) neighborhood
of every node to get fine-grained manners related to micro attacks, intermediate (2-hop) neighborhood to
discover shared models, and global scale to recognize coordinated attack models over the whole network
graph. By checking various levels of node connectivity and interaction, the model is able to diagnose the two
subtle and big-scale anomalies.

In order to capture both local and global dependencies within network traffic, the proposed multi-scale
decomposition splits the traffic graph into representations at the macro and micro levels. Theoretically, there
are two main levels of granularity at which DDoS traffic behavior naturally happens. While the micro-level
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records specific temporal and packet-level correlations linked to stealthy or low-rate attacks, the macro-
level represents aggregate patterns like overall flow intensity and burst behavior. According to exploratory
analyses, the addition of a second decomposition scale increases model complexity while producing little
gain in detection accuracy. Therefore, the two-scale arrangement provides a useful trade-off between model
efficiency and representation richness.

Various GNN frameworks are developed over such scales. Graph Convolutional Networks (GCN) are
applied for aggregating information from immediate neighbors by averaging node attributes, making them
efficient for local and intermediate model learning. Graph Attention Networks (GAT) incorporate attention
algorithms for determining various weights to neighboring nodes, allowing model to concentrate on more
informative connections that is especially effective for recognizing micro-level anomalies. GraphSAGE is
developed for its scalability and sampling-driven aggregation approach, making effective learning able
over big graphs. Optionally, Graph Isomorphism Networks (GIN) are combined for their robust ability
to differentiate graph structures, making them well-suited to diagnose complicated topological variations
indicative of stealthy/shared attacks.

In every GNN layer l, node i updates its representation h(l+1)
i by first aggregating vectors of feature

h(l)
j of its k-hop neighbors Nk(i), using a trainable weight matrix W(l), and at last passing the outcome via

nonlinearity σ . By differing k, we get global, local, and intermediate context.

h(l+1)
i = σ

⎛
⎝

W(l) ⋅ ∑
jεNk(i)

h(l)
j
⎞
⎠

(11)

After processing with different GNN models (e.g., GCN, GAT, GraphSAGE, GIN), an ensemble learning
method such as soft voting or averaging is applied to combine predictions, leveraging the strengths of each
model while reducing variance in detection results. Windows are labeled as benign or DDoS based on the
ensemble output against a defined threshold, and detected events can be logged for real-time monitoring or
integrated with mitigation modules in operational environments.

This integrated pipeline, from traffic preprocessing and graph construction to multi-scale GNN learning
and ensemble-based detection, ensures that the proposed method is fully executable for scalable and accurate
DDoS diagnosis in real network environments.

In order to give a comprehensive algorithmic explanation of the suggested architecture, we clearly
specify the scale partitioning at the macro and micro levels. The micro-level collects flows below this
threshold, which frequently display subtle, covert attack patterns, while the macro-level contains flows that
surpass a threshold based on average packet count and inter-arrival intervals. The following parameters are
set for each GNN model: dropout = 0.3, learning rate = 0.001, hidden units = 64, and number of layers = 3.
On the basis of validation results, additional hyperparameters were chosen.

The weighted ensemble approach is used to aggregate the outputs of the macro- and micro-level GNNs.
To improve robustness and generalization, predictions are fused using a weighted voting process, and weights
are allocated according to each model’s validation accuracy.

Algorithm 1 illustrates the proposed multi-scale GNN ensemble framework for DDoS detection. In
this method, network traffic data is first segmented into sliding windows, and features such as source and
destination IPs, ports, packet sizes, and timestamps are extracted to construct a graph where nodes represent
hosts or flows and edges represent their connections. Node features like packet rate, average packet size,
and inter-arrival times are assigned to capture traffic behaviors. Multiple GNN models, including GCN,
GAT, GraphSAGE, and GIN, are applied in parallel on this graph to extract multi-scale neighborhood
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information, enabling the detection of both macro-scale (large, high-volume attacks) and micro-scale (low-
rate, stealthy attacks) patterns. During this process, node representations are updated according to Eq. (11),
ensuring consistent feature propagation across different neighborhood scales. Each GNN model outputs a
class probability indicating the likelihood of a DDoS attack, and these probabilities are combined using an
ensemble approach to form the final prediction. If the probability exceeds a defined threshold, the window
is labeled as a DDoS attack; otherwise, it is labeled as benign. This algorithm enhances detection accuracy
while maintaining scalability and robustness in real-world environments, allowing the system to effectively
capture complex and subtle attack behaviors across different traffic granularities.

Algorithm 1: Multi-scale GNN ensemble for DDoS diagnosis
Input:
- Raw network traffic data streams
- Sliding window size W
- Trained GNN models {M_GCN, M_GAT, M_GraphSAGE, M_GIN}
Output:
- DDoS detection label per window (Benign/DDoS)
1: for each sliding window w of size W over incoming traffic do
2: Extract features for each packet/flow: source IP, destination IP, ports, packet sizes, timestamps, etc.
3: Construct graph G = (V, E):
4: Nodes V: unique IPs/hosts/flows in w
5: Edges E: connections/communications within w
6: Assign node features: packet rates, avg packet size, flow duration, inter-arrival times, TCP
flags, etc.
7:
8: Initialize empty list P = [] (for collecting model probabilities)
9: for each GNN model M_i in {M_GCN, M_GAT, M_GraphSAGE, M_GIN} do
10: Compute node embeddings using multi-scale neighborhood:
11: For each layer l:
12: For each node i, aggregate k-hop neighbor features according to Eq. (11).
13: Predict class probabilities p_i = Softmax(M_i(G)) for the graph
14: Append p_i to P
15: end for
16:
17: Compute ensemble prediction:

p = (1/∣P∣) * sum_{p_i in P} p_i
18:
19: if p[DDoS] > tau (e.g., tau = 0.5) then
20: Label window w as DDoS
21: else
22: Label window w as Benign
23: end if
24: end for
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4.3 Selection of GNN Architectures
Network flows or hosts are represented as nodes in each dataset, while edges record node-to-node

communication or similarity associations. The relevant nodes and edges are given tabular information,
such as packet sizes, inter-arrival periods, and flow properties, after they have been normalized. GNNs can
efficiently simulate intricate relationships and interactions in network traffic for DDoS detection because to
this graph representation.

In this paper, we offer a multi-scale ensemble framework that improves DDoS attack detection by
leveraging four distinct Graph Neural Network (GNN) architectures: Graph Attention Networks (GAT),
Graph Convolutional Networks (GCN), GraphSAGE, and Graph Isomorphism Networks. Each of these
architectures brings unique strengths: Each of these architectures brings unique strengths: GCN accurately
captures local neighborhood patterns by aggregating characteristics from immediate neighbors, which is crit-
ical for finding common structural irregularities in network traffic. GAT incorporates attention techniques
that assign different weights to neighbors, allowing the model to concentrate on highly informative nodes
and subtle attack signals. GraphSAGE enhances scalability by sampling fixed-size neighborhoods, allowing
it to handle vast and dynamic network graphs. Meanwhile, GIN offers higher expressive capacity via a highly
discriminative aggregation function and multilayer perceptrons, which aid in identifying complicated graph
structures. By merging these models into an ensemble, our framework gains multi-scale and heterogeneous
feature extraction, resulting in increased robustness and generalization over a wide range of DDoS scenarios.

Our detection process works with sliding panes of network traffic data, converting each window into
a graph with network entities as nodes and their interactions as edges. Node features include flow-level
information, including packet rates, average packet size, flow duration, and temporal metrics. Each trained
GNN model processes the graph individually, aggregating multi-hop neighborhoods to learn complete
node embeddings. The output probabilities from all models are then combined using an average ensemble
technique to get the final classification decision. This strategy not only leverages the complementary
characteristics of each GNN variant but also enhances overall detection accuracy and reduces the risk of
overfitting compared to single-model methods.

Compared to previous efforts that mostly rely on single GNN architectures, our multi-scale ensemble
outperforms them in identifying both volumetric and stealthy DDoS attacks. While GCN-based models are
effective at capturing local graph structures, and GATs enhance focus on relevant nodes through attention,
their isolation can hinder flexibility to various assault patterns. Our model achieves improved discriminative
power and scalability by combining various GNN types, as evidenced by our study of multiple benchmark
datasets. This ensemble technique creates a more durable and accurate detection system, tackling the issues
faced by complex and dynamic DDoS threats.
Dynamic Graph Generation from Network Traffic Logs

To dynamically create graph representations, raw network traffic logs from datasets like UNSW-
NB15 [30], CICDDoS2019 [31], and CICIDS2017 [32] are processed in sliding time periods. While edges show
communication or resemblance relationships between nodes, each node represents a network flow or host.
From the logs, features like flow statistics, packet size, and inter-arrival time are taken out, normalized, and
allocated to nodes and edges. This dynamic graph representation enhances real-time detection capabilities
and enables GNN models to effectively capture changing patterns of DDoS attacks.

By constructing each micro-level graph within fixed-size time periods and restricting the amount of
network flows included, we are able to manage the size and density of these graphs. Nodes and edges are also
filtered; minor or redundant edges are removed, while only flows with high activity or strong similarity are
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kept. This approach strikes a balance between structural fidelity and computing efficiency, making micro-
level graphs comprehensible while still identifying key DDoS attack trends.

4.4 Ensemble Learning for Robust Prediction
For increasing system accuracy, robustness, and generalization, we develop an approach of ensemble

learning that integrates several GNN-driven results trained at various scales/applying various frameworks.
Such fusion leverages every model’s uniform strengths for presenting more general data understanding.

Three ensemble methods are taken into consideration. Firstly, majority voting integrates the whole
model’s predictions, choosing a label that gets the most votes. Such a technique is simple but efficient in
decreasing individual model errors. Under majority voting, every M base models casts a predicted label ŷ(m),
and the last decision ŷ is the most frequent label among them.

ŷ = mode{ ŷ(1), ŷ(2), . . . , ŷ(M)} (12)

Secondly, we apply weighted averaging, where every model’s prediction is multiplied by a weight
proportional to the performance (e.g., F1-score on validation set), and the last prediction is assigned given
the aggregated weighted scores. In weighted averaging, every model’s probability output p(m) is scaled by
weight αm, proportional to the validation performance wm; the last score p̂ is such a weighted average of all
outputs normalized.

p̂ =
M
∑
m=1

αm p(m), αm =
wm

∑M
n=1 wn

(13)

At last, a more important stacking strategy is performed where base models’ predictions are applied
as input features for a meta-learner (for example, logistic regression/shallow neural network). Such a meta-
model learns to integrate predictions in a way that optimally decreases error given the learned models
on validation data. In stacking, we feed concatenated probability vectors {p(m)} from whole MMM base
models into a meta-learner f meta (like logistic regression) that learns how to best integrate them into the last
prediction ŷ.

ŷ = fmeta ([p(1), p(2), . . . , p(M)]) (14)

The ensemble approach proposes some advantages. This mitigates individual model’ variance, develops
the two macro and micro attacks’ diagnosis, also guarantees that the last decision is less sensitive to the
weaknesses of each unique model. In addition, the strategy causes higher stability and better adaptability in
active areas of the network.

A weighted fusion technique is used to merge the predictions of the macro-scale and micro-scale GNN
models. The weight of each model is automatically established depending on its F1-score on the validation
set. The weighted total of the GNN predictions is the final ensemble output, which is then thresholded to
provide the binary DDoS detection decision. This method increases overall resilience, performance, and
reproducibility without requiring manual adjustment and makes use of the complementing advantages of
both GNN models.
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4.5 Training and Assessment
The presented model is trained applying a cross-entropy loss task appropriate for binary classification

(attack vs. normal). We apply Adam optimizer because of its adaptive learning rate algorithm, that conver-
gence speed and stability. For avoiding overfitting, regularization methods like dropout are used, and early
stopping is applied given the validation loss. We train the network by reducing binary cross-entropy loss
where yi ∈ {0, 1}is the true label of sample i, p̂ is the model’s predicted positive class probability.

L = − 1
N

N
∑
i=1
[yi log p̂i + (1 − yi) log(1 − p̂i)] (15)

Model is assessed by applying hybrid metrics of performance, such as F1-Score, Accuracy, Recall, and
Precision, that present the general classifier’s performance view. Also, the AUC-ROC metric is applied for
assessing the capability of the model for differentiating between usual and bad traffic under imbalanced data
situations. Such assessments are performed over various kinds and under differing network load classes to
guarantee the diagnosis system’s generalizability and robustness.

5 Experimental Outcomes
This part shows the DDoS diagnosis system experimental outcomes applying Graph Neural Networks

(GNNs) and model ensemble approaches. The tests were done on a dataset: UNSW-NB15. Such tests aim to
assess the presented model performance of the proposed model in detecting DDoS attacks at different scales
(macro and micro). We evaluate the model’s performance by applying different metrics: F1-score, Accuracy,
Recall, and Precision.

5.1 Dataset Description
The main datasets used to initiate the framework are UNSW-NB15 [30], CICDDoS2019 [31], and

CICIDS2017 [32]. Such sets of data were carefully chosen to reflect the broad real-life security scenarios.
UNSW-NB15: Improved by the Cybersecurity Laboratory at the University of New South Wales

(UNSW), this dataset is particularly modelled to assess network IDSs. Made by IXIA, PerfectStorm means
this simulates novel network traffic and different network attacks, including nearly 2,540,044 records.
UNSW-NB15 attributes both traditional attacks (like scanning, DoS, fuzzing) and more developed anomalies,
like shellcode and backdoor attacks that exploit vulnerabilities in subtle and sophisticated ways. Such
developed attacks are sometimes hard to diagnose without accurate feature extraction and representation.

CICDDoS2019 dataset: It contains different DDoS attacks that could be performed through TCP/UDP
app layer protocols. Attack taxonomy in a set of data is performed in the case of assaults based on exploitation
and reflection. More than 80 stream attributes are contained in a set of data. A Set of data was collected over
two different days to analyze the test and train. Dataset assaults contain DDoS attacks applying LDAP, DNS,
NTP, MSSQL, NetBIOS, SYN, SNMP, and UDP-Lag.

CICIDS2017 dataset: The CICIDS2017 dataset includes Brute Force SSH, DoS, Heartbleed, Web Attack,
Infiltration, DDoS, Brute Force FTP, and Botnet. The CICFlowMeter tool extracted 80+ features for each
flow from traffic data. This dataset contains 2,830,743 records, including 557,646 malicious records and
2,273,097 benign records. The performance of the proposed model was evaluated using the CICIDS2017
dataset, specifically the Friday Working Hours Afternoon DDoS subset.
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5.2 Experimental Setup
The presented model includes two basic elements: Graph Neural Networks (GNNs) to extract the two

macro and micro-scale features, and an approach to include model predictions. In the tests, we applied GCN
(Graph Convolutional Network) and GraphSAGE models for processing features based on a graph. The
ensemble approach included applying methods of Voting and Weighted Averaging.

• Optimizers: The Adam optimizer was applied for training the model.
• Loss Function: The Cross-Entropy loss function was developed for classification.
• Regularization: Dropout with a rate of 0.5 was applied to avoid overfitting.

5.3 Assessment Metrics
In assessing classification models’ performance, especially in binary classification, some main metrics

have been developed for presenting a general model’s efficiency analysis. Such metrics contain F1 Score,
Precision, and Recall, each proposing uniform perspectives on various models’ predictive abilities.

• TP (True Positives): Accurately predicted positive samples.
• TN (True Negatives): Accurately predicted negative samples.
• FP (False Positives): Inaccurately predicted positive samples.
• FN (False Negatives): Inaccurately predicted negative samples.

The cases’ ratio which are accurately grouped into whole samples describes accuracy. Accuracy shows
how efficiently the model could distinguish between legal and bad traffic in the DDoS attack diagnosis
context. The mathematical formula for accuracy is:

Accuracy =(TN + TP) / (TP + TN + FP + FN) (16)

Precision assesses the model’s positive predictions’ accuracy. A higher precision shows that the model
has a lower false positive rate, showing its ability to accurately recognize positive samples with min error.

Precision = TP/(FP + TP) (17)

Recall (sensitivity) evaluates the capability of the model for accurately recognizing whole positive log
entries. This is computed as the true positive predictions’ rate to the total sum of positive log entries in the
dataset. A high recall score shows that the model efficiently gets most of the true positive cases.

Recall = TP/(FN + TP) (18)

F1 score shows harmonic precision and recall mean. This presents a balanced model’s performance
assessment by taking the two false positives and false negatives into consideration at the same time. A higher
F1 score shows better balance between precision and recall.

F1-score = 2×((Recall × Precision) / (Recall + Precision)) (19)

5.4 Results and Discussion
This part shows the detailed performance outcomes of the presented model and compares it with other

new techniques in Table 2.
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Table 2: Experimental results of the proposed model

Dataset Phase Precision Recall F1-Score Accuracy

UNSW-NB15 Train 0.94 0.94 0.94 0.94
Test 0.92 0.92 0.92 0.92

CICIDS2017 Train 0.96 0.95 0.95 0.95
Test 0.94 0.93 0.93 0.93

CICDDoS2019 Train 0.97 0.96 0.96 0.96
Test 0.95 0.94 0.94 0.94

The proposed ensemble model based on stacking Graph Neural Networks (GNNs) performs con-
sistently well in categorizing normal and attack traffic across numerous benchmark datasets, including
UNSW-NB15, CICIDS2017, and CICDDoS2019. Preliminary tests with an additional scale did not yield
significant improvement, confirming the efficiency of the two-scale configuration.

The model achieved a training accuracy of 94% on the UNSW-NB15 dataset, with good class-wise
metrics such as precision of 0.95 and recall of 0.95 for the attack class (label 1), demonstrating its robust
ability to detect malicious behavior with few false negatives. The model also had good precision (0.92) and
recall (0.90) for regular traffic (label 0), with F1-scores of 0.91 (class 0) and 0.95 (class 1). Macro and weighted
averages were within 0.93–0.94, demonstrating balanced performance across both classes.

During testing, the model maintained its outstanding generalization performance, with an accuracy of
92%. It achieved a precision of 0.93 and recall of 0.94 for the attack class, and 0.90 precision and 0.87 recall
for regular traffic, yielding F1-scores of 0.88 and 0.93, respectively. These findings confirm the model’s ability
to identify previously unknown harmful patterns with minimal loss of accuracy. On the CICIDS2017 dataset,
the model improved even further, achieving 95% training accuracy and 93% testing accuracy. The F1-score
for the attack class stayed at 0.94 or better, demonstrating its ability to detect stealthy attacks in complicated
traffic circumstances.

The performance on CICDDoS2019 was the most robust, with training accuracy of 96% and testing
accuracy of 94%, as well as precision and recall exceeding 0.95 in the assault class. These numbers
demonstrate the model’s great scalability and adaptability to evolving DDoS patterns. Overall, the GNN-
based stacking ensemble not only retains high accuracy and F1-score across all three datasets, but it also
demonstrates outstanding generalizability and robust detection of low-rate and high-volume attacks, making
it a suitable candidate for real-world intrusion detection systems (IDS).

A comparison of the confusion matrices from three datasets—UNSW-NB15, CICIDS2017, and
CICDDoS2019—in Fig. 2, shows that the proposed model performs well and consistently in DDoS detection.
The confusion matrix shows that the model accurately classified 3330 cases of class 0 as true negatives and
6277 examples of class 1 as true positives. Meanwhile, 370 cases of class 0 were improperly classified as class
1 (false positives), whereas 330 instances of class 1 were misclassified as class 0 (false negatives).

The relatively high proportion of true positives over false negatives illustrates the model’s good recall
for class 1, which efficiently detects DDoS attack samples. Similarly, the false positive count remains within
a reasonable range, which contributes to a favorable Type I error rate. This balance between correctly
recognizing attack traffic and reducing false alarms is a crucial contributor to the model’s high accuracy and
F1-score.
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Figure 2: Test the confusion matrix of the proposed method

The confusion matrix shows that the model correctly classified 900 cases of class 0 as true negatives and
1506 instances of class 1 as true positives. A total of 100 class 0 cases were inaccurately identified as class 1
(false positives), and 113 class 1 instances were incorrectly forecasted as class 0 (false negatives). Given the
significant number of true positives over false negatives, these findings demonstrate the model’s excellent
efficiency in detecting attack traffic (class 1). Furthermore, the comparatively low frequency of false positives
shows that the model retains acceptable precision while avoiding excessive false alarms. Overall, the matrix
demonstrates well-balanced classification performance, particularly given the complexity of DDoS patterns
in CICIDS2017.

As illustrated in the confusion matrix, the model accurately classified 920 cases of class 0 (normal) and
1520 instances of class 1 (DDoS). It misidentified 80 class 0 instances as class 1 (false positives) and 90 class 1
instances as class 0 (false negatives). This distribution. The low number of false positives adds to improved
precision, whereas the small number of false negatives supports strong recall for class 1. On the CICDDoS2019
dataset, the model performs similarly in both classes.

The ROC curves for the training and test sets show excellent classification performance in Fig. 3, with
AUC values of about 0.99 and 0.98, respectively. Furthermore, examination on benchmark datasets validates
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the model’s resilience, with AUC values of ~0.96 on UNSW-NB15, ~0.98 on CICIDS2017, and ~0.99 on
CICDDoS2019. These continuously high AUC scores demonstrate the model’s ability to distinguish between
benign and malicious network data at various classification levels.

Figure 3: The ROC curve for the testing set

This good result demonstrates the suggested stacking-based ensemble model’s extraordinary discrim-
inative capability, which is achieved by leveraging Graph Neural Networks (GNN) for improved feature
extraction and the strength of ensemble learning at the decision level. This architecture enables the model
to capture the intricate correlations found in network traffic data while preserving strong generalization to
previously unseen samples. Furthermore, the high AUC values imply that the model is good at correctly
detecting positive situations while avoiding false positives. This achievement is due to precise hyperparameter
tuning, clever training approaches to prevent overfitting, and careful treatment of class imbalance issues.
For assessing the presented technique’s efficiency, we compared its performance with other well-known
DDoS diagnosis methods. The outcomes illustrated that the presented model performs better than other
techniques in terms of F1-score, accuracy, and recall. We contrast three new deep learning IDS techniques
with the suggested multi-scale GNN ensemble. For unsupervised anomaly detection, Yao et al. [23] employ
a BiGAN, which increases scalability but has trouble with intricate attack patterns. The Transformer-BiGRU
architecture used by Li et al. [24] efficiently captures temporal and spatial correlations, but it comes at a
significant computational cost. An optimization-based feature selection strategy that enhances detection but
depends on manually chosen features is put forth by Nuiaa et al. [25]. In contrast to current techniques, our
method uses both macro- and micro-scale ensemble learning to model network traffic as graph-structured
data, resulting in more balanced and robust detection of both low- and high-rate DDoS attacks (Tables 3–5).
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Table 3: Comparative performance of existing methods vs. the proposed model (UNSW-NB15)

Method Accuracy (%) Recall (%) Precision (%) F1-Score (%)
Talukder et al. [20] 87.70 81.53 88.21 84.73
Hnamte et al. [21] 82.19 78.09 84.91 81.36
Wang et al. [22] 87.42 82.46 92.54 87.21

Proposed method 92.00 92.00 92.00 92.00

Table 4: Comparative performance of existing methods vs. the proposed model (CICIDS2017)

Method Accuracy (%) Recall (%) Precision (%) F1-Score (%)
Yao et al. [23] 82.30 76.30 76.50 76.40
Li et al. [24] 89.52 71.99 88.63 71.99

Proposed method 93.00 93.00 94.00 93.00

Table 5: Comparative performance of existing methods vs. the proposed model (CICDDoS2019)

Method Accuracy (%) Recall (%) Precision (%) F1-Score (%)
Nuiaa et al. [25] 89.59 90.04 89.64 89.84

Li et al. [24] 94.10 82.33 90.23 82.33
Proposed method 94.00 94.00 95.00 94.00

The performance metrics comparative analysis over present techniques and the presented strategy
shows the proposed IDS’s efficiency and superiority. Among the last works, Wang et al. [22] obtained the
highest F1-score (87.21%) and precision (92.54%), showing robust predictive balance and a low rate of false
positives. Talukder et al. [20] outperformed well with a respectable accuracy of 87.70% and precision of
88.21%; however, their recall (81.53%) was considerably lower, indicating that several samples of attack
remained undiagnosed. Hnamte et al. [21] reported the lowest values over the whole metrics, with an F1-score
of 81.36%, showing space for development in the two sensitivity and specificity.

Unlike the presented technique performs better than whole baselines with an F1-score of 92%, accuracy
of 92%, recall of 92%, and precision of 92%. The stable and balanced performance over the whole metrics
signifies the technique’s robust capability for diagnosing bad traffic with the two high sensitivities (recall)
and precision, reducing the two false negatives and positives. The development across present techniques
could be attributed to the developed modeling methods, combination as Graph Neural Networks (GNNs),
in a Stacking ensemble architecture that increases feature representation and decision strength. Totally, the
presented model not only surpasses the previous techniques in every unique metric but also obtains the most
balanced and reliable IDS performance.

On the CICIDS2017 dataset, the results in Table 3 unequivocally show how much better the suggested
strategy is than the current techniques. Specifically, the accuracy of the suggested model is 93%, a significant
improvement above that of Li et al. (89.52%) and Yao et al. (82.30%). More significantly, the recall rises sharply
to 93%, whereas the recall values of the two earlier approaches are lower (76.30% and 71.99%, respectively),
suggesting that the suggested model is far more successful in accurately detecting assault cases. Similar to
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this, the suggested method’s precision (94%) surpasses that of Li et al. (88.63%) and Yao et al. (76.50%),
indicating that it can detect malicious traffic with fewer false alarms. As a result, the suggested model’s F1-
score (93%) is much higher than the baselines, indicating a balanced improvement in recall and precision.
Overall, these figures show that by attaining thorough performance gains across all assessment criteria, the
suggested strategy provides a more robust and dependable detection capability than current approaches.

The results shown in Table 4 demonstrate that, when tested on the CICDDoS2019 dataset, the sug-
gested approach retains a significant generalization capability. A considerable amount of attack traffic goes
unnoticed, as evidenced by the very low recall (82.33%) of Li et al. and Nuiaa et al., despite their balanced
performance (accuracy of 89.59% and F1-score of 89.84%) and somewhat higher accuracy (94.10%). On the
other hand, the suggested model regularly demonstrates strong recall (94%) and precision (95%), in addition
to achieving a high accuracy (94%), resulting in a superior F1-score of 94%. These findings demonstrate that
the suggested approach can both lower false positives and catch a higher percentage of assault occurrences.
As a result, it provides more consistent and dependable detection performance on all assessment parameters
on CICDDoS2019 when compared to the current methods as shown in Table 5.

High detection performance is the main goal of the suggested multi-scale GNN ensemble, although
interpretability is crucial for real-world implementation. Explainable AI methods like GNNExplainer or
SHAP, which enable the identification of significant nodes, edges, or traffic factors influencing predictions,
can be used to understand the model’s choices. Investigating these techniques can improve confidence in
practical applications and yield further insights into the behavior of the model.

Even if the suggested multi-scale GNN ensemble is tested on a number of benchmark datasets, thorough
robustness testing is still a crucial area that needs more research. Future research will examine how well
the model handles concept drift in dynamic network contexts, how resilient it is to adversarial attacks, and
how well it performs when dealing with noisy or missing traffic data. Deeper understanding of the model’s
dependability and suitability for practical implementations will be possible thanks to these assessments.

High detection performance is attained by the suggested multi-scale GNN ensemble while preserving
useful processing economy. The system can process about 30,000 packets per second on a computer with
8 CPU cores, 32 GB RAM, and 8 GB GPU VRAM because graph generation takes about 5–10 ms per sample,
training takes about 2–3 h per dataset on an NVIDIA RTX 3060 GPU, and inference latency is about 3 ms per
sample. About 8 GB of GPU and 32 GB of RAM are used for training and inference. These findings suggest
that the model can be used for edge deployment and is practical for real-time DDoS detection. In large-scale
networks, further optimizations like model trimming or quantization may lower resource usage and increase
deployment effectiveness.

5.5 Limitations of the Proposed Model
There are a number of drawbacks to the suggested multi-scale GNN ensemble, despite its excellent

detection performance. Particularly for ensemble processing and micro-level graph creation, there are
significant memory and computational demands. Despite being tested on three benchmark datasets, there
may not be any applicability to new attack types or network settings. It may be difficult to install in
real-time in very big networks. Furthermore, it is challenging to explain individual forecasts due to the
inherent interpretability restrictions of GNN-based models. Lastly, the model’s resilience to concept drift
and adversarial attacks has not been thoroughly evaluated, offering suggestions for further study.
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6 Conclusions and Future Work
Here, we presented the new DDoS diagnosis system given the multi-scale Graph Neural Network (GNN)

ensemble strategy, efficiently getting the two big-scale and subtle, low-rate DDoS attacks. Through sharing
network traffic into macro- and micro-level features, our system could model the two big traffic spikes
and stealthy attack models, proposing important developments in diagnosis accuracy. Also, the ensemble
strategy we developed integrated the strengths of hybrid GNN models, later increasing system robustness
and performance. The experimental findings on the UNSW-NB15, CICIDS2017, and CICDDoS2019 datasets
show that our suggested strategy is effective, with high F1-scores, precision, recall, and accuracy that consis-
tently exceed traditional methods and other deep learning models. Despite these promising results, various
avenues for future research and optimization remain open. One main domain is developing scalability and
real-time detection capabilities of the system, ensuring it can handle large-scale networks effectively. In
addition, considering the issue of diagnosing novel and evolving DDoS attack models via methods such as
transfer learning and meta-learning would aid the model to adapt to new kinds of attacks. Future attempts
would concentrate on combining systems into the present network security infrastructures, presenting a
general solution to DDoS threats. To develop model performance, we plan to explore data augmentation
and synthetic data generation methods for controlling rare attack scenarios more efficiently. Also, increasing
model explainability via explainable AI (XAI) techniques like SHAP and LIME would develop trust in the
system’s decisions. At last, exploring the model’s resilience to adversarial attacks and fortifying it in contrast
to these threats would be critical in guaranteeing its robustness in real-life scenarios. By considering such
issues, we aim to considerably increase the DDoS diagnosis abilities of our system and guarantee its efficiency
in large-scale, real-time network areas
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