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ABSTRACT: Chinese abbreviations improve communicative efficiency by extracting key components from longer
expressions. They are widely used in both daily communication and professional domains. However, existing abbre-
viation generation methods still face two major challenges. First, sequence-labeling-based approaches often neglect
contextual meaning by making binary decisions at the character level, leading to abbreviations that fail to capture
semantic completeness. Second, generation-based methods rely heavily on a single decoding process, which frequently
produces correct abbreviations but ranks them lower due to inadequate semantic evaluation. To address these
limitations, we propose a novel two-stage framework with Generation–Iterative Optimization for Abbreviation (GIOA).
In the first stage, we design a Chain-of-Thought prompting strategy and incorporate definitional and situational contexts
to generate multiple abbreviation candidates. In the second stage, we introduce a Semantic Preservation Dynamic
Adjustment mechanism that alternates between character-level importance estimation and semantic restoration to
optimize candidate ranking. Experiments on two public benchmark datasets show that our method outperforms exist-
ing state-of-the-art approaches, achieving Hit@1 improvements of 15.15% and 13.01%, respectively, while maintaining
consistent results in Hit@3.

KEYWORDS: Abbreviation; chain-of-thought prompting; semantic preservation dynamic adjustment; candidate
ranking

1 Introduction
Abbreviations condense full expressions into shorter forms while preserving core semantics. Unlike

English abbreviations that typically follow the initial letter rule (e.g., “NBA” derived from “National Basket-
ball Association”), Chinese abbreviation generation is more complex and irregular. As shown in Table 1, “复
旦大学” (Fudan University) is abbreviated as “复旦” by keeping the first two characters, “上海迪士尼”
(Shanghai Disney) is shortened to “迪士尼” by selecting the last three characters, while “北京大学” (Peking
University) is abbreviated as “北大” by selecting two discontinuous characters. This irregular character
selection, together with the requirement to preserve semantic integrity, poses great challenges for language
models and downstream applications such as entity linking, information extraction, and text understanding
in accurately interpreting Chinese abbreviations. Therefore, Chinese abbreviation prediction is not only a
linguistic problem but also a key task for enhancing semantic representation and understanding in NLP
systems. These complexities highlight the necessity for a more structured and semantically guided approach
to Chinese abbreviation prediction.
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Table 1: Examples of full forms and abbreviations

Full form Abbreviation
复旦大学 (Fudan University) 复旦

上海迪士尼 (Shanghai Disney) 迪士尼

北京大学 (Peking University) 北大

In addressing the irregularity of Chinese abbreviation prediction, previous studies have mainly explored
two lines of research: sequence labeling and sequence generation. The sequence labeling method models
Chinese abbreviation prediction as a character-level label assignment task: each character in the full form is
assigned a binary label (e.g., “1” indicates retention and “0” indicates exclusion). For such tasks, traditional
models like Conditional Random Fields (CRF) [1–3] and Support Vector Machines (SVM) [4] are typical
solutions. These models leverage either manually designed features or automatically extracted features via
neural networks to learn the correlation between features and labels, thereby identifying the most probable
label sequence. However, these methods often fail to capture the global semantics of the complete expression.

Motivated by these limitations, sequence generation methods were introduced. They treat abbreviation
prediction as a sequence-to-sequence task, generating abbreviations directly from full forms using encoder–
decoder architectures. Some models further incorporate auxiliary components, such as quality evaluators [5]
or abbreviation-type classifiers [6], to improve output relevance. Although generation-based methods
alleviate the limitations of feature-based models through contextual representations, they still struggle
with candidate ranking, as the correct abbreviation may not be prioritized. These limitations reveal two
fundamental challenges in Chinese abbreviation prediction: (1) semantic incompleteness, as existing models
fail to capture global contextual meaning; and (2) suboptimal candidate ranking, since correct abbreviations
may not appear among the top positions during decoding.

To address these limitations, we introduce Generation–Iterative Optimization for Abbreviation (GIOA),
a novel two-stage framework that integrates structured reasoning with semantic refinement. The moti-
vation behind this design is to enable both structured reasoning and dynamic adjustment of semantic
representations, ensuring that generated abbreviations are semantically faithful and properly ranked. In
the first stage, we design a Chain-of-Thought (CoT) prompting template that integrates both definitional
and situational contexts to guide structured abbreviation generation. This stage aims to capture the holistic
semantics of the full form and produce semantically consistent candidate abbreviations. In the second stage,
we introduce a Semantic Preservation Dynamic Adjustment (SPDA) mechanism, which iteratively alternates
between character importance estimation and semantic integrity restoration to refine and re-rank candidate
abbreviations, thereby improving prediction accuracy and reducing ranking errors.

In summary, the main contributions of this paper are as follows.

• We propose a novel two-stage framework named Generation–Iterative Optimization for Abbreviation
(GIOA) for Chinese abbreviation prediction, which addresses the limitations of previous methods in
semantic understanding and candidate ranking, thereby improving overall prediction accuracy.

• We introduce a Chain-of-Thought (CoT) prompting mechanism that integrates definitional and
situational contexts to guide structured generation and produce semantically consistent and well-
structured abbreviations.

• We design a Semantic Preservation Dynamic Adjustment (SPDA) mechanism that iteratively alternates
between character importance estimation and semantic integrity restoration to refine and reorder
candidates, improving both semantic fidelity and ranking accuracy.
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• Extensive experiments conducted on two public benchmark datasets demonstrate the effectiveness
of GIOA. The proposed method achieves improvements of 15.15% and 13.01% in the Hit@1 met-
ric, respectively, while maintaining competitive performance on Hit@3 compared to state-of-the-art
approaches.

2 Related Work

2.1 Abbreviation Generation Methods
Early studies on abbreviation generation mainly relied on rule-based and statistical approaches using

linguistic features. Despite showing effectiveness, these approaches depended heavily on handcrafted
features, lacking flexibility and cross-domain generalization capability.

With the advent of deep learning, neural methods became dominant. Early neural approaches typically
modeled abbreviation prediction as a sequence labeling problem, using CRF [3] or HMM [5] models
with handcrafted features such as part-of-speech tags and word boundaries [6]. BiLSTM-CRF models [7]
were later introduced to capture richer contextual and semantic dependencies. While sequence labeling
provided structural control, it still struggled to ensure global semantic consistency and context-dependent
abbreviation accuracy [8].

To overcome these limitations, researchers reformulated abbreviation prediction as a sequence gener-
ation task. Wang et al. [8] pioneered the use of Seq2Seq models with label transformation and multi-layer
embeddings, followed by attention-based and Transformer-based architectures [9] adversarial mechanism,
offering greater flexibility. However, sequence generation models often rely on one-shot decisions and lack
iterative refinement to improve candidate quality.

Recently, large language models (LLMs) [10] have demonstrated strong semantic understanding and
reasoning abilities. Chain-of-Thought (CoT) prompting [11] enables structured reasoning by eliciting
intermediate steps, further enhancing semantic comprehension. Nevertheless, existing methods still lack
dynamic mechanisms for semantic refinement and candidate ranking, which motivates our proposed GIOA
framework to address these challenges.

2.2 Semantic Similarity Computation and Candidate Ranking
Semantic similarity computation quantifies the relatedness between text segments. Early methods

based on lexical or statistical features struggled to capture contextual meaning [12]. With deep learning,
pre-trained language models provided distributed representations for more accurate similarity estima-
tion [13]. Recent studies further adopted attention and context-fusion mechanisms to enhance fine-grained
alignment [14], supporting better evaluation of semantic consistency between abbreviations and full forms.

Candidate ranking is a key optimization technique in information retrieval and natural language
processing, aiming to refine the order of initial results through semantic modeling. Pairwise models such
as MonoT5 [15] enhance ranking accuracy by jointly modeling the semantic relevance between queries and
candidates, while late-interaction architectures like ColBERTv2 [16] achieve finer-grained semantic matching
with high efficiency. Recent approaches, including listwise methods and large language model–based or
graph-enhanced [17] strategies, further improve global optimization and semantic understanding in complex
ranking scenarios.

3 Methodology
In this section, we provide a detailed introduction to the GIOA framework, beginning with an overall

framework overview, followed by descriptions of the generation stage and iterative optimization stage.
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3.1 Problem Definition
Given a Chinese full form F = [x1 , x2, ..., xn] consisting of n characters, the goal is to generate a valid

abbreviation A = [a1 , a2, ..., am], where m < n and all characters in A are selected from F. To enhance
semantic modeling, the input also incorporates two types of contextual information: a definitional context
Cdef that describes the basic meaning of the term, and a situational context Cenv that reflects its practical
usage in real scenarios.

3.2 GIOA Framework
As shown in Fig. 1, we propose the GIOA framework composed of two stages, namely the generation

stage and the iterative optimization stage. The upper-left part of the framework consists of the input section,
which includes full form, definitional context, and situational context. These inputs are processed in the
generation stage, which employs a pre-trained Transformer model and a CoT prompting mechanism to
sequentially perform semantic unit extraction, abbreviation rule analysis, and abbreviation form construc-
tion, thereby generating structurally sound and semantically appropriate initial abbreviation candidates. The
candidate set then proceeds to the iterative optimization stage, where low-quality candidates with syntactic
errors or semantic inconsistencies are first filtered using linguistic constraints. The remaining candidates
are further processed by the SPDA mechanism, which alternates between character importance evaluation
and semantic integrity restoration. Through iterative refinement, this mechanism dynamically balances
information compression with semantic fidelity, ultimately producing the optimal abbreviation.

Figure 1: The overall architecture of the generation–iterative optimization framework
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3.3 Generation Stage
In the generation stage, we construct a candidate generation process based on a CoT prompting mech-

anism. This process centers on the Chinese pre-trained model (CPT) [8], which performs deep semantic
representation learning on the input full form and its dual contexts, including definitional and situational
contexts, thereby enhancing the model’s understanding of abbreviation usage scenarios. Building on this
foundation, the CoT prompting mechanism guides the model to sequentially execute three key steps: core
semantic extraction, abbreviation convention analysis, and abbreviation form determination, progressively
generating structurally sound and semantically appropriate initial candidates. Structured semantic modeling
and reasoning enable the model to accurately capture key information essential for abbreviation formation,
which in turn improves candidate generation quality.

3.3.1 Pre-Trained CPT Model for Candidate Generation
To support semantic modeling for abbreviation generation, we employ the Chinese Pretrained Trans-

former (CPT) model, pre-trained on large-scale Chinese corpora. CPT integrates both NLU and NLG
capabilities through a shared encoder and two specialized decoders optimized via masked language modeling
and denoising auto-encoding. This architecture effectively captures deep semantic information for our abbre-
viation task. Given limited abbreviation training data, we fine-tuned CPT on the Mention2Entity (M2E) [18]
dataset from CN-DBpedia [19], containing over one million entity-mention pairs with high semantic overlap.
These pairs, with longer text as input and shorter text as output, enable sequence-to-sequence training that
closely aligns with abbreviation generation requirements.

During the fine-tuning phase, given an input full form sequence [8] F = [x1 , x2, ..., xn], the model learns
to generate its abbreviated form A = [a1 , a2, ..., am] using an encoder-decoder architecture. The generation
probability can be expressed as:

P(A∣F) =
m
∏
t=1

P(at ∣a<t , F) (1)

We optimize the model using the standard cross-entropy loss function, formulated as:

Lgen = −
1
m

m
∑
t=1

log Pθ(at ∣a<t , F) (2)

where θ denotes the model parameters, at represents the t-th character in the abbreviated form, and a<t
denotes all previous characters before time step t.

3.3.2 Chain-of-Thought Prompting with Context Integration
To address the lack of interpretability in traditional generation models, we design a Chain-of-Thought

prompting template that integrates contextual understanding [11]. This template guides the model to
naturally incorporate both definitional context (standard word definitions) and situational context (specific
usage scenarios) during the reasoning process [20].

The template guides the model through a three-step structured reasoning process:
1. Core Semantic Extraction: Identify the core semantic units and compositional structure within the

full form.
2. Abbreviation Convention Analysis: Analyze appropriate abbreviation conventions based on defini-

tional understanding and usage contexts.
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3. Abbreviation Form Determination: Based on the analysis from the previous two steps, determine the
most reasonable abbreviated form.

This approach allows the model to jointly consider the compositional structure of the full form, the
semantic importance of each component, and contextual constraints during reasoning, forming a coherent
decision chain rather than applying fixed rules [21]. To provide a clear illustration of the overall Chain-of-
Thought reasoning process, we present a visual overview of the three-step reasoning procedure in Fig. 2. This
example shows how definitional and situational contexts jointly guide structured abbreviation generation.

Figure 2: Overall chain-of-thought reasoning process for abbreviation generation

3.3.3 Dual-Layer Context Enhancement Mechanism
To enhance understanding of the holistic semantics of full forms, we propose a dual-layer context

enhancement mechanism that aims to improve semantic comprehension through contextual augmentation.
This mechanism integrates both definitional and situational contexts, as illustrated in Table 2, enabling the
model to generate high-quality abbreviations that conform to general linguistic norms.

Table 2: Examples of definitional and situational contexts

Full form Definitional context Situational context

复旦大学附属中学

复旦大学附属中学是一所位于上

海市的著名中学,是复旦大学的
附属学校.

小李今年中考顺利考上复旦大学

附属中学,是他们班第一个考入
重点高中的.

Fudan University
Affiliated High School

Fudan University Affiliated High
School is a well-known secondary
school in Shanghai and is affiliated

with Fudan University.

Xiao Li passed the high school
entrance examination this year and
was admitted to Fudan University
Affiliated High School, becoming

the first student in his class to enter
a key high school.
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Definitional Context Acquisition. We first retrieve definitional context from CN-DBpedia; if it is
unavailable, we search for relevant content from Baidu entries or search results. In a few cases, addi-
tional semantic information is supplemented through manual annotation. This definitional context offers
standard definitions and background knowledge of full forms, aiding the model in understanding their
formal semantics.

Situational Context Generation. To simulate usage scenarios in specific contexts, we mainly obtain real
usage examples from news websites and academic literature databases such as CNKI, and further generate
supplementary contexts using ChatGPT to expand the coverage of the corpus.

Table 3 presents the distribution of definitional and situational contexts collected from multiple sources.
Specifically, the D1 dataset contains approximately 94,655 definitional contexts and 94,655 situational
contexts, while the D2 dataset includes about 10,786 definitional contexts and 10,786 situational contexts.
This large-scale and diverse contextual resource significantly enhances the quality and semantic plausibility
of the generated candidates.

Table 3: Distribution of definitional and situational contexts across datasets

Context type Context collection D1 D2

Definitional context

CN-DBpedia 87,306 (92.2%) 9707 (90.0%)
Baidu Baike items 4204 (4.5%) 863 (8.0%)
Baidu Baike pages 2974 (3.1%) 205 (1.9%)
Manual collection 171 (0.2%) 11 (0.1%)

Situational context
News websites 70,897 (74.9%) 8899 (82.5%)
CNKI query 18,931 (20.0%) 1639 (15.2%)

ChatGPT 4827 (5.1%) 248 (2.3%)

3.3.4 Candidate Generation Strategy
Based on the CoT analysis and enhanced semantic representation, we employ a beam-search strategy

to generate diverse candidate abbreviations [22]. To ensure both quality and diversity, we adopt three
practical constraints:

Diversity penalty. During beam search, we down-weight candidates that are overly similar to previously
expanded ones to reduce redundancy in the candidate set.

Length control. The target length m is constrained proportionally to the full-form length n, avoiding
extreme truncation or overlong outputs.

Quality threshold. Candidates with generation probability below a predefined threshold δ are dis-
carded.

With the above CoT guidance and dual-layer context enhancement, the generator produces semanti-
cally accurate, usage-appropriate, and diverse candidate sets {A1 , A2, . . . , Ap}, providing high-quality pools
for the subsequent optimization stage [23].

3.4 Iterative Optimization Stage
In this stage, to address the issue that correct abbreviations may be generated but fail to rank at the top,

we design an optimization process centered on the SPDA mechanism. This process first applies rule-based
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filtering to remove candidates with grammatical or structural inconsistencies, and then iteratively refines the
remaining candidates by alternating between character-level evaluation and semantic integrity restoration.

3.4.1 Preliminary Screening Mechanism
To identify high-quality candidates from the initial abbreviation candidate set, we introduce a multi-

dimensional screening framework that evaluates candidates based on linguistic feature constraints, linguistic
matching degree, and semantic similarity.

1. Linguistic Feature Constraints: The system first checks basic properties of candidate abbreviations,
such as whether their length falls within 2–6 characters and whether they form valid alphanumeric
combinations for readability and display. It also filters out candidates containing common function words
like “的”, “和”, and “与”, which are usually omitted in abbreviations.

2. Linguistic Matching Degree Assessment: Evaluates the linguistic correlation between candidates and
their full forms by checking whether candidates follow the pinyin initial-letter sequence, which is common
in Chinese abbreviations. It also measures their edit distance (Levenshtein) to ensure textual correlation. For
English or mixed Chinese-English abbreviations, it verifies that letter-case structure follows conventional
usage patterns, including appropriate proportions of uppercase letters.

3. Semantic Relevance Evaluation: This critical component computes TF-IDF similarity between can-
didates and full forms to assess lexical association, then uses bert-base-chinese to measure deep semantic
similarity, ensuring candidates retain the essential meaning of full forms. This deep learning-based evaluation
significantly improves screening accuracy.

Our screening framework dynamically adjusts evaluation criteria based on full form characteristics. For
longer full forms (over six characters), it lowers the semantic similarity threshold (from 0.5 to 0.3) to account
for information loss during abbreviation. This adaptive mechanism handles diverse abbreviation patterns
while maintaining quality standards [23]. Through multi-dimensional screening, the framework removes
low-quality candidates while retaining high-quality ones, filtering about 60% of suboptimal candidates and
preserving over 95% of high-quality ones, greatly improving downstream processing efficiency and quality.

3.4.2 Semantic Preservation Dynamic Adjustment Mechanism
To address the issues of incorrect candidate ranking and inconsistent abbreviation quality, we introduce

the SPDA mechanism, which is built upon a pre-trained Chinese language model optimized for natural
language understanding and generation tasks. This foundation provides robust support for abbreviation
construction, semantic evaluation, and structural refinement [8]. The SPDA mechanism integrates character
importance estimation with semantic integrity restoration through an iterative optimization process. In each
iteration, the system evaluates the contextual significance of individual characters and performs semantic
restoration based on the retained character combinations. This process progressively enhances both the
representational quality and ranking accuracy of candidates until convergence is achieved or a predefined
maximum number of iterations is reached, as illustrated in Fig. 3.
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Figure 3: SPDA flowchart

In the character importance estimation stage, the system dynamically evaluates each character a(t)
k , j in

the candidate abbreviation A(t)
k = [ak ,1 , ak ,2 , . . . , ak , j] to determine its contribution to semantic expression.

A comprehensive scoring function is designed that considers character position information (initial or final
characters tend to be more important), lexical features (content words are more informative), information
entropy (rare characters usually convey more information), and centrality in the knowledge graph of the
domain. The score is computed as:

α(t)
k , j = ∑

i
ωi fi(ak , j) (3)

where fi(⋅) represents linguistic statistical features and ωi denotes the corresponding weights.
The system then generates a masking code:

m(t)
k , j =

⎧⎪⎪
⎨
⎪⎪⎩

1, if α(t)
k , j ≥ τ(t) (retain)

0, if α(t)
k , j < τ(t) (mask)

(4)

That is, if the importance score of a character is above or equal to the current threshold, it is retained
(mask code = 1); otherwise, it is replaced with a placeholder symbol “#”, and excluded from the next round
of abbreviation construction. The masked candidate is defined as:

A(t)masked
k =Mask(A(t)

k , m(t)
k ) (5)

In the semantic integrity restoration stage, the system determines whether semantic meaning has
changed after masking by comparing two semantic similarity scores with the original full name F.



10 Comput Mater Contin. 2026;87(1):63

The first type measures the semantic similarity between the original unmasked version A(t)
k and the full

form, denoted as sraw
k , which evaluates whether the original candidate provides a better semantic expression.

The second type measures the semantic similarity between the masked version A(t)masked
k and the full

form, denoted as smask
k , which is used to assess whether the compression operation affects semantic integrity.

The similarity is computed as:

sraw
k = sim(X , A(t)

k ), smask
k = sim(X , A(t)masked

k ) (6)

If the masked version retains better semantic integrity, we keep it; otherwise, we revert to the original:

A(t+1)
k =

⎧⎪⎪
⎨
⎪⎪⎩

A(t)
k , if sraw

k ≥ smask
k

A(t)masked
k , otherwise

(7)

The process runs for 3–5 rounds with gradually relaxed thresholds and stops when outputs stabilize
(A(t+1)

k = A(t)
k ) or when the maximum iteration is reached.

Through this iterative process, the system refines character selection to balance information compres-
sion and semantic retention. By introducing dynamic, evolutionary strategies, SPDA overcomes the one-shot
limitation of traditional methods and better reflects the cognitive process of human abbreviation formation.

4 Experiments

4.1 Experimental Setup
4.1.1 Datasets

We conducted experiments on two publicly available datasets. The first dataset, denoted as D1, was
constructed by Wang et al. [8] based on the large-scale Chinese knowledge graph CN-DBpedia and
Baidu Baike, the largest online Chinese encyclopedia. The second dataset, denoted as D2, was proposed
by Zhang and Sun [7] and is sourced from the People’s Daily corpus and the SIGHAN Chinese word
segmentation corpus. It should be noted that some entries in D2 do not strictly adhere to the standard full
form–abbreviation format. Detailed statistics for both datasets are presented in Table 4.

Table 4: Statistics of datasets D1 and D2 used in our experiments

Category D1 D2

Train Valid Test Train Valid Test
Total entries 75,724 9466 9465 7551 1078 2157

Negative full form – – – 1828 255 578
Avg. length of full forms 9.6 9.7 9.6 5.6 5.6 5.7

Avg. length of
abbreviations 4.8 4.8 4.8 2.5 2.5 2.5

Avg. length of contexts 162 161.7 162.6 131.9 132.5 132.3
Max. length of contexts 1125 699 677 373 490 419
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4.1.2 Baseline Methods
To evaluate the performance of our method, we adopt mainstream models in Chinese abbreviation gen-

eration and related tasks as baselines, covering two categories: sequence labeling and sequence generation.
The former frames abbreviation prediction as a character-level tagging task to extract key information from
full forms, while the latter treats it as a text-to-text generation task, typically leveraging encoder–decoder
architectures or prompt-based language models to directly produce candidates. Detailed results are reported
in Table 5.

Table 5: Performance comparison of different models on D1 and D2

Models D1 D2

Hit@1 Hit@3 Hit@1 Hit@3
Sequence labeling models

CRF 39.4 50.6 56.7 69.4
RNN-RADD 42.5 65.4 52.6 68.6

Bi-LSTM+CRF 43.4 66.6 57.3 64.9
BERT+Bi-LSTM+CRF 44.9 68.8 58.3 68.8

HJCL 51.3 71.8 58.4 82.6

Sequence generation models
Seq2Seq-CADC 47.6 71.6 57.6 73.6

CPT 53.2 75.1 61.4 83.3
ChatGLM+CoT 36.9 61.3 40.7 64.2

SimpleBart 47.2 73.0 61.6 80.2
ChatGLM-6b+Dis 56.5 77.9 66.6 85.5

Our method 71.65 76.27 79.35 83.83

CRF [2]: Formulates abbreviation generation as a sequence labeling task using a classical CRF model
that leverages handcrafted linguistic features.

RNN-RADD [24]: Incorporates a recursive neural framework with a dynamic dictionary to better
model contextual dependencies and enhance abbreviation generation performance.

Bi-LSTM+CRF [7]: Combines Bi-LSTM with CRF to capture long-range dependencies and structured
output constraints for sequence labeling in abbreviation tasks.

BERT+Bi-LSTM+CRF [25]: Integrates pre-trained BERT representations with Bi-LSTM and CRF
layers to enrich semantic encoding and improve sequence labeling accuracy.

HJCL [26]: Utilizes a hierarchical joint contrastive learning framework with instance-level and label-
level losses to boost accuracy and discriminability in abbreviation labeling.

Seq2Seq-CADC [8]: Implements a multi-level pre-training strategy within a sequence-to-sequence
architecture to enhance generalization and representation quality.

CPT [18]: Incorporates context during inference only, aligning generation with original input to
enhance evaluation accuracy without contextual training.

ChatGLM+CoT [27]: Introduces intermediate reasoning steps guided by abbreviation rules during
generation to improve accuracy and interpretability.
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SimpleBart [28]: Leverages the BART framework with continuous pre-training to refine the fluency
and quality of generated abbreviations.

ChatGLM-6b+Dis [22]: Combines a type discriminator with a fine-tuned LLM for candidate genera-
tion, followed by joint scoring to assess rationality.

4.2 Evaluation Metrics and Implementation Details
Evaluation metrics: We adopt Hit@1 and Hit@3 as evaluation metrics. Hit@1 measures whether the

top-ranked abbreviation exactly matches the ground truth, while Hit@3 evaluates if the correct abbreviation
appears within the top three candidates, comprehensively assessing both accuracy and diversity. To ensure
fair comparison, all models are trained and evaluated under identical settings, and the same random seeds
are used across experiments for reproducibility.

Implementation details: Our approach is implemented using PyTorch and runs on an NVIDIA RTX
4090 GPU. The candidate generation stage employs CPT-base (12 encoder layers, 6 decoder layers, 768-
dimensional hidden states, 12 attention heads), pre-trained on the M2E dataset for 10 epochs (learning rate
2e–5, batch size 64) and fine-tuned on the abbreviation dataset for 10 epochs. The iterative optimization
stage uses a pre-trained Chinese language model with 12 Transformer layers, trained for 5 epochs (learn-
ing rate 3e−5, AdamW optimizer). During inference, beam search with width 12 balances diversity and
computational efficiency.

4.3 Overall Performance
The overall performance of all comparative methods is shown in Table 5. Our conclusions are: (1) our

method significantly outperforms previous approaches with 15.15% and 13.01% improvements on Hit@1 for
both datasets, while maintaining comparable Hit@3 performance, demonstrating its effectiveness; (2) the
dual-layer context enhancement mechanism significantly improves performance by combining definitional
and contextual information, leading to more accurate and reasonable candidate generation; (3) the SPDA
iterative optimization mechanism enhances candidate ranking quality by better balancing information
compression and semantic preservation compared to traditional probability-based methods.

4.4 Impact of Candidate Number
We further analyze the impact of candidate generation strategies by varying the candidate number k

from 1 to 30. As shown in Fig. 4, when k < 10, Hit@k on D1 and D2 increases by 45% and 82.5%, respectively,
showing significant improvements. However, when k > 10, the performance gain gradually flattens. At k = 12,
Hit@k reaches 83.1% on D1 and 87.8% on D2, achieving a balance between candidate diversity and quality.
Compared to k = 20, the decoding time is reduced by 0.2 s on D1 and 1.0 s on D2, resulting in a 67%
improvement in decoding efficiency with negligible performance loss. Further increasing k leads to marginal
accuracy gains but sharply rising computational cost, which is impractical in real-world applications.

Considering the trade-off between performance and efficiency, we finally set k = 12 in the GIOA
framework. This configuration ensures high accuracy, efficient runtime, and lower memory consumption,
providing a stable foundation for subsequent optimization and deployment.



Comput Mater Contin. 2026;87(1):63 13

Figure 4: The impact of the number of candidates on the two datasets

4.5 Impact of Context Selection
We conduct a detailed analysis of how different context lengths affect the performance of our abbrevi-

ation generation model. Specifically, we test four configurations with maximum context lengths set to 0 (no
context), 50, 100, and 150 tokens. When the input exceeds the specified limit, we apply truncation to preserve
consistency; otherwise, the full context is retained.

As shown in Table 6, incorporating context information generally leads to consistent performance
improvements across both datasets. Compared to the model without context, even a short context window
(e.g., L = 50) yields a noticeable gain in Hit@1. As context length increases to L = 100 and L = 150, the
improvements continue but gradually stabilize. On D1, our method achieves a 1.61% increase in Hit@1
compared to L = 50, while on D2, the gain reaches 1.33%. This confirms the importance of contextual
information in enabling the model to understand semantic cues and produce more accurate abbreviations.
Notably, our final configuration achieves the highest Hit@1 and Hit@3 scores on both datasets, balancing
effectiveness and computational efficiency.

Table 6: Results of our models with various context lengths on D1 and D2

The length of context D1 D2

Hit@1 Hit@3 Hit@1 Hit@3
W/o context 69.50 73.26 76.92 80.75

L = 50 70.04 74.27 78.25 81.79
L = 100 71.32 74.69 78.95 82.84
L = 150 71.37 74.92 79.21 83.46

Our method 71.65 76.27 79.35 83.83

4.6 Impact of Different Models in Generation
In the generation stage of our framework, we adopt a structured generation pipeline based on CPT. To

investigate the impact of different generation models on this stage, we replace the generation component
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with Qwen2.5, Mengzi-T5-base, and ERNIE-GEN for comparison. The candidate results generated by
each model are shown in Table 7. Our method consistently outperforms the alternative models on both
datasets during the generation stage, demonstrating stronger generation ability and expression accuracy. This
further validates the effectiveness of task-specific modeling in improving abbreviation generation. It is worth
emphasizing that our method achieves the highest Hit@1 and Hit@3 scores on both D1 and D2, indicating
its superior performance in abbreviation generation.

Table 7: Results generated in the generation stage by different models on D1 and D2

Models D1 D2

Hit@1 Hit@3 Hit@1 Hit@3
Qwen2.5 48.29 60.26 50.92 67.95

Mengzi-T5-base 61.92 68.14 62.31 71.05
ERNIE-GEN 56.29 59.17 58.52 65.39
Our method 63.65 70.69 68.15 76.23

4.7 Comparison of Prompting Strategies
In order to systematically investigate the influence of prompt design on the performance of abbreviation

generation, we devise and evaluate a set of representative prompt strategies across two benchmark datasets.
Specifically, we examine four configurations, including W/o Prompt, Prompt-only, Template Prompt, and
our proposed strategy that integrates contextual information, structural cues, and task-specific semantic
signals. Based on these prompt settings, we conducted comparative experiments on D1 and D2 (Table 8).
The results indicate that well-designed prompts, especially those that combine structural and semantic
guidance, can greatly enhance the understanding of task intent and improve the accuracy and reliability of
abbreviation generation.

Table 8: Results generated by our method under different prompt strategies across D1 and D2

Prompt strategies D1 D2

Hit@1 Hit@3 Hit@1 Hit@3
W/o prompt 70.05 74.17 77.94 81.93
Prompt-only 71.25 74.32 78.27 82.59

Template prompt 71.31 75.19 78.94 83.21
Our method 71.65 76.27 79.35 83.83

4.8 Ablation Study
To better understand the contribution of each mechanism in the proposed GIOA framework, we

conducted ablation experiments on two public datasets. Specifically, we sequentially removed the context
integration, rule-based screening, semantic preservation, and iterative optimization mechanisms to assess
their respective impacts on model performance. The results are summarized in Table 9.
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Table 9: Ablation results of different modules on D1 and D2

Models D1 D2

Hit@1 Hit@3 Hit@1 Hit@3
All 71.65 76.27 79.35 83.83

W/o definitional context 69.95 73.82 77.25 81.20
W/o situational context 70.36 74.78 78.27 81.98
W/o two-stage context 69.50 73.26 76.92 80.75

W/o prompt 71.05 74.17 77.94 81.93
w/o rule 71.21 75.32 78.91 83.02

w/o SPDA 70.14 74.12 76.44 80.21
W/o optimize 68.93 73.91 76.04 80.12

The results show that the complete model achieves the best overall performance. Removing the context
integration module causes the largest drop, confirming the importance of contextual semantics. Similarly,
removing the rule-based screening and SPDA mechanisms degrades performance, indicating their roles
in refining candidate ranking and preserving semantic consistency. Overall, these results validate the
effectiveness and necessity of each component in the GIOA framework.

5 Discussion and Analysis
(1) Unique Advantages and Innovations: The proposed GIOA method incorporates a dual-layer context

enhancement mechanism and SPDA iterative optimization mechanism, effectively addressing semantic
preservation and candidate ranking challenges. The significant improvements in Hit@1 metrics (15.15%
and 13.01% increases) demonstrate its superior balance between semantic understanding and information
compression. The SPDA mechanism successfully integrates semantic integrity with efficient information
compression through dynamic adjustment.

(2) Advantages over Baseline Models: GIOA surpasses traditional Seq2Seq and annotation-based meth-
ods by effectively combining definitional and contextual information through its dual-layer mechanism. The
SPDA optimization process enhances ranking accuracy, producing more practical abbreviations. The model’s
design aligns with Chinese abbreviation formation patterns, overcoming the limitations of probability-based
generation methods.

(3) Limitations and Future Directions: While GIOA excels in Hit@1 performance, improvements are
needed for Hit@3 scores. The model faces challenges in computational complexity and domain adaptability.
Future work will focus on incorporating external knowledge bases, exploring domain adaptation strategies,
and optimizing model structure to enhance practical application efficiency.

6 Conclusion and Future Work
In this paper, we focus on Chinese abbreviation prediction and introduce a novel generation–iterative

optimization framework called GIOA, which integrates Chain-of-Thought (CoT) reasoning and Semantic
Preservation Dynamic Adjustment (SPDA). Based on this perspective, firstly, we reformulate abbreviation
prediction as a reasoning-driven generation task, where CoT prompting guides structured abbreviation gen-
eration by incorporating definitional and situational contexts to enhance semantic understanding. Secondly,
we implement an iterative optimization mechanism, SPDA, which alternates between character importance
evaluation and semantic integrity restoration to refine candidate quality and ranking. Furthermore, we
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construct a context-enriched dataset and conduct extensive experiments to validate our framework. The
results demonstrate that GIOA achieves significant improvements over state-of-the-art methods on two
public datasets, improving Hit@1 by 15.15% and 13.01%, respectively, while maintaining competitive Hit@3
performance. Overall, our findings confirm that combining structured reasoning with dynamic semantic
refinement effectively improves both accuracy and interpretability, offering practical insights for future
abbreviation generation research.

For future work, we plan to extend GIOA to industrial fault analysis scenarios, where abbreviation
generation can help unify terminology and improve the interpretability of fault reports. We are currently
constructing a domain-specific dataset that integrates industrial texts and fault records to further explore the
applicability of our framework in real-world environments.
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