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ABSTRACT: Cooperative multi-UAV search requires jointly optimizing wide-area coverage, rapid target discovery,
and endurance under sensing and motion constraints. Resolving this coupling enables scalable coordination with
high data efficiency and mission reliability. We formulate this problem as a discounted Markov decision process on
an occupancy grid with a cellwise Bayesian belief update, yielding a Markov state that couples agent poses with a
probabilistic target field. On this belief–MDP we introduce a segment-conditioned latent-intent framework, in which
a discrete intent head selects a latent skill every K steps and an intra-segment GRU policy generates per-step control
conditioned on the fixed intent; both components are trained end-to-end with proximal updates under a centralized
critic. On the 50 × 50 grid, coverage and discovery convergence times are reduced by up to 48% and 40% relative to
a flat actor-critic benchmark, and the aggregated convergence metric improves by about 12% compared with a state-
of-the-art hierarchical method. Qualitative analyses further reveal stable spatial sectorization, low path overlap, and
fuel-aware patrolling, indicating that segment-conditioned latent intents provide an effective and scalable mechanism
for coordinated multi-UAV search.

KEYWORDS: Multi-agent reinforcement learning; Markov decision process; multi-UAV cooperative search

1 Introduction
Cooperative search with multiple unmanned aerial vehicles (UAVs) enables rapid, wide-area situational

awareness for surveillance, humanitarian response, and defense operations, where parallel sensing and
timely localization of mission-relevant targets are critical [1,2]. These demands are further amplified by the
proliferation of IoT devices and the emergence of next-generation (6G-ready) network architectures, in
which UAV-assisted infrastructures are increasingly deployed as agile aerial nodes for real-time sensing,
surveillance, and data collection in dense IoT environments [3–5]. In such settings, decision policies must
simultaneously promote broad spatial coverage, high-probability target discovery, and fuel-aware persistence
under partial observability and dynamic interaction among agents, which renders joint planning inherently
high dimensional and nonstationary.
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Conventional approaches to multi-UAV search span graph-based planning, swarm heuristics, game-
theoretic coordination, and evolutionary/metaheuristic optimizers [6–8]. While these methods provide
valuable baselines, they typically assume static or fully observable environments, rely on strong prior
modeling or hand-crafted heuristics, and offer limited support for online adaptation, multi-agent credit
assignment, and principled trade-offs between coverage, discovery, and endurance. Deep reinforcement
learning has recently advanced UAV navigation by learning directly from interaction and coping with
uncertainty [9–11]. In multi-agent settings, centralized training with decentralized execution (CTDE)
alleviates nonstationarity [12–14], yet flat (single-level) DRL still struggles with long-horizon exploration,
joint action-space blowup, and ambiguous credit assignment as team size grows [15].

Hierarchical reinforcement learning (HRL) provides temporal abstraction and subgoal structure
through manager–worker decompositions and value-function factorizations [16,17]. Canonical architectures
such as FeUdal Networks and the Option-Critic framework instantiate these principles via goal-conditioned
managers and learnable options [18], but typically require delicate intrinsic-reward design or learned ter-
mination functions that are prone to option collapse and training instability. Recent multi-agent extensions
further exploit hierarchical organization to facilitate cooperative decision-making [19,20], yet often rely on
hand-crafted subtask taxonomies, predefined communication patterns, or centralized coordinators that do
not transfer seamlessly to fully cooperative, partially observed settings. Surveys underscore the potential of
HRL for scalable aerial coordination [21,22]; nevertheless, these designs can incur additional variance and
computational overhead when applied to belief-based multi-UAV search with tightly coupled objectives.
Maximum-entropy regularization has been shown to enhance exploration and coordination [23], yet
systematically aligning exploratory behavior with mission-level coverage objectives and energy constraints
remains a central open challenge.

This work introduces a segment-conditioned latent-intent framework for cooperative multi-UAV
search (SCLI–CMUS) that unifies temporal abstraction, coordinated exploration, and endurance awareness
within a single CTDE policy. The environment is modeled as a discounted Markov decision process on a
discretized workspace endowed with a Bayesian cellwise update of the occupancy field. Within one end-to-
end differentiable policy, a discrete intent head selects a latent skill every K steps to guide medium-horizon
behavior, while an action head driven by an intra-segment GRU issues per-step yaw increments conditioned
on the fixed intent and local features. Compared with FeUdal-style and Option-Critic architectures, this
fixed-horizon, discrete-intent design retains sufficient temporal expressiveness while avoiding termination-
related instabilities and keeping per-step computation close to that of a recurrent actor-critic with a single
additional categorical head. To reconcile heterogeneous signal scales and stabilize training, we employ
a three-parameter, scale-calibrated saturated reward that jointly accounts for information gain, coverage
efficiency, and energy–time cost. The principal contributions of this work are summarized as follows:

1. We propose Segment–Conditioned Latent–Intent for Cooperative Multi–UAV Search (SCLI–CMUS),
a CTDE framework that couples a discrete intent selector—updated at fixed segment boundaries—with
an intra-segment recurrent controller in a single end-to-end differentiable policy.

2. We develop a three-coefficient, scale-calibrated saturated reward that jointly balances information gain,
coverage efficiency, and energy–time costs.

3. Comprehensive experiments demonstrating faster learning, improved overage/discovery convergence
times, and robust qualitative behaviors across representative UAV team sizes.

The remainder of this paper is structured as follows. Section 2 reviews related work on coop-
erative multi-UAV search, planning-based coordination, and (hierarchical) multi-agent reinforcement
learning. Section 3 presents the belief-based MDP formulation and the proposed segment-conditioned
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latent-intent framework, while Section 4 details the experimental setup, benchmarks, and ablation studies.
Finally, Section 5 summarizes the findings and outlines directions for future research.

2 Related Work
Conventional planning approaches for UAV search largely build on graph-search and shortest-path

heuristics, which perform well in static and fully observable environments [6,24]. However, such methods do
not naturally accommodate multi-agent credit assignment, online replanning under sensing uncertainty, or
principled division of labor among multiple vehicles. Swarm-style schemes based on artificial potential fields,
flocking rules, or pheromone deposition provide lightweight, decentralized coordination with low com-
munication burden [7,25], and learned heuristics can amortize local perception-to-action mappings [26].
These approaches, though attractive for their simplicity, are susceptible to local minima, lack mechanisms
to globally optimize coupled coverage–discovery–endurance trade-offs, and often require extensive manual
retuning when environment statistics change.

Game-theoretic and metaheuristic frameworks offer alternative tools for cooperative search and rout-
ing. Potential games and market-based task allocation furnish equilibrium concepts and scalable assignment
rules [27,28], while differential games capture adversarial or pursuit–evasion interactions in continuous
time [28]. Evolutionary and metaheuristic optimizers traverse nonconvex search spaces and can handle
multiple objective criteria in path planning and routing [29,30], with recent advances in motion-encoded
multi-parent crossovers improving solution diversity [8]. Nonetheless, their reliance on strong prior mod-
eling, offline optimization, and substantial computational budgets limits their ability to adapt online in
uncertain, time-critical environments.

Deep reinforcement learning (DRL) has achieved notable success in UAV navigation by learning policies
directly from interaction, thereby coping with uncertainty and enabling online adaptation [9]. Single-vehicle
studies have demonstrated obstacle-aware, threat-aware maneuvering and memory-augmented exploration
in complex environments [10,11,31,32]. In multi-agent settings, centralized training with decentralized
execution (CTDE) has become a standard paradigm: decentralized actors are trained against a centralized
critic to mitigate nonstationarity and stabilize learning [12], and recent work emphasizes resilience and
meta-adaptation under distribution shift [13,14]. However, flat (single-level) DRL typically struggles to align
long-horizon exploration with local motion control, suffers from joint action-space blowup as team size
grows, and faces ambiguous multi-agent credit assignment [15]. Maximum-entropy and entropy-regularized
formulations can improve exploration and coordination [23], but designing reward structures that explicitly
couple information gain, coverage efficiency, and energy–time costs remains challenging in belief-based
multi-UAV search.

Hierarchical reinforcement learning (HRL) introduces temporal abstraction and subgoal structure
through manager–worker decompositions and value-function factorizations [16,17]. Canonical architectures
such as FeUdal Networks and the Option-Critic framework realize these principles via goal-conditioned
managers and learnable options [18,33], but typically require carefully designed intrinsic rewards or learned
termination functions that are prone to option collapse, premature termination, and training instability.
Against this backdrop, the segment-conditioned latent-intent framework developed in this work is intended
to preserve the advantages of temporal abstraction while mitigating practical difficulties associated with
option termination and hand-crafted subtask hierarchies.

3 Method
Fig. 1 provides an overview of the proposed framework. The environment yields a probabilistic occu-

pancy map b(t), local observations ou
t , and agent coordinates pu

t . These signals are fused by an encoder
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(GRU) into global information features that condition two heads within a single policy: a discrete skill
head πϕ that selects a segment intent zu

tk
every K steps, and an action head πθ that issues per-step yaw-

increment commands conditioned on the fixed intent and an autoregressive hidden state. A centralized critic
Vψ evaluates behaviour on the belief state and supplies advantages for step-level and segment-level updates;
experience tuples are stored in a replay buffer.

Figure 1: Overview of the segment-conditioned latent-intent framework for cooperative multi-UAV search (SCLI-
CMUS). Left: environment and trajectories of multiple UAVs (colours identify agents; stars indicate targets; orange dots
denote end points). Middle: inputs to the encoder comprising the probability map b(t), local observation ou

t , and UAV
coordinates pu

t ; the encoder (GRU) produces global information features. Right: policy heads and learning signals. The
skill head πϕ selects a discrete intent every K steps; the action head πθ outputs per-step yaw increments conditioned
on the intent and an autoregressive state

The main symbols used in the formulation and policy parameterization are summarized in Table 1.

Table 1: Core notation used in the problem formulation and policy

Category Symbol Description

Environment & State
D, DX , DY Discretized grid workspace and its size.
U, N UAV index set and team size.

St MDP state (UAV poses and belief field).

Sensing & Coverage Rsen, Covu(x , y; t) Sensing radius and per-UAV cell coverage
indicator.

Vt , CovRate(t) Visited cell set and instantaneous
coverage ratio.

Belief & Reward bx , y(t), b(t) Cellwise occupancy belief and full belief
field.

Rt , Ît , Ĉt , Êt ,
Team reward, normalized components,

reward weights λI, λC, λE, discount factor
γ, and discounted return J.

λI, λC, λE, γ, J

(Continued)
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Table 1 (continued)

Category Symbol Description

Latent Intents & Segments K , tk
Segment length and segment-start time

index.

zu
tk

, M Latent intent of UAV u at tk and number
of discrete intents.

Actions & Policy A, au
t , α Discrete yaw–increment set, action of

UAV u, and increment magnitude.

πu
ϕ , πu

θ , Vψ
Skill head, action head, and centralized

critic.

Features & Hidden state ou
t , gmap

t , g loc,u
t , Gu

t
Local observation, belief-map feature,

local feature, and aggregated summary.
hu

t , GRUω Recurrent hidden state and GRU encoder.

3.1 MDP Formulation for Cooperative Multi-UAV Search
We model cooperative multi-UAV search as a discounted Markov decision process on a discretized

workspace. Let the two-dimensional workspace be discretized as

D = {(x , y) ∣ x = 1, . . . , DX , y = 1, . . . , DY}, (1)

where each cell (x , y) either contains a target or is empty, and ∣D∣ = DX DY denotes the total number of grid
cells. Time is discrete t = 0, 1, 2, . . .. The cellwise occupancy posterior is

bx , y(t) = P(cell (x , y) contains a target ∣Z1∶t), (2)

with Z1∶t the σ-algebra generated by all measurements up to t. The initial prior bx , y(0) is specified from
domain knowledge (uniform). Denote by b(t) = {bx , y(t)}(x , y)∈D the full occupancy field.

We now specify the agent set, action space, kinematics, joint control, and state representation. Let
U = {1, . . . , N} index the UAVs. UAV u has planar position pu

t ∈ R2 and heading ψu
t ∈ (−π, π]. Each UAV

selects a discrete yaw–increment action

au
t ∈A = {−α, 0, +α} (degrees), (3)

where α = 45, and the action evolves under constant–speed kinematics with sampling step Δt > 0 and speed
v > 0.

Given a chosen yaw–increment action au
t and constant-speed motion, the heading and planar position

of UAV u evolve according to

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ψu
t+1 = ψu

t + π
180

au
t ,

pu
t+1 = pu

t + vΔt
⎡⎢⎢⎢⎢⎣

cos ψu
t+1

sin ψu
t+1

⎤⎥⎥⎥⎥⎦
,

(4)

where v is the constant forward speed and Δt is the sampling interval.
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Collecting all per-agent yaw–increment actions yields the joint action vector

at = (a1
t , . . . , aN

t ) ∈AN . (5)

The MDP state collects agent poses and the occupancy field, namely

St = ({pu
t , ψu

t }u∈U , b(t)). (6)

Each UAV carries an omnidirectional sensing disc of radius Rsen > 0. A grid cell (x , y) is classified as
fully observed by UAV u at time t if all four vertices ∂D(x , y) lie within the disc centered at pu

t :

Covu(x , y; t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, max
(x′ , y′)∈∂D(x , y)

∥pu
t − (x′, y′)∥ ≤ Rsen,

0, otherwise.
(7)

The instantaneous covered set is defined by

Vt = {(x , y) ∈D ∶
N
∑
u=1

Covu(x , y; t) ≥ 1} , (8)

where the coverage ratio at time t is given by CovRate(t) = ∣Vt ∣
∣D∣ . The cumulative exploration status of a cell

is recorded by

Visited(x , y; t) = I{∃ τ ≤ t ∶
N
∑
u=1

Covu(x , y; τ) ≥ 1} . (9)

Let Zu
t denote the measurement field collected by UAV u at time t. For any covered cell (x , y) with

Covu(x , y; t) = 1, the binary detector on UAV u obeys

P(Zu
x , y(t) = 1 ∣ Tx , y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Pu
D , if Tx , y = 1,

Pu
FA, if Tx , y = 0,

(10)

where Zu
x , y(t) ∈ {0, 1} is the binary measurement at cell (x , y) and time t, Tx , y ∈ {0, 1} denotes the hidden

occupancy of cell (x , y), and Pu
D , Pu

FA are the detection and false–alarm probabilities of UAV u, respectively.
The set of UAVs that cover (x , y) at time t is

Ux , y(t) = {u ∈U ∶ Covu(x , y; t) = 1}. (11)

Under conditional independence given Tx , y , the joint likelihoods for the measurements on (x , y) at
time t are
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

L1 = ∏
u∈Ux , y(t)

(Pu
D)Zu

x , y(t)(1 − Pu
D)1−Zu

x , y(t),

L0 = ∏
u∈Ux , y(t)

(Pu
FA)

Zu
x , y(t)(1 − Pu

FA)
1−Zu

x , y(t).
(12)
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The cellwise Bayesian update is then

bx , y(t + 1) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

bx , y(t)L1

bx , y(t)L1 + (1 − bx , y(t))L0
, Ux , y(t) ≠ ∅,

bx , y(t), Ux , y(t) = ∅.
(13)

The transition kernel induced by the deterministic kinematics and the cellwise Bayesian update is

P(St+1 ∣ St , at) =
N
∏
u=1

δ (pu
t+1 − pu

t − vΔt[cos ψu
t+1 , sin ψu

t+1]⊺) ∏
(x , y)∈D

δ (bx , y(t + 1) − Bayes(bx , y(t), Zx , y(t))).

(14)

The team reward adopts a scale-calibrated saturated form, first define analytic normalizers

Umax = NπR2
sen, Emax = c0NΔt + cψ

π
180

Nα, (15)

with fixed coefficients c0 = 1.0 × 10−3 and cψ = 1.0 × 10−2, and construct dimensionless components

Ît =
H(b(t)) − H(b(t+1))

Umax ln 2
, Ĉt = Ct , Êt =

Et

Emax
. (16)

The saturated team reward is then

Rt = λI tanh(Ît) + λC tanh(Ĉt) − λE tanh(Êt), (17)

where λI, λC, and λE are positive weighting coefficients that control the relative importance of information
gain, coverage efficiency, and energy–time cost, respectively.

The reward components are defined as follows. The entropy of the belief field is

H(b(t)) = ∑
(x , y)∈D

[ − bx , y(t) ln bx , y(t) − (1 − bx , y(t)) ln (1 − bx , y(t))], (18)

the coverage efficiency term is

Ct =
1

∣D∣ ∑
(x , y)∈D

bx , y(t) ΔVx , y(t) ⋅
∑(x , y)∈D I{∑N

u=1 Covu(x , y; t) ≥ 1} bx , y(t)

max{1, ∑(x , y)∈D∑N
u=1 Covu(x , y; t) bx , y(t)}

, (19)

where the energy–time cost term is defined as

Et = c0 N Δt + cψ
π

180

N
∑
u=1

∣au
t ∣, (20)

with ΔVx , y(t) = Visited(x , y; t) − Visited(x , y; t−1) denoting the incremental visitation indicator at cell
(x , y), and I{⋅} the indicator function. The coefficients c0 > 0 and cψ > 0 control the time-related and
turning-related energy costs, respectively.

The planning objective is the discounted return

J = E[
∞

∑
t=0

γt Rt] , γ ∈ (0, 1), (21)
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which fully specifies the discounted MDP on the state St and underpins the two-timescale latent–skill policy
in Section 3.2.

3.2 Segment-Conditioned Latent-Intent Policy Parameterization
On the discounted MDP of Section 3.1, each agent is equipped with a slow latent skill that governs

behaviour over a fixed segment of K steps, while fast per-step actions are generated conditionally on the
current skill and an autoregressive hidden state.

Let segment boundaries be tk = kK with K ∈ N. At each segment start tk , agent u samples a categorical
latent skill from a skill head conditioned on a summary of global and local information,

zu
tk

∼ πu
ϕ(z ∣ Gu

tk
), zu

t ≡ zu
tk

, (22)

where z ∈ {1, . . . , M}denotes the discrete intent index, and the skill remains fixed within the current segment
t ∈ [tk , tk + K − 1]. The summary Gu

t aggregates a spatial feature of the belief field with local encodings and
team statistics,

Gu
t = Agg(gmap

t , g loc,u
t , {pv

t }v∈U), (23)

where gmap
t = CNN(b(t)) encodes the global belief map, and g loc,u

t = enc(ou
t ) encodes the local observation

of UAV u. Agg(⋅) is a permutation-invariant aggregation function over team states, and Emb(z) ∈ Rdz

denotes a learnable embedding associated with intent z.
For each agent u, a hidden state evolves within the segment via a GRU driven by local features and the

current skill embedding,

hu
t = GRUω(hu

t−1 , [g loc,u
t ⊕ Emb(zu

t )]), (24)

with parameters ω and concatenation ⊕. The resulting state, coupled with the belief feature, parameterizes
the action head:

�u
t = MLPθ([hu

t ⊕ gmap
t ]) ∈ R3, πu

θ(au
t = k ∣ hu

t , Emb(zu
t ), gmap

t ) =
exp(�u

t ,k)
∑k′∈{−α ,0,+α} exp(�u

t ,k′)
, (25)

with parameters θ.
Collecting parameters Θ = (ϕ, θ , ω), the joint policy over a segment factorizes into skill selections at tk

and per-step action selections conditioned on the fixed skill and the evolving hidden state,

ΠΘ(ztk , atk ∶tk+K−1 ∣ Stk ∶tk+K−1) =
N
∏
u=1

πu
ϕ(zu

tk
∣ Gu

tk
)

tk+K−1
∏
t=tk

N
∏
u=1

πu
θ(au

t ∣ hu
t , Emb(zu

tk
), gmap

t ), (26)

where hu
t evolves according to (24).

Learning objectives are matched to these timescales. The segment return starting at tk is

G(K)tk
=

K−1
∑
τ=0

γτRtk+τ , (27)



Comput Mater Contin. 2026;87(1):96 9

where γ ∈ (0, 1) is the discount factor, and the stepwise (infinite-horizon) return is given by Gt = ∑∞τ=0 γτRt+τ .
A centralized value function on the belief state augmented by latent and hidden summaries is introduced as

Ξt = (St , {zu
tk
}u∈U , {hu

t }u∈U), Vψ(Ξt) ≈ E [Gt ∣ Ξt], (28)

which supports low-variance advantage estimates at both levels. With temporal-difference residuals and
generalized advantage estimation,

δt = Rt + γVψ(Ξt+1) − Vψ(Ξt), Ât =
∞

∑
�=0

(γλ)� δt+�, λ ∈ [0, 1], (29)

the segment-level advantage at tk is

Âskill
tk

= G(K)tk
− b̄φ(Υtk), Υtk = (Stk , {Gu

tk
}u∈U), (30)

where b̄φ is a K-step baseline with parameters φ.
Optimization is carried out by proximal policy updates at both timescales. For the action head, define

the probability ratio

ru
t (θ) =

πu
θ(au

t ∣ hu
t , Emb(zu

tk
), gmap

t )
πu

θold
(au

t ∣ hu
t , Emb(zu

tk
), gmap

t )
, (31)

and minimize the clipped surrogate aggregated over agents,

LPPO-act(θ , ψ) = −
N
∑
u=1

E [min (ru
t Ât , clip(ru

t , 1 ± ε)Ât)] + cv E [(Vψ(Ξt) − V̂t)2] − cent

N
∑
u=1

E[H(πu
θ)],

(32)

with clip parameter ε > 0, weights cv , cent > 0, and bootstrap target V̂t . For the skill head, the segment–start
ratio

r(z),utk
(ϕ) =

πu
ϕ(zu

tk
∣ Gu

tk
)

πu
ϕold

(zu
tk

∣ Gu
tk
) (33)

leads to the segment–level surrogate

LPPO-skill(ϕ) = −
N
∑
u=1

E[min (r(z),utk
Âskill

tk
, clip(r(z),utk

, 1 ± ε) Âskill
tk

)] − cent-z

N
∑
u=1

E[H(πu
ϕ)], (34)

with cent-z > 0. Combining both timescales yields the overall objective

min
θ ,ϕ ,ψ

Ltotal = LPPO-act(θ , ψ) +LPPO-skill(ϕ). (35)

4 Experiments

4.1 Parameter Setting
All experiments strictly follow the discounted MDP and sensing specification described above, and

adopt the conventional benchmark setting used in prior cooperative search studies [28,34], with stationary
targets and ideal, latency-free inter-UAV communication. The basic setup consists of a 50 × 50 grid with three
UAVs and ten stationary targets. The sensor footprint is set to Rsen = 0.8 (in grid-cell units), which determines
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per-step observable area and thereby the rate of uncertainty reduction. Optimization proceeds with PPO
using γ = 0.99, λ = 0.95, and clipping coefficient ε = 0.20; actor and critic learning rates are both 3 × 10−4.
Reward shaping follows the three-parameter saturated design in Eq. (17), with (λI, λC, λE) = (1.0, 1.0, 0.1)
to balance information gain and coverage against energy–time penalization on a common scale.

All baseline networks are configured with comparable capacity and are trained using similar batch sizes.
For the PPO-based SCLI–CMUS, we use on-policy trajectory batches without long-term replay, whereas the
MADDPG-based methods rely on a replay buffer of fixed capacity with minibatch sampling.

4.2 Performance Benchmark
1. DQN method [35]: Each UAV runs an independent Deep Q-Network on its local observation to

estimate action values for the discrete yaw increments. The absence of explicit coordination limits
information sharing and typically degrades scalability in larger or cluttered maps.

2. ACO method [36]: Ant Colony Optimization governs motion through a pheromone field over the grid,
where each UAV behaves as an “ant” that deposits and follows trails. The induced three-dimensional
pheromone tensor encodes heading preferences per cell and per agent.

3. MADDPG [28]: A canonical CTDE actor–critic baseline on the same Markov decision formulation. It
employs decentralized actors with a centralized critic and experience replay. Using identical observation
and reward interfaces enables a direct assessment of the gains attributable to hierarchical intent
mechanisms and difference-reward shaping.

4. Maximum-Entropy RL (ME-RL) [23]: An entropy-regularized extension of MADDPG that incorpo-
rates spatial entropy and fuzzy logic to encourage exploration and coordination under communication
and energy considerations.

5. DTH–MADDPG [34]: A hierarchical reinforcement-learning framework with a slow strategic con-
troller and a set of fast decentralized executors. The strategic layer updates intermittently to assign
high-level intents (region/waypoint directives) to the team, while the executor layer implements
per-UAV control via MADDPG under CTDE with replay.

4.3 Evaluation Metrics
We report task performance through spatial coverage and target discovery, and we quantify search

efficiency via convergence times to fixed performance levels. LetD denote the grid,Vt ⊆D the set of cells
visited at least once by time t, N⋆ the total number of targets, and Ndet(t) the number detected by time t.
Define the instantaneous fractions

κ(t) = ∣Vt ∣
∣D∣ , δ(t) = Ndet(t)

N⋆
. (36)

To capture the speed at which operational effectiveness is achieved, introduce coverage and discovery
convergence times as first hitting times of prescribed thresholds ρcov, ρdet ∈ (0, 1]:

τcov = inf{t ∈ N0 ∶ κ(t) ≥ ρcov}, τdet = inf{t ∈ N0 ∶ δ(t) ≥ ρdet}. (37)

In all experiments we set ρcov = ρdet = 0.85. Smaller values of τcov and τdet indicate faster attainment
of wide-area exploration and target acquisition, respectively, and correlate with reduced flight time and
energy expenditure.
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4.4 Performance Evaluation
This section quantifies learning efficiency and asymptotic performance of the proposed method relative

to a strong baseline. Fig. 2 reports episode–wise learning curves, where the horizontal axis denotes the
training episode index and the vertical axis denotes the total episode reward computed under the reward
design in Section 3.1. Curves correspond to the mean over repeated runs, and shaded bands depict variability
across runs.

Figure 2: Episode reward vs. training episode for MADDPG (blue) and SCLI–CMUS (red). The horizontal axis denotes
episode index; the vertical axis denotes total reward per episode; shaded regions indicate variability across runs.
(a) N = 3 UAVs, (b) N = 5 UAVs, (c) N = 7 UAVs

A consistent pattern emerges across all subplots. The proposed SCLI–CMUS (red) rises sharply at early
episodes and reaches a high plateau with markedly reduced dispersion, whereas MADDPG (blue) exhibits
slower ascent, a lower steady level, and wider fluctuations. This behaviour is most pronounced in Fig. 2a
with three agents, where SCLI–CMUS achieves a visibly higher steady reward and converges in substantially
fewer episodes. The gap persists in Fig. 2b, indicating that the advantage is robust when scaling to five
agents. The reduced variance of SCLI–CMUS is consistent with the segment–conditioned intent mechanism
and the saturated, scale–balanced reward, which together suppress redundant exploration and stabilize
gradient updates.

The scaling trend with agent count is also informative. Moving from three to seven agents, both methods
display a gradual reduction in asymptotic reward, which is consistent with fixed–horizon evaluation:
faster attainment of high coverage leaves a longer terminal phase dominated by energy–time penalization.
Despite this shift in absolute level, SCLI–CMUS maintains a persistent margin and tighter confidence bands
in Fig. 2c, indicating improved coordination under higher platform density.

In Table 2 (Search Area = 50 × 50), the proposed SCLI–CMUS achieves the best coverage and discovery
convergence across all team sizes. For N = 3, SCLI–CMUS reduces τcov to 1102 and τdet to 1232, yielding
improvements of approximately 36% and 29% relative to MADDPG (1718/1723) and 32% and 23% relative
to ME–RL (1611/1598). Against the strongest hierarchical baseline (DTH–MADDPG), SCLI–CMUS still
provides 21% faster coverage and 9% faster discovery (1397/1348 vs. 1102/1232). As the team scales, the
margins persist. For N = 5, τcov and τdet fall to 860/1137, improving over MADDPG by 43%/20% and over
DTH–MADDPG by 13%/10%. At N = 7, SCLI–CMUS attains 710/997, exceeding MADDPG by 48%/40%
and DTH–MADDPG by 11%/6%. The aggregate “Total” column confirms the trend: 6038 for SCLI–CMUS
vs. 6853 for DTH–MADDPG (≈12% gain) and 9400 for MADDPG (≈36% gain). These gains are attributable
to segment-conditioned intent selection and scale-calibrated reward saturation, which jointly suppress
redundant footprint overlap, prioritize high-entropy regions, and stabilize critic estimates under CTDE.
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Table 2: Coverage convergence time τcov and discovery convergence time τdet for 15–target scenarios under varying
team size N ∈ {3, 5, 7}. Lower is better; the best value in each column is typeset in bold and marked with ↓

Search area Method N = 3 N = 5 N = 7 Total

τcov τdet τcov τdet τcov τdet

50 × 50

SCLI–CMUS (Ours) 1102↓ 1232↓ 860↓ 1137↓ 710↓ 997↓ 6038↓
DTH-MADDPG 1397 1348 987 1266 798 1057 6853

ME–RL 1611 1598 1377 1308 1241 1537 8673
MADDPG 1718 1723 1510 1424 1357 1668 9400

DQN 2256 1784 1998 1601 1657 1828 11124
ACO 3304 3202 2160 2148 1882 1964 14662

60 × 60 SCLI–CMUS 1214↓ 1371↓ 970↓ 1315↓ 820↓ 1107↓ 6797↓
DTH-MADDPG 1561 1577 1065 1410 897 1188 7698

70 × 70 SCLI–CMUS 1377↓ 1456↓ 1084↓ 1470↓ 991↓ 1317↓ 7695↓
DTH-MADDPG 1419 1571 1139 1554 1010 1399 8092

The scaling behavior with N is also consistent and informative. All methods exhibit decreasing τcov
and τdet as the team grows, reflecting the intrinsic parallelism of multi-UAV coverage. However, SCLI–
CMUS shows the steepest decline, indicating that additional agents are efficiently utilized rather than
inducing interference. In particular, the improvement from N = 3 to N = 7 is 36% for coverage (1102→
710) and 19% for discovery (1232→997), whereas MADDPG improves by 21% and 3% over the same
range. The hierarchical baseline DTH–MADDPG narrows the gap relative to flat actor–critic learners,
yet it remains consistently behind SCLI–CMUS, suggesting that segment-consistent skill conditioning
and the three-parameter saturated reward yield more effective division of labor and faster attainment of
operational performance.

To further probe this behaviour, we extended the comparison between SCLI–CMUS and the strongest
hierarchical baseline (DTH–MADDPG) from the 50× 50 workspace to larger search areas of 60×60 and
70× 70. The 50× 50 case already shows that DTH–MADDPG is the closest competitor in terms of coverage
and discovery convergence, so these larger maps provide a more stringent test of scalability. As the search
area grows to 60×60, the advantage of SCLI–CMUS becomes most pronounced: the total convergence-score
gap between the two methods increases to 6797 vs. 7698, i.e., an absolute difference of 901, larger than the
corresponding gap on the 50× 50 grid (6038 vs. 6853). This indicates that on moderately larger workspaces,
segment-conditioned intents and belief-based reward shaping yield more efficient spatial partitioning and
reduce redundant coverage more effectively than the dual-timescale controller in DTH–MADDPG.

4.5 Sensitivity Analysis
We next examine the sensitivity of SCLI–CMUS to the three reward weights λI, λC, and λE in (17). Since

information gain is the primary driver of target discovery in belief-based search, we fix λI = 1 throughout
and vary λC and λE around the nominal setting (λC, λE) = (1.0, 0.1) used in Section 4.1.

Representative results for N = 5 are summarized in Table 3. The coverage weight λC controls how
strongly the policy prioritizes expanding the visited set: a low value (λC = 0.5) yields markedly larger τcov and
τdet (up to 1150/1450), whereas a high value (λC = 1.5) achieves the fastest coverage (851 steps at λE = 0.05)
but consistently slower target discovery (τdet ≈ 1230–1280). The energy–time coefficient λE regulates motion
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aggressiveness: with λC = 1.0, the setting (λC, λE) = (1.0, 0.10) attains the best overall trade-off, with τcov =
860 and the globally minimal τdet = 1137, while both smaller and larger λE slightly degrade either coverage
or discovery.

Table 3: Sensitivity of coverage and discovery convergence times to reward weights for N = 5 UAVs

λC λE τcov/τdet λC λE τcov/τdet λC λE τcov/τdet

0.5

0.05 1040/1320

1.0

0.05 869/1180

1.5

0.05 851↓/1250
0.10 1075/1360 0.10 860/1137↓ 0.10 867/1247
0.15 1110/1405 0.15 878/1210 0.15 863/1230
0.20 1150/1450 0.20 875/1260 0.20 889/1280

The best value in each column is typeset in bold and marked with (↓).

4.6 Case Study
This case study provides a qualitative examination of cooperative behaviour under the proposed policy

in a 50× 50 workspace with three UAVs and ten fixed targets. Fig. 3 depicts colour–coded trajectories
at three representative time stamps. At t = 300 (Fig. 3a), the team has already established a clear spatial
allocation: trajectories exhibit strong inter-agent separation and limited crossovers. Large uncovered areas
are partitioned implicitly, and each UAV conducts frontier-seeking sweeps within its assigned sector. The
resulting footprints cover disjoint corridors with small overlap, which accelerates global coverage while
preventing early concentration around the same cells.

Figure 3: Trajectories of three UAVs in a 50 × 50 workspace with ten fixed targets at representative time stamps.
Dashed paths are colour coded by agent (red, blue, green); black stars mark target locations. Panels: (a) t = 300, early
exploration with clear sector separation; (b) t = 1000, intensified sampling around informative regions with limited
boundary crossings; (c) t = 1500, steady patrolling within sectors with low redundant coverage

At t = 1000 (Fig. 3b), the belief map has concentrated around multiple target locations, and paths
become denser in those neighbourhoods. Agents maintain sector integrity while adapting their local loops
to repeatedly interrogate high-probability cells. Boundary incursions are rare and occur only where adjacent
sectors meet, indicating stable intent selection and limited handover cost. The joint pattern reflects a balanced
exploration–exploitation regime: residual unexplored pockets are swept, and detected vicinities receive
increased sampling frequency.

At t = 1500 (Fig. 3c), the team enters a persistent monitoring phase. Each UAV continues to patrol its
sector with short, recurrent loops centred on previously informative regions. The path overlap remains low
and the blank areas show no redundant revisits, which is consistent with the energy–time penalization in the
reward and the segment-consistent action generation.
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5 Conclusion
This work has presented a segment-conditioned latent-intent framework for cooperative multi-UAV

search that formulates the problem as a discounted MDP on an occupancy grid with a cellwise Bayesian belief
update and parameterizes decision making by a single end-to-end policy combining a discrete intent head,
updated every K steps, with an intra-segment GRU action head trained under a centralized critic, together
with a three-coefficient, scale-calibrated saturated reward balancing information gain, coverage efficiency,
and energy–time cost. Across grids of size 50 × 50, 60 × 60, and 70 × 70, the proposed method consistently
outperforms strong flat and hierarchical reinforcement-learning baselines: on the 50 × 50 workspace, cov-
erage and discovery convergence times are reduced by up to 48% and 40% relative to a flat actor–critic
method, and the aggregated convergence metric improves by about 12% compared with a state-of-the-art
hierarchical baseline, with the largest total improvement observed on the 60 × 60 grid. Future work will
extend the framework to adaptive intent durations and heterogeneous platforms, incorporate bandwidth–
limited communication and collision–avoidance constraints, model moving targets and three–dimensional
kinematics, and pursue field deployment with sim–to–real transfer and formal performance guarantees.
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