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ABSTRACT: With the popularization of new technologies, telephone fraud has become the main means of stealing
money and personal identity information. Taking inspiration from the website authentication mechanism, we propose
an end-to-end data modem scheme that transmits the caller’s digital certificates through a voice channel for the recipient
to verify the caller’s identity. Encoding useful information through voice channels is very difficult without the assistance
of telecommunications providers. For example, speech activity detection may quickly classify encoded signals as non-
speech signals and reject input waveforms. To address this issue, we propose a novel modulation method based on
linear frequency modulation that encodes 3 bits per symbol by varying its frequency, shape, and phase, alongside a
lightweight MobileNetV3-Small-based demodulator for efficient and accurate signal decoding on resource-constrained
devices. This method leverages the unique characteristics of linear frequency modulation signals, making them more
easily transmitted and decoded in speech channels. To ensure reliable data delivery over unstable voice links, we further
introduce a robust framing scheme with delimiter-based synchronization, a sample-level position remedying algorithm,
and a feedback-driven retransmission mechanism. We have validated the feasibility and performance of our system
through expanded real-world evaluations, demonstrating that it outperforms existing advanced methods in terms of
robustness and data transfer rate. This technology establishes the foundational infrastructure for reliable certificate
delivery over voice channels, which is crucial for achieving strong caller authentication and preventing telephone fraud
at its root cause.
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1 Introduction
Phone scams and voice phishing (a.k.a. vishing) have seen a significant rise in recent years, largely fueled

by the rapid advancement of evolutionary AI technologies and the increasing reliance on digital communi-
cation channels. Several studies have documented that complex phishing activities utilizing synthetic speech
and social engineering are evolving [1,2]. As illustrated in Fig. 1, scammers and fraudsters exploit emerging
technologies and public trust in institutions to deceive individuals into believing they are interacting
with legitimate organizations, financial entities, or service providers. A critical tactic employed by phone
scammers is the use of fake caller IDs [3], which manipulate the displayed incoming number to mimic known
and trusted sources, thereby increasing the likelihood of the call being answered. Once connected, scammers
utilize sophisticated social engineering scripts to extract sensitive personal information or financial details.
Furthermore, advancements in artificial intelligence have enabled the use of AI-driven chatbots [4] and
highly convincing deepfake voice synthesis [5] to impersonate familiar contacts or authority figures. The
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accessibility of caller ID spoofing tools, such as those referenced in [6,7], allows malicious actors to easily
disguise their identity by displaying any chosen number—including emergency lines like 911—further
eroding trust in telephonic communication systems. Analysis of phishing trends indicates that traditional
authentication mechanisms are insufficient against these emerging threats [8].

Figure 1: Motivation of our idea to prevent phone frauds

To stop phone scams, we believe it is essential to authenticate conversation parties over traditional
telephone networks. This is similar to the Internet: When a user visits a website, the Secure Sockets Layer
(SSL) certificate plays an important role in ensuring the authenticity of the website. However, the modern
telephony infrastructure provides no means for a callee to reason about the caller’s identity except the called
ID, which can be spoofed. We need the caller to have the capability to transmit its digital certificate to the callee
for authentication. However, several challenges prevent us from achieving this goal, including:

• C1: Without the support of cellular carriers. The transmission of digital certificates should be end-
to-end and compatible with existing infrastructure without relying on cellular carriers. For example,
dial-up modems have been available for decades to transmit data through telephone lines. However,
this approach does not work for mobile phones. That is because the baseband in a smartphone that
helps convert digital data into radio frequency signals (and vice versa) is a black box for end users. It is
challenging for users to implement their own dial-up modem on their smartphones without the support
of vendors.

• C2: In case of NO Internet. Although mobile data offers an alternative solution to transfer data over
cellular networks such as 4G/5G, it will incur an extra financial cost. GSMA Research [9] shows that
3.4 billion mobile consumers still cannot pay for the Internet despite living in areas with mobile data
coverage. Also, data plans are unavailable in certain areas with weak signals.

In particular, enabling the caller to transmit its digital certificate directly over the voice channel provides
a practical defense mechanism when Internet connectivity is absent. Unlike approaches that rely on mobile
data or Wi-Fi, our vision is that the certificate can be embedded as digital data within the ongoing call
itself. This allows the callee to authenticate the caller in real time, even in areas with limited network
coverage or among populations unable to afford data plans. By reusing the ubiquitous voice channel as a
carrier of authentication information, our system strengthens trust in telephony without imposing additional
infrastructure requirements or financial burdens on end users.

Some studies have proposed approaches such as Hermes [10] and Authloop [11] to enable data transmis-
sion over the voice channel of cellular networks. However, those works perform poorly in our experiments
with China Mobile networks and cannot reach a fast enough data rate to transmit digital certificates.
After analyzing the collected signals, we found that those approaches stopped working after a short time
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(see Section 2 for details). A possible reason is that if we carry data into acoustic signals, those non-speech-
like signals may be rejected by the Voice Activity Detector (VAD) used in the Discontinuous Transmission
(DTX) within cellular telecommunication systems. In addition, the complex network infrastructure will
distort signals transmitted from one subsystem to another, and the voice/speech codec may severely distort
the encoded signals.

To this end, we revisit the long-standing idea of transmitting digital data over voice channels and
present Fast Data Over Voice (FastDOV)—a fast and reliable data transmission mechanism that enables the
exchange of digital certificates between callers and callees, even in the absence of Internet connectivity. By
empowering each party to authenticate the other during a phone call, FastDOV directly addresses the root
cause of many phone scams: the inability of users to verify caller identities. Technically, FastDOV employs a
chirp-based modulation/demodulation scheme that is resilient to distortions in complex telecommunication
infrastructures, as chirp signals are well known for their robustness against channel noise. To further enhance
decoding accuracy in weak signal environments, we integrate deep learning (DL) models that recover
distorted chirp signals. In addition, we design a dedicated data link protocol incorporating stop/resume, time
synchronization, and retransmission mechanisms to mitigate the impact of Voice Activity Detectors (VAD)
and Discontinuous Transmission (DTX). We implemented a prototype of FastDOV on Commercial Off-
The-Shelf (COTS) smartphones and evaluated it through extensive experiments. Results demonstrate that
FastDOV achieves an average goodput of 1291.0 bit/s over diverse mobile networks, outperforming state-of-
the-art approaches, while making real-time certificate transmission practical for reducing phone fraud.

The contributions of this work are summarized as follows:

• We propose a novel DL-based acoustic scheme that can transmit data over mobile voice channels. The
demodulation is robust to distortions and interruptions in cellular voice channels by modulating the
frequency, shape, and phase of chirp signals.

• Since the caller and the callee do not synchronize over voice channels, we design a cross-correlation-
based method with a remedying algorithm to accurately determine when the data transmission begins
and ends without using an external clock.

• We present a working prototype of FastDOV and an extensive empirical study under various envi-
ronmental factors such as weather conditions and noise impact at the transmitter and receiver. The
evaluation results show that FastDOV achieves higher goodput than state-of-the-art approaches.

The rest of this paper is organized as follows. Section 2 introduces the background and chal-
lenges. Section 4 provides a detailed description of FastDOV’s design. Section 5 presents the implementation
and evaluation results with practical use cases. Last, Section 3 describes the existing related work, followed
by the conclusion in Section 7.

2 Background and Challenges
In this section, we identify several challenges to achieving fast data transmission over a mobile voice

channel and provide some background.

2.1 Rejection of Non-Voice-Like Signals
In cellular networks such as Global System for Mobile Communications (GSM) and Code-division

Multiple Access (CDMA), Discontinuous Transmission (DTX) technology is widely used to stop transmit-
ting signals when there is no voice signal transmission to reduce interference and improve the system’s
efficiency. Voice activity detection (VAD) is a technology to detect whether a voice signal exists. The presence
of VAD/DTX can be crucial for transmitting any modulated signals over voice channels. Once the audio is
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determined as non-speech, it will be removed from the transmission, leading to the loss of the signal and a
deterioration in the transmission performance [12].

To demonstrate, we implemented several existing approaches for data transmission over the voice
channel, including Hermes [10] and Authloop [11], and tested them in China Mobile/Telecom/Unicom. The
basic idea is to modulate a 0 or 1 bit by decrementing or incrementing the base frequency by a fixed delta
and transmit a sinusoid of these frequencies for 15 s. We observed that the audio signals received at the callee
side were significantly weakened after 1–2 s of transmission time. This phenomenon can be seen from the
comparison between the spectrogram of the original signal and that of the signal in the receiver, as shown
in Fig. 2. If playing a human speech sound instead, we did not observe any filtering out of the received signal.

Figure 2: Spectrogram comparison between modulated signals and normal human voice, where modulated signals
were filtered out after 1-2 s by cellular networks

2.2 Limited Frequency Band and Codec Effect
As mentioned in previous studies, not all frequencies in the voice channel of the GSM and its

successors, 4G/5G, are suitable for modulating data. Since they are designed to transfer speech only, the
energy that reflects the main characteristics of human speech is mainly concentrated in the range of
0.3khz–3.4khz. The audio signal will be band-pass filtered, and components outside this frequency range are
automatically removed.

In addition, audio and speech codecs widely used in the voice channel will also distort the modulated
audio signals that carry information significantly. Previous work [13] provides the reasons for the unpre-
dictable distortions produced by speech codecs. Linear predictive coding (LPC) is used in audio/speech
codecs to digitize voice. However, LPC is a lossy compression technique. Thus, the synthesized voice differs
considerably from the original waveform, introducing additional distortion. In addition, linear prediction
and differential coding for extracting speech parameters assume a high correlation between adjacent input
samples. This assumption applies to speech but not to conventional data signals.

To demonstrate, we generated a chirp signal with a linear increment from 0 to 24 KHz in our experiment.
After measuring our cellular networks, we found that frequencies in the range of human speech have
different attenuation.

Fig. 3 shows the attenuation ratio (attenuation = receiver/sender) of the FFT (fast Fourier transform)
magnitude at the receiver during mobile phone calls and air transmission. It can be seen that (1) the
attenuation magnitude indeed drops to 0 after approximately 4 KHz which means the receiver almost can
not receive the signal, and (2) the red line in the figure indicates that sound above 3400 Hz can still transmit
in the air.
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Figure 3: FFT of original/received signals

2.3 Heterogeneous Telephony Infrastructure
Circuit-switched networks [14] were used in the first generation of wireless mobile communication

in the 1980s. In the 2.5G era, the General Packet Radio Service (GPRS) [15] was added to communication
as a packet-based data service. Until the 4G era, LTE (Long Term Evolution) emerged [16], with the core
network EPC (Evolved Packet Core) eliminating the circuit domain. To support all networks, the telephony
architecture becomes increasingly complex with a considerable number of subsystems. The voice has to travel
across multiple hops from the caller to the callee. Each intermediate link may use different protocols. Thus,
the voice may be converted from analog to digital, then to analog, and back to digital. This process may be
repeated across every hop until the destination is reached, resulting in unpredictable distortions.

We conducted the experiments by transmitting the aforementioned chirp signal through one carrier
(e.g., inside China Mobile) and multiple carriers (e.g., Mobile → Telecom), respectively. It is seen that the
FFT curve in Fig. 4, the blue line (Mobile →Mobile) has the highest energy value at different frequencies,
indicating that the less complex the carriers, the higher the signal quality.

Figure 4: Affect of heterogeneous telephony infrastructure
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3 Related Work

3.1 Acoustic Data Transmission in the Air
Data transmission using acoustic signals in the air typically uses near ultrasonic sound waves or

sometimes audible sound waves that exceed the voice channel’s frequency range. Previous work [17] proposed
a wireless keyboard link using binary Frequency-Shift Keying (FSK)-modulated ultrasonic signals. Work [18]
implemented OOK and binary FSK modulation schemes in the system with wireless synchronization.
Hush [19] used Orthogonal Frequency Division Multiplex (OFDM) to send data over a 5–20 cm distance
between commercial smart mobile devices at frequencies 16–20 KHz. Work [20] used data sequence control
and error correction algorithms to communicate high-frequency audio data. Work [21] proposed a method
similar to FSK with 3 kHz as the base frequency to broadcast Wi-Fi information to customers through sound
signals with a supported distance from 10 to 100 cm.

Existing work in this category mainly uses ultrasonic signals for data transmission without considering
all constraints in mobile communication channels, such as narrow frequency bands and signal distortions
caused by heterogeneous networks and speech codes. Hence, they are not suitable for data transmission over
voice channels.

3.2 Data Transmission over Voice Channels
Data over voice is a technique based on encoding data signals into speech-like parameters, codebook

training, or modulation techniques [22]. Previous work [23] implemented a real-time prototype and maps
the input data on line spectral frequencies, pitch frequency, and speech frames energy, which can facilitate the
encrypted data transmission using unknown encryption methods. Work [24] also used a similar mapping,
but they applied the FR (Full Rate) vocoder, which has a short time delay and good interoperability. Work [25]
encoded the data by a set of predefined signals called “symbols”, which are synthesized by genetic algorithms.
PCCD-OFDM-ASK (Phase Continuous Context Dependent- Orthogonal Frequency Division-Multiplexing
Amplitude Shift Keying). Work [26] combined PCCD on OFDM, thus having robust and reliable data
transmission over the GSM or CDMA(Code Division Multiple Access) speech channels. Hermes [10] can
transmit data over unknown voice channels with the idea of frequency shift keying coding in the voice
channel. Work [27] used a single codebook to transmit the voice and designed an efficient low-bit-rate
speech coder. Work [28] synthesized waveform symbols using sinusoidal signals and designed a learning
algorithm for obtaining demodulated codebooks online to construct a general implementation scheme for
DoV. This scheme proposes an analysis algorithm based on surface packaging to optimize the modulation
codebook offline, so it has good symbol error rate (SER) performance. Work [22] proposed a DoV technology
based on a short harmonic waveform codebook, which relies on linear predictive coded speech compression
(LPC speech coding) and has a high transmission rate and robustness. AuthLoop [11] provided a strong
cryptographic authentication protocol inspired by Transport Layer Security (TLS) 1.2 to determine the
identity of the entity at the other end of the call (that is, the caller ID). Work [29] proposed a modulation
algorithm based on Frequency Modulation (FM). This algorithm can convert encrypted voice data to a
waveform that conforms to GSM voice channel specifications. However, in this method, the actual modulator
bit rate does not allow real-time communication. Overview [30] provides a more detailed summary of the
improvement or design of modulation, which divides the methods into three categories which are parameter
mapping, codebook optimization, and modulation optimization.

It is also worth distinguishing our work from another class of solutions that focus on post-answer
detection by analyzing speech content using on-device models [31] or large language models [32]. While
effective for content analysis, these methods intervene after the call has been connected and trust established.
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In contrast, FastDOV aims to provide pre-answer authentication by transmitting a verifiable certificate before
the conversation begins, addressing the threat at an earlier stage.

Compared to the above work, most approaches require the help of telephony service providers, while
our work is a pure end-to-end solution. Our FastDOV also incorporates deep learning technology into
modulation and demodulation to improve the robustness of data transmission.

4 System Design
To address the challenges mentioned in Section 2, we propose FastDOV, an end-to-end data modem

on top of existing (unmodified) cellular voice channels. The overview of FastDOV is presented in Fig. 5,
illustrating the workflow between a transmitter and a receiver. The transmitter first divides the data under
transmission into multiple frames according to a pre-defined size. A specially designed delimiter is inserted
at the beginning of each frame and the end of the last frame. Each frame is appended with an error correction
code and converted into an audio signal using a chirp-based modulation. The modulated chirps are then
transmitted over the cellular voice channel.

Figure 5: System framework

When the phone call is answered, the receiver relies on the delimiter to locate each frame’s beginning
and end within the received audio stream. These frames are demodulated and decoded by a Deep Learning
(DL) model, followed by the error correction check. If any error is found, a feedback mechanism is proposed
to notify the sender to retransmit the frames that are in error. Lastly, all successful frames are combined to
restore the original data.

4.1 Framing Scheme
In FastDOV, data are divided into multiple frames and transmitted over a voice channel. The format of

a data frame is presented in Fig. 6. A specially designed signal is inserted to separate each data frame, and
we call it a delimiter. A data frame comprises multiple symbol groups (SG), each of which contains several
symbols carrying a fixed length of data bits and parity bits for error correction. To avoid the impact of VAD
and DTX mentioned in Section 2, we add a gap between consecutive SGs. Such a gap is an empty signal
without carrying any information, aiming to remove the memory of the VAD/DTX algorithm.
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Figure 6: The data format of frames and symbols

Determining the start/end of transmission. We designed a unique chirp as a delimiter, inserted at the
start of every frame and appended to the last frame to indicate when the data frames begin and end. The goal
is to ensure synchronization between the receiver and transmitter. Furthermore, the inserted delimiter is also
treated as a guard to protect our data signals. That is because the sudden energy change on a voice channel
may cause signal fluctuation, so the frontmost and backmost data signals may not be received completely.
Adding delimiters can reduce the loss of data frames.

To detect the exact position of a delimiter on the receiver side, we adopt a cross-correlation-based
method, where the known delimiter signal is correlated with the received audio stream in a sliding window.
Let the received signal stream as {ui} where i = 1, 2, ⋅ ⋅ ⋅ , n and each ui is an audio sample. The delimiter
emitted by the sender is denoted as {vi} where i = 1, 2, ⋅ ⋅ ⋅ , m and n >> m. A sliding window with a length
equal to m is extracted from {ui} using matched filtering. The sample correlation coefficient r is computed
as follows:

r = ∑m
i=1(ui − u)(vi − v)√

∑n
i=1(ui − u)2

√
∑n

i=1(vi − v)

where u and v are the sample means of the sliding window and {vi}, respetively. For each r, Welford’s one-pass
algorithm can achieve the computational complexity O(m). As the sliding windows move from the beginning
to the end of the audio stream sample by sample, each r is computed with the total complexity equal to
O(nm). A large value of r means a high similarity between two sequences. The position of the delimiter can
be found at the maximal peak of these coefficients.

To accelerate the computation time, we first locate a delimiter’s approximate position c by computing
the coefficient window by window. Within the range of [c −m, c +m], we use fine-grained correlation with
the sliding window size set to 1 to locate the exact position. Welford’s one-pass algorithm ensures numerical
stability during this computation (see Appendix A.2 for details). Additionally, we use multiple threads to
compute the coefficients in parallel.

Remedying inaccurate frame positions. Due to unpredictable channel noise, cross-correlation some-
times may not locate delimiters accurately, so the derived data frame does not have the pre-defined length.
Suppose each data frame contains k audio samples at a certain sampling rate, and two delimiters surrounding
the frame are positioned at sample indices d1 and d2. Ideally, d2 − d1 −m should equal k, where m is the
length of the delimiter. Our experiments confirm that (d2 − d1 −m) − k = δ where δ may not always equal
to zero. Hence, we need to adjust d1 and d2 to remedy this δ.

Algorithm 1 presents our remedying algorithm. First, we set selected symbols in the data frame to a
fixed value so the receiver knows these symbols beforehand. Next, we try every possible adjustment from
{(d1 , d2 − δ), ⋅ ⋅ ⋅ , (d1 + i , d2 − δ + i), ⋅ ⋅ ⋅ , (d1 + δ, d2)} for (i = 0, ⋅ ⋅ ⋅ , δ) and select one that provides the
highest accuracy of decoding selected symbols. Thus, FastDOV can tolerate signal distortion to some extent.
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If δ is found beyond a threshold, the receiver discards this frame and asks for retransmission. The detailed
procedure of decoding a symbol is presented in Section 4.3.

Algorithm 1: Position remedying algorithm
Input: d1 and d2 are the starting sample index of left and right delimiters, m is the delimiter length, and
k is the frame size
Output: Adjusted d′1 and d′2
δ ← d2 − d1 −m − k
d′1 ← d′2 ← 0
for i ← 0 to δ do

d′1 ← d1 + i
d′2 ← d2 − δ + i
Find selected symbols in the frame [d′1 , d′2]
Accui ← the accuracy of decoding symbols

end
(d′1 , d′2) ← (d1 + i , d2 − δ + i) with max Accui

Adding error correction code. Since some bits could be transmitted incorrectly, in FastDOV, we
use Reed-Solomon code (RS) [33] as our error correction code, which will be added at the end of each
symbol group.

We employ RS codes with parameters (n = 255, k = 223, t = 16) to provide robust error correction
capability, enabling the recovery of up to 16 symbol errors. The encoded data maintains compatibility with
voice channel characteristics while ensuring reliable transmission. Detailed mathematical derivations are
provided in Appendix A.1.

4.2 Chirp-Based Modulation Scheme
Modulation and demodulation refer to the process of altering the carrier signal to contain information

to be transmitted and vice versa. There are common modulation methods widely used in practice, including
On-Off Keying (OOK), Amplitude-Shift Keying (ASK), Frequency-Shift Keying (FSK), and Phase-Shift
Keying (PSK). In OOK, a 0/1 bit is defined by the presence or absence of the carrier signal. ASK changes
the amplitude of a carrier signal to encode different bits of information. Since OOK and ASK can be easily
affected by signal distortion, they are unsuitable for data modulation over voice channels. In FSK, the
frequency of a carrier signal with constant amplitude switches as the input bitstream changes. PSK is a phase
modulation method that switches the carrier phase between different values based on the level of a digital
baseband signal. Due to the tendency of FSK and PSK to cause discontinuity in the input signal, they do not
resemble sound. The codec can severely distort such signals, making them unsuitable for data modulation
over voice channels.

In FastDOV, we adopt a chirp signal rather than sinusoidal waves used in [10] and [28] for modulation.
Due to its strong anti-interference feature, Chirp has a wide range of applications in communication, sonar,
radar, and other fields. Our experiments show that a linear-frequency chirp is enough to tolerate noise and
signal distortion on the cellular voice channel. In a linear chirp, the instantaneous frequency f (t) = ct + f0
varies strictly linearly with time t where c is the chirp rate, and f0 is the starting frequency. The corresponding
time-domain function for a linear chirp is expressed as follows in radians:

x(t) = sin[ϕ0 + 2π( c
2

t2 + f0t)],
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where ϕ0 is the initial phase at the time t = 0. The complete mathematical analysis of chirp signals, including
frequency modulation characteristics and spectral properties, is provided in Appendix A.3. Based on the
above equation, we empirically modulate 3-bit information by varying the frequency, shape, and phase of
our chirp signal. It should be noted that we intentionally do not choose amplitude for modulation because
previous work [10] has already demonstrated that the amplitude of the received signal might be quite different
from that of the input and vary unpredictably. Our modulation is not limited to 1 bit for frequency, shape,
and phase. Real-world experiments show this setting is the best practice.

Frequency. As mentioned in Section 2.2, the voice channel responds differently to the signals in certain
frequencies. We propose to use different frequency ranges to encode bits 0 and 1, respectively. As shown
in Eq. (1), bit 0 is represented by the frequency range of [0.4, 1.4 kHz) (i.e., f0 = 0.4 kHz), and bit 1 is
modulated by the range of [2.4, 3.4 kHz) (i.e., f0 = 2.4 kHz). Since these two frequency ranges contain 1st
and 2nd frequency formants, as well as the fourth frequency formants [24], respectively.

⎧⎪⎪⎨⎪⎪⎩

b = 0, f0 = 0.4 kHz
b = 1, f0 = 2.4 kHz

(1)

Shape. In either frequency range, we can switch the starting frequency f0 and finish frequency f1 to
encode additional 1-bit information. In other words, we change the slope of the chirp without changing
its frequency band. The up-chirp (e.g., 0.4 kHz→ 1.4 kHz and 2.4 kHz→ 3.4 kHz) represents bit 0, and the
down-chirp is for bit 1. The equation for our shape modulation is shown in Eq. 2.

⎧⎪⎪⎨⎪⎪⎩

b = 0, c > 0
b = 1, c < 0

(2)

Phase. Without changing the frequency and shape of a chirp signal, we can modulate an extra bit by
using different initial phases. According to Eq. 3, whether the signal carries 0 or 1 depends on whether the
initial phase ϕ0 equals zero. Thanks to the proposed DL-based demodulation scheme, we can reliably detect
the phase difference of each symbol.

⎧⎪⎪⎨⎪⎪⎩

b = 0, ϕ0 = 0
b = 1, ϕ0 ≠ 0

(3)

4.3 DL-Based Demodulation Scheme
Since our modulation scheme is based on frequency, shape, and phase, a straightforward method is to

demodulate every bit of the symbol separately. For example, we can calculate the symbol’s FFT to determine
its frequency range. We can compare the FFT of the signals’ first and second halves to determine the up-chirp
and down-chirp. If the magnitude of the former is less than the second, the chirp is up; Otherwise, it is down.
To compare the initial phase, we can compute the complete FFT with real and imaginary parts. However, this
approach is too ideal and does not work well in practice due to signal distortion in voice channels. Instead,
we propose using deep learning (DL) to improve demodulation accuracy.

Feature extraction.
The features selected by FastDOV include time-domain, frequency-domain, and phase-angle features of

signals. Given the sampling rate is Fs, the time duration of each symbol is t, and the input of a received symbol
is u = {u1 , u2, ⋅ ⋅ ⋅ , uk}, where k = Fs × t, the feature vector v = {v1 , v2, ⋅ ⋅ ⋅ , v3k+3}used for our demodulation
model is calculated as follows:
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• Time-domain features refer to signal characteristics that change over time. For these features, we directly
each sample value in the time domain.

{v1 ⋅ ⋅ ⋅ vk} = {u1 ⋅ ⋅ ⋅uk}

• Frequency-domain features utilizes the output of the Fourier transform. The first part contains the
magnitude of each frequency bin of the entire signal after FFT. The second and third parts are calculated
similarly but independently based on the first and second halves of the signal. The number of each part
is n/2 + 1, where n is the number of points for time-domain discrete signals, which is to be calculated by
FFT.

{vk+1 , ⋅ ⋅ ⋅ , v2k+3} ={∣FFT({u1 , ⋅ ⋅ ⋅ , uk})
∣FFT({u1 , ⋅ ⋅ ⋅ , uk/2})∣,
∣FFT({uk/2+1 , ⋅ ⋅ ⋅ , uk})∣}

• Phase angle features refer to the angle difference between a particular moment in a cycle and a reference
moment. In signal processing, the phase angle can be used to describe the phase difference of a signal.
We calculate the phase feature using the arctangent function atan2().

{v2k+4, ⋅ ⋅ ⋅ , v3k+3} = {z1 , ⋅ ⋅ ⋅ , zi , ⋅ ⋅ ⋅ , zk},
zi = atan2(imag(ui), real(ui)) (i = 1, 2, ⋅ ⋅ ⋅ , k)

atan2(a, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan(a/b) b > 0
arctan(a/b) + π a ≥ 0, b < 0
arctan(a/b) − π a < 0, b < 0
+π/2 a > 0, b = 0
−π/2 a < 0, b = 0
unde f ined a = 0, b = 0

(4)

Data preprocessing. In linear regression models, it is generally required that the linear correlation
between features is low and the number of features is less than the sample size. Otherwise, it may lead
to problems such as increased variance and overfitting of parameter estimates. Therefore, our model uses
PCA (Principal Component Analysis) [34] to process the data inputs. PCA is a commonly used linear
dimensionality reduction method that maps n-dimensional features onto lower-dimensional k-dimensions
through a certain linear projection. We selected PCA because it can not only mitigate the overfitting problem
but also reduce the computational cost.

DL-based demodulator. We use the MobileNetV3-Small [35] model to demodulate the received signal
in FastDOV. The MobileNetV3-Small model is a lightweight deep neural network proposed by Google for
embedded devices such as smartphones [36], aiming to improve mobile device efficiency and performance.
In our design, MobileNetV3-Small will take the signals processed by PCA as the input and generate
classification results (the eight classes in Table 1).
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Table 1: Symbol modulation and encoding table

Symbol Frequency (f ) Shape Phase (ϕ0)
000 f ∈ [400, 1400] Up ϕ0 = 0
001 f ∈ [400, 1400] Up ϕ0 = 187
010 f ∈ [1400, 400] Down ϕ0 = 0
011 f ∈ [1400, 400] Down ϕ0 = 86
100 f ∈ [2400, 3400] Up ϕ0 = 0
101 f ∈ [2400, 3400] Up ϕ0 = 271
110 f ∈ [3400, 2400] Down ϕ0 = 0
111 f ∈ [3400, 2400] Down ϕ0 = 90

We chose MobileNetV3-Small due to its ability to achieve excellent accuracy with minimal complexity.
It is a lightweight CNN model that can effectively capture spatial information in images and perform
translation-invariant processing on features. This translational invariance property also enables CNN to
process signal data well. Signal data is similar to image data, but also has spatial and local correlations. The
convolution and pooling operations of CNN can extract local features from signal data, making it a universal
network structure for processing signal data. Besides, the structure in Fig. 7 ensures that MobileNetV3-Small
achieves higher accuracy with lower complexity, which is very suitable for running on mobile phones.

Figure 7: The architecture of MobileNetV3-Small

As shown in Fig. 7, MobileNetV3-Small consists of 11 core modules, which are also the basic module
of the network, bneck. Each bneck includes channel separable convolution, squeeze and excitation module
(SE), and inverted residual module. Among them, the lightweight depthwise separable convolution module
decomposes the standard convolution operation into two steps: first, channel separation, and then channel
wise convolution; the SE module introduces a global average pooling layer and models the importance of the
channel using a pair of fully connected layers; the inverted residual module connects two basic convolution
modules and uses shortcuts for cross layer connections to achieve cross layer information transmission.
These modules enhance the model’s perception of important features while reducing computational com-
plexity.

Model parameters. In FastDOV, the PCA model reduces the dimensionality of any input to 100. Since
the raw features could be high-dimensional (if a symbol has 240 sampling points, its feature dimension will
be 524). We use MobileNetV3-Small to demodulate symbols. In this model, symbols are first deformed into
10 × 10 single-channel images and extracted by the DL model. Due to the presence of 8 different symbols in
this experiment, the output of the fully connected layer in MobileNetV3-Small is 8.
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Preparing training dataset. The training data are self-collected by callers and callees in China Mobile
and China Mobile networks. On the caller side, we randomly generate a large number of symbols and
transmit them to the receiver using our modulation scheme. Once receiving these symbols, the callee knows
their corresponding labels. However, as mentioned in Section 4.1, the position of each delimiter is difficult to
determine accurately. Thus, some received frames may be extracted incorrectly. To reduce the negative effect
of low-quality training data on our model, we use the same Algorithm 1 to remedy δ but with self-training
and testing. The idea is to split the number of symbols for each adjustment into training and testing sets. The
results of the testing set are used to evaluate if the adjustment can give the highest classification accuracy. We
pick the adjustment with the highest accuracy to separate data frames. This step helps us improve the quality
of training data in practice.

4.4 Retransmission Mechanism
Although our MobileNet-based demodulator significantly improves symbol recognition, it still can-

not guarantee 100% accuracy due to various reasons (for example, signal distortion, channel noise, or
interference). Thus, we propose a retransmission mechanism to provide reliable communication when a
non-recoverable error occurs.

The detail of the retransmission mechanism is shown in Fig. 8. Upon receiving a symbol group, the
receiver performs error checking and correction based on the parity bits received at the end of the group.
If successful, it implies that the data has been received without errors. However, if the correction fails, it
indicates the presence of errors in the data. The receiver then sends a feedback pulse in the upcoming gap.
Once the pulse is detected anywhere in the gap, the transmitter will retransmit the symbol group just sent.
Ideally, damaged/error symbols should be sent immediately after the receiver provides feedback in the gap.
However, a practical solution is to delay the acknowledgment in the next data frames. For example, we use
gaps in the data frame k to acknowledge symbol groups in data frame k − 1 for ease of implementation.

Figure 8: Retransmission mechanism

If the receiver cannot successfully receive some symbol groups in the last data frame, he will send an
individual Acknowledgement (ACK) frame to the transmitter to notify them of the missing symbol groups.
Like a normal data frame, the ACK frame comprises delimiters, symbol groups, and gaps. However, the data
delivered by symbol groups in an ACK frame is the index of errors. Once this ACK frame is received, the
transmitter will retransmit all damaged/missing symbol groups. Note that if the receiver has sent out an ACK
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frame but does not receive any retransmitted data, it indicates the loss of the ACK frame, and it will send a
new one.

5 Evaluation

5.1 Experimental Methodology
Experimental settings. As shown in Fig. 9, our experiments involve two smartphones, which com-

municate through cellular networks, and two laptops used to modulate/demodulate the data. Due to strict
permission controls in smartphone operating systems, ordinary applications cannot directly implement
underlying modem functions. Thus, we cannot directly implement FastDOV on COTS smartphones without
rooting the phone. Instead, we use a PC to emulate a Bluetooth speakerphone of the caller’s device so
that we can manipulate the calling voice on the PC. This is much easier to implement than rooting the
phones. Similarly, we leverage another PC connected to the callee to demodulate the received audio data.
It should be noted that if the phone manufacturers provide support in the future, we could easily adapt the
implementation into a PC-free scheme.

Figure 9: Experimental settings with two smartphones and laptops

In our experiments, we use a Lenovo Y7000 laptop (Intel i7-9750H CPU) as an emulated Bluetooth
speakerphone of a Huawei P60 (Snapdragon 8+ 4G Platform, EMUI 13.1 system), leveraging the Hands-
free profile protocol [37]. The signal modulation part of FastDOV is implemented on the laptop in Python.
During a phone call, the voice signals will be first modulated on the laptop and then fed into the emulated
Bluetooth speakerphone. A Xiaomi Redmi Note 7 phone acts as a receiver to record phone calls, which will be
demodulated by another Lenovo Y7000 laptop. As for the cellular networks, we use the telecommunication
networks provided by the three major carriers in China, including China Mobile, China Telecom, and
China Unicom.

Model training. To train our MobileNet-based demodulation model, we collected a dataset of 28,800
modulation symbols with a 70/30 split for training and testing sets. In the data collection stage, we used an
audio sampling rate of 48 kHz and a Reed-Solomon code ratio of 3 data bits to 1 parity bit. We utilized an
interleaved structure for the symbol groups, where each group contains 600 symbols (with ten symbols used
for error correction) and is separated by a 0.5 s gap. The length of each symbol is 0.001 s, resulting in 48
samples per symbol, given the 48 kHz sampling rate. We used a 0.1 s linear chirp as the delimiter. All the
collected modulation symbols are labeled into eight classes. Table 1 summarizes the Symbol modulation and
encoding table.
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The MobileNetV3-Small model used for demodulation will firstly be initialized by parameters pre-
trained on the ILSVRC2012 dataset [38] and then fine-tuned by the modulation symbols collected in our
experiments. We use cross-entropy loss and SGD (stochastic gradient descent) optimizer with the weight
decay set to 0.8 in the model training. We fine-tune the model for 40 epochs using a batch size of 64. The
learning rate is 0.0005 for the first 30 epochs and decreases to 0.00005 for the latter 10 epochs. During the
training, to improve model performance, we add noise sampled from a uniform distribution ([0.0, 1.0)) to
each model input.

Performance metrics. We choose three widely accepted performance metrics, including accuracy,
throughput, and goodput, to evaluate the prototype of FastDOV.

Accuracy considered in this paper is twofold. First is the accuracy of locating the positions of start and
end delimiters in received audio streams. It indicates how well our approach is able to separate modulated
symbols. Second is the accuracy of our DL-based demodulator to classify symbols correctly.

Throughput is the amount of all received bits (whether useful or not), including protocol overhead bits
and duplicated bits per unit of time.

Goodput is the amount of useful information delivered to the receiver per unit of time. We calculate
the goodput by dividing the data size by the finish time to transfer all data successfully. In practice, some
communication systems may have large throughput but suffer from low goodput due to the overhead bits
transferred between parties and a large number of retransmissions.

Experimental consistency. All comparative experiments are conducted under identical conditions: the
same hardware platform (Huawei P60 and Xiaomi Redmi Note 7 smartphones with Lenovo Y7000 laptops),
the same test dataset, and the same evaluation metrics.

Evaluation goals. With the above experiment settings and performance metrics, we evaluate the
performance of FastDOV by answering the following questions:

1. RQ1: How do parameters such as delimiter length, symbol length, and gap length affect the performance
of FastDOV in practice?

2. RQ2: How do deep learning models affect the accuracy of FastDOV?
3. RQ3: What is the performance of FastDOV by environmental factors such as cellular signal strengths

and phone brands?
4. RQ4: Can FastDOV improve the state-of-the-art (SOTA) data transmission systems over voice chan-

nels?

5.2 Parameter Study
To answer RQ1, we conducted experiments to study the impacts of various parameters, including

delimiter pattern/length, symbol length, and duration of the gap by changing the value of each parameter with
the others fixed. All experiments in this section were conducted in environments with strong cellular signals
to achieve stable and reliable results. In the next section, we consider the scenario with weak signal strength.
We tested FastDOV in all cellular carriers, but only present the results in China Mobile because they all show
similar performance.

Delimiter pattern and length. The positioning of the delimiter is a prerequisite for FastDOV to
demodulate the received symbols correctly. Different delimiter patterns (e.g., random sine signals and various
types of chirps) and their lengths may affect the accuracy of separating modulated symbols in FastDOV. It is
necessary to understand their performance and choose the best value of this parameter for practical use.

We tested different delimiter patterns, including linear chirp, quadratic chirp, hyperbolic chirp, loga-
rithmic chirp, and random values. Each pattern was set for 0.1, 0.2, and 0.3 s, respectively. Table 2 shows
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the similarity (in terms of correlation coefficients) between the sent and received delimiters, where a value
closer to 1 means higher similarity. This table indicates that chirp signals of any shape (similarity above
0.98) are superior to random sine signals (similarity only 0.2–0.3). Therefore, we choose the chirp signal as
the delimiter.

Table 2: Correlation coefficients of sent and received delimiters

Length Linear Quadratic Hyperbolic Logarithmic Random
0.1 s 0.986 0.987 0.987 0.987 0.2495
0.2 s 0.988 0.983 0.984 0.987 0.3398
0.3 s 0.990 0.985 0.985 0.989 0.2876

Besides, Table 3 presents the demodulation accuracy of our approach based on these delimiter patterns
and lengths. We can see that regardless of how the delimiter changes, the correlation is high enough to
determine symbol positions accurately. Meanwhile, our demodulator’s accuracy is above 0.98. After the
Reed-Solomon (RS) error correction, the accuracy even increases to 100% without retransmission. Since
there are no big differences in using different types of chirp-based delimiters, we choose a linear chirp with
0.1 s in practice to reduce computation complexity.

Table 3: Accuracy (%) of our DL-based demodulation with different delimiter patterns and lengths

Length Linear Quadratic Hyperbolic Logarithmic
0.1 s 99.0 99.1 98.4 98.9
0.2 s 98.8 98.7 98.7 98.9
0.3 s 98.8 98.2 98.3 99.0

With the above delimiter, we studied δ (i.e., the difference between the derived and actual number
of samples in a data frame) calculated by our cross-correlation method and compared the demodulation
accuracy obtained before and after our position remedying algorithm in practice. Fig. 10a shows the
Cumulative Distribution Function (CDF) of δ in 100 experiments. It is seen that ∣δ ∣ < 10 accounted for 95%
of the total experiments. Our cross-correlation method indeed achieved relatively high accuracy according
to our experiments.

Figure 10: Performance of our cross-correlation method and position remedying algorithm in FastDOV
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If δ = 1, 19, 72 denotes a small, medium, and large error occurring in practice, we compared the accuracy
of symbol demodulation before and after applying the position remedying algorithm. Fig. 10b shows that
after adjusting the position of the delimiter, the accuracy is higher than the data based on the re-predicted
delimiter. It indicates that our proposed solution works well to improve accuracy.

As shown in Fig. 10c, the RS code we use can 100% correct all symbols with an accuracy of demodulation
over 96%, as well as some cases with an accuracy of 94%∼96%, which does not require retransmission.
Otherwise, the retransmission mechanism is triggered to fetch all missing symbols.

Symbol length. Intuitively, a longer symbol is more likely to be recognized correctly (due to a larger
feature space), but at the cost of a longer transmission time. To investigate the impact of different symbol
lengths on the system’s reliability, we set five different symbol lengths: 0.001, 0.002, 0.004, 0.005, and 0.01 s,
while a symbol group and a gap were fixed to last for 0.6 and 0.5 s, respectively.

In Fig. 11a, we see that longer symbols have higher demodulation accuracy as expected, but the
increment is marginal. After the error correction, all symbols (100%) can be correctly restored without
retransmission, regardless of how the symbol length changes. However, when the signal strength is not strong
enough, incrementing the symbol length may not help improve the demodulation accuracy. The details can
be found in the next section.

Figure 11: Accuracy of DL-based demodulation before and after Reed–Solomon error correction in different conditions
of signal strengths

However, as reported in Table 4, both the throughput and goodput decrease as the symbol length
increases. When the symbol length is set to 0.001 s, our system achieves an excellent goodput of 1338.8 bit/s
when the signal is strong and 1201.3 bit/s when the signal is weak. Hence, we use the symbol length of 0.001 s
(i.e., 48 samples at the sampling rate of 48 kHz) for practical use.

Table 4: Throughput/goodput with different symbol lengths (bit/s)

Symbol length 0.001 s 0.002 s 0.004 s 0.005 s 0.01 s
Throughput 1785.1 853.8 427.7 347.8 173.5

Goodput (Strong) 1338.8 640.3 320.8 260.9 130.1
Goodput (Fair) 1332.95 629.5 320.8 255.1 130.1
Goodput (Poor) 1201.3 568.7 291.9 223.2 115.8

SG and gap lengths. The length of the symbol group (SG) and the gap determine whether we can avoid
the rejection of VAD/DTX. We explore the impact of these two parameters and show the results in Table 5.
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Table 5: Impact of the length of the symbol group of gap

SG Gap VAD
triggered? DL acc (%) DL+RS acc

(%)

0.6 s

0.1 s Yes 60.5 63.9
0.2 s Yes 64.2 66.7
0.3 s Yes 72.5 75.4
0.4 s No 97.2 100
0.5 s No 98.7 100

0.8 s

0.1 s No 54.6 55.7
0.2 s Yes 56.4 58.3
0.3 s Yes 61.7 64.2
0.4 s No 89.5 93.2
0.5 s No 97.1 100

1.0 s

0.1 s Yes 60.5 63.9
0.2 s Yes 51.7 54.3
0.3 s Yes 55.3 57.9
0.4 s Yes 82.6 85.7
0.5 s No 89.5 93.8

As the SG length decreases and the gap length increases, received signals have less effect on VAD/DTX,
thus increasing the demodulation accuracy. When the SG length is 0.6 s, FastDOV achieves the best
demodulation accuracy compared to other intervals of 0.8 and 1 s. Additionally, with the fixed symbol
duration of 0.6 s, FastDOV demonstrates perfect (100%) accuracy following Reed-Solomon (RS) error
correction for gap lengths exceeding 0.4 s. Therefore, we empirically use the gap length of 0.5 s and symbol
group duration of 0.6 s to achieve the optimal performance.

5.3 Affects of Deep Learning Models
In our preliminary study [39], we used a tailored ResNet model for symbol demodulation, while we

propose to use a lightweight MobileNet model in this work. To compare their performance differences, we
conducted experiments about accuracy and computational cost with the gap length of 0.5 s and symbol group
duration of 0.6 s.

As shown in Table 6, The proposed MobileNetV3-Small-based solution requires only 0.0029 GFLOPs to
receive 3 bits of data, while ResNet34 requires 0.051 GFLOPs. Both models have high demodulation accuracy
and can achieve 100% demodulation after RS code error correction. With mobile platforms commonly
providing computational capabilities exceeding 1000 GFLOPs (e.g., iPhone and Qualcomm chipsets), our
solution is highly practical given the computational capabilities of modern mobile devices.

While our MobileNetV3-Small-based design already demonstrates strong performance in terms of both
model performance (with an accuracy >97% and an averaged goodput of 1291.0 bit/s) and low computational
cost, we sought to further study the relationship between those two key factors. Specifically, we conduct
experiments by iteratively reducing the number of layers/modules in the MobileNetV3-Small network (this
model consists of two CNN layers and 11 bneck modules) and report the demodulation accuracy and
computational cost of each shrunken model.
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Table 6: Comparison of accuracy (%) and computational cost (Giga floating-point operations per second, GFLOPS)
between Resnet34 and MobileNetV3-Small

Deep learning model DL- acc DL +RS ass Computational cost
ResNet34 99.0 100 0.051

MobileNetV3-Small 98.7 100 0.00296

Table 7 summarizes the experimental results. We find that even when reserving only a small number
of bneck modules from the original MobileNetV3-Small architecture, demodulation accuracy remains high.
However, directly utilizing only the CNN layers leads to a sharp decline in performance. Specifically, models
with at least two bneck modules consistently achieve demodulation accuracy >97%, nearly matching the full
11-module model (first row of Table 7). With a single bneck, the accuracy remains relatively high at 94.7%.
In contrast, CNN-only models with one or two layers demonstrate unsatisfactory performance (accuracy
<82%). These results suggest further optimization of FastDOV’s computational efficiency is possible without
sacrificing accuracy. We leave the exploration of extremely compact architectures for future work, while
noting that our proposed design already achieves an effective balance.

Table 7: Accuracy (%) and computational cost (GFLOPs) of different shrunken models

Shrunken model Accuracy Computational cost
2 CNN + 11 bneck 97.6 0.00296
2 CNN + 10 bneck 97.7 0.00241
2 CNN + 9 bneck 97.8 0.00186
2 CNN + 8 bneck 97.8 0.00163
2 CNN + 7 bneck 97.9 0.00158
2 CNN + 6 bneck 97.9 0.00154
2 CNN + 5 bneck 97.9 0.00141
2 CNN + 4 bneck 98.1 0.00138
2 CNN + 3 bneck 97.8 0.00133
2 CNN + 2 bneck 97.7 0.00129
2 CNN + 1 bneck 94.7 0.00125

2 CNN 80.5 0.000375
1 CNN 81.6 0.000041

5.4 Performance by Environmental Factors
To answer RQ3, we conducted experiments across different cellular signal strengths, carriers, and phone

brands. In the following experiments, we use the optimal parameters for the best data rate: the linear chirp
of 0.1 s as a delimiter, the symbol length of 0.001 s, the symbol group duration of 0.6 s, and the gap length of
0.5 s.

Cellular signal strengths. As shown in Table 8, we tested the performance of FastDOV in three scenar-
ios with different average signal strengths. The signal strength was measured by Reference Signal Received
Power (RSRP)—The average power received from a single Reference signal in decibel-milliwatts (dBm) and
Signal-to-Noise Ratio (SINR)/Signal-to-Interference-plus-Noise Ratio (SNR)—The signal-to-noise ratio of
the given signal.
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Table 8: Signal strength reference in terms of RSRP and SINR

Scenario Signal strength RSRP (dBm) SINR (dB)
Open area Strong −90∼−85 15∼20

Inside building Fair −100∼−90 11∼15
Basement Poor −106∼−100 0∼6

Fig. 11 presents the results of our DL-based demodulation scheme. It is seen that FastDOV achieves
high accuracy in most cases. When the signal strength is strong, the demodulation accuracy is greater than
98% (i.e., the blue curve in Fig. 11a) and 100% before and after Reed–Solomon error correction. It indicates
that our approach does not need retransmission in the strong signal case. When the signal quality is fair, the
accuracy drops to 95% but cannot always be corrected by the RS code. When the quality is poor, the channel
becomes unstable, and the demodulation accuracy is only above 83%. In these cases, we need retransmission
to help achieve reliable data communication.

Table 4 shows the throughput and goodput of the system. As expected, the performance drops from
1338 bit/s (goodput) to 1201 bit/s (goodput) when the signal strength becomes weak. With the help of
retransmission, the performance is still acceptable even when the signal strength is poor. Overall, based
on experiments in three signal strength environments, when the length of the symbol length is 0.001 s, the
average goodput of FastDOV is 1291.0 bits/s, which is a preferred result.

Cellular carriers. We tested FastDOV on cellular networks provided by the three major carriers in
China, namely China Mobile, China Telecom, and China Unicom. The experiments demonstrate consistent
performance, with goodput exceeding 1260 bit/s across all networks, varying within a narrow 10 bit/s range
(Table 9). These results not only highlight the robustness and reliability of FastDOV under different cellular
network conditions, but also demonstrate its superior adaptability to network changes. We have verified
the cross-network compatibility and excellent transmission efficiency of FastDOV through rigorous testing
in different network environments of different operators. This robust performance across networks further
establishes FastDOV’s position as a reliable communication solution.

Table 9: Goodput (bit/s) in different cellular networks

Receiver/Sender China mobile China telecom China unicom
China mobile 1270.1 1266.5 1267.3
China telecom 1266.2 1270.9 1261.1
China unicom 1268.3 1263.1 1269.8

Phone brands/models. To evaluate the robustness across different phone models, we tested FastDOV’s
performance on three phone brands/models: Huawei P60, Vivo Y30, and Honor 7X. Results in Table 10
show that the performance of FastDOV will not be affected by phone models. Specifically, FastDOV
demonstrates consistent demodulation accuracy above 96% across all devices before the Reed-Solomon error
correction. After the correction, FastDOV achieves 100% accuracy and 1338.84 bit/s goodput regardless of
the phone model.
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Table 10: Accuracy (%) and goodput (bit/s) when using different phone models

Phone Huawei P60 Vivo Y30 Honor 7X
DL accuracy 98.8 97.7 96.8
RS accuracy 100.0 100.0 100.0

Goodput 1338.8 1338.8 1338.8

5.5 Comparison to SOTA Approaches
We compare FastDOV with representative methods that share the same operational constraint: no

modification to telecommunication infrastructure. The selected baselines—Hermes [10], Authloop [11], and
others—represent the state-of-the-art approaches for end-to-end data transmission over unmodified voice
channels, making them ideal references for evaluating our system’s performance.

To answer RQ4, we compare our proposed FastDOV with other representative data transmission over
voice channel methods, including Hermes [10] and Authloop [11]. We transmit the existing web certificate
Bilibili, which is 2.1 kB, to test performance. Of course, the Bilibili web certificate is only for testing the
performance of FastDOV, and we will design the phone certificate suitable for telephone transmission in
future work.

Table 11 shows the comparison. Our proposed FastDOV outperforms other methods by a large margin.
The throughput of FastDOV is 1785.1 bit/s, while Hermes and Xu [40] only achieve a throughput of 1200 and
1330 bit/s. The average goodput of FastDOV is 1291.0 bit/s (the symbol length is 0.001 s), while Authloop only
has a goodput of 500 bit/s.

Table 11: Performance comparison between various methods

Method Throughput/bps Goodput/bps Modulator Synchronization Retransmission
FastDOV 1785.1 1291.0 Hybrid ✓ ✓

Hermes 1200 NA FKS ✗ ✗

Authloop NA 500 3-FKS ✓ ✓

Rashidi et al. [41] 800 NA Hybrid ✗ ✗

Rashidi et al. [24] 1150 NA Formants-based ✓ ✗

Xu et al. [40] 1330 NA PSK ✗ ✗

Additionally, FastDOV and Authloop have synchronization and retransmission designs which can
ensure the signal received is complete and correct, but other methods overlook those designs (Rashidi [24]
has synchronization, but it’s not detailed).

6 Discussion
The practical deployment of the proposed authentication system faces challenges in security, prac-

ticality, and generalization. Security-wise, beyond common replay attacks, the system is vulnerable to
adversarial audio injections that may deceive the deep learning model. Practically, the model must achieve
low inference latency in real calling environments while handling diverse acoustic conditions and user
dialects. Furthermore, the current training and evaluation are primarily based on data from Chinese
telecom networks, limiting their direct applicability to international networks with different codecs and
infrastructure standards.
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To address these limitations, future work will focus on three key directions. Security enhancements
will include dynamic challenge-response mechanisms and adversarial training to improve robustness.
Performance optimization will involve model lightweighting for mobile devices and self-supervised learning
for better generalization. For broader applicability, we will investigate cross-domain adaptation techniques to
make the system compatible with diverse international telecom environments. These efforts will help bridge
the gap between the current prototype and practical deployment.

7 Conclusion
We propose a deep-learning-based acoustic modulation scheme named FastDOV to transmit data

over mobile voice channels without infrastructure support. FastDOV consists of a novel chirp-based
modulation (three signal characteristics are mixed for modulation) and a tailored MobilenetV3-Small model
for demodulation. The demodulation method requires only 0.0029 GFLOPs to receive 3 bits of data, which
can be easily run on mobile phones. FastDOV can achieve 1291.0 bit/s goodput on average, which is better
than existing approaches, and it can be applied to three different cellular networks in China. In order to
improve the running speed of this method, we scaled down the model size of MobileNetV3. The experiment
found that when MobileNetV3 has two or more residual networks, it can improve the running speed while
ensuring accuracy. In addition, we demonstrate that our system can transfer digital certificates over voice
channels to prevent telecom fraud.
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Appendix A Mathematical Derivations

Appendix A.1 Reed-Solomon Code Mathematical Formulation
The Reed-Solomon (RS) code employed in FastDOV uses parameters (n = 255, k = 223, t = 16), which

can correct up to 16 symbol errors. The mathematical formulation is as follows:
LetF2m be a finite field with 2m elements, where m = 8 in our implementation. The generator polynomial

g(x) for a t-error-correcting RS code is defined as:

g(x) =
2t
∏
i=1
(x − αi) = (x − α)(x − α2) ⋅ ⋅ ⋅ (x − α2t) (A1)

where α is a primitive element in F2m . For our parameters (n = 255, k = 223, t = 16), the generator polyno-
mial becomes:

g(x) =
32
∏
i=1
(x − αi) (A2)
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The encoding process transforms a message polynomial m(x) of degree k − 1 into a codeword
polynomial c(x) of degree n − 1:

c(x) = xn−k m(x) + r(x) (A3)

where r(x) is the remainder polynomial satisfying:

xn−k m(x) ≡ r(x) mod g(x) (A4)

The Berlekamp-Massey algorithm is used for decoding, which involves solving the key equation:

Λ(x)S(x) ≡ Ω(x) mod x2t (A5)

where Λ(x) is the error locator polynomial, S(x) is the syndrome polynomial, and Ω(x) is the error
evaluator polynomial. The Chien search and Forney algorithm are then applied to locate and evaluate errors.

Appendix A.2 Welford’s One-Pass Algorithm Details
Welford’s algorithm provides a numerically stable method for computing variance and correlation in a

single pass. For the cross-correlation computation in delimiter detection, the algorithm proceeds as follows:
Let ui and vi be sequences of samples, with means u and v, respectively. The sample correlation

coefficient r is computed using:

r = ∑m
i=1(ui − u)(vi − v)√

∑m
i=1(ui − u)2

√
∑m

i=1(vi − v)2
(A6)

= m∑uivi −∑ui ∑vi√
m∑u2

i − (∑ui)2
√

m∑ v2
i − (∑ vi)2

(A7)

The online computation uses the following recurrence relations:

Mk ,u = Mk−1,u + (uk −Mk−1,u)/k (A8)
Sk ,u = Sk−1,u + (uk −Mk−1,u)(uk −Mk ,u) (A9)
Mk ,v = Mk−1,v + (vk −Mk−1,v)/k (A10)
Sk ,v = Sk−1,v + (vk −Mk−1,v)(vk −Mk ,v) (A11)
Ck = Ck−1 + (uk −Mk−1,u)(vk −Mk−1,v) (A12)

where Mk represents the mean after k samples, Sk represents the sum of squares, and Ck represents
the covariance.

Appendix A.3 Chirp Signal Mathematical Analysis
The linear chirp signal used in FastDOV’s modulation scheme has a more detailed mathematical

formulation. The instantaneous phase ϕ(t) of a linear chirp is:

ϕ(t) = 2π ( c
2

t2 + f0t) + ϕ0 (A13)
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where c is the chirp rate, f0 is the starting frequency, and ϕ0 is the initial phase. The instantaneous frequency
f (t) is the derivative of the phase:

f (t) = 1
2π

dϕ
dt
= ct + f0 (A14)

For the up-chirp and down-chirp modulation, the frequency ranges are defined as:

Up-chirp: f (t) = f0 +
f1 − f0

T
t, t ∈ [0, T] (A15)

Down-chirp: f (t) = f1 −
f1 − f0

T
t, t ∈ [0, T] (A16)

where T is the symbol duration, f0 is the starting frequency, and f1 is the ending frequency.
The time-domain representation considering both frequency bands becomes:

x(t) = A sin [2π ( c
2

t2 + f0t) + ϕ0] ⋅w(t) (A17)

where A is the amplitude and w(t) is a window function (typically rectangular) that ensures the signal is
limited to the symbol duration.

The Fourier transform of a linear chirp can be expressed in terms of Fresnel integrals:

X( f ) = A
2

√
π
∣c∣ e

− j[π ( f− f0)
2

c − π
4 ] [C(x) + jS(x)] (A18)

where C(x) and S(x) are the Fresnel cosine and sine integrals, and x =
√

2
∣c∣( f − f0).
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