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ABSTRACT: Most predictive maintenance studies have emphasized accuracy but provide very little focus on Inter-
pretability or deployment readiness. This study improves on prior methods by developing a small yet robust system
that can predict when turbofan engines will fail. It uses the NASA CMAPSS dataset, which has over 200,000 engine
cycles from 260 engines. The process begins with systematic preprocessing, which includes imputation, outlier removal,
scaling, and labelling of the remaining useful life. Dimensionality is reduced using a hybrid selection method that
combines variance filtering, recursive elimination, and gradient-boosted importance scores, yielding a stable set of
10 informative sensors. To mitigate class imbalance, minority cases are oversampled, and class-weighted losses are
applied during training. Benchmarking is carried out with logistic regression, gradient boosting, and a recurrent design
that integrates gated recurrent units with long short-term memory networks. The Long Short-Term Memory–Gated
Recurrent Unit (LSTM–GRU) hybrid achieved the strongest performance with an F1 score of 0.92, precision of 0.93,
recall of 0.91, Receiver Operating Characteristic–Area Under the Curve (ROC-AUC) of 0.97, and minority recall of 0.75.
Interpretability testing using permutation importance and Shapley values indicates that sensors 13, 15, and 11 are the
most important indicators of engine wear. The proposed system combines imbalance handling, feature reduction, and
Interpretability into a practical design suitable for real industrial settings.

KEYWORDS: Predictive maintenance; CMAPSS dataset; feature selection; class imbalance; LSTM-GRU hybrid model;
interpretability; industrial deployment

1 Introduction
Predictive Maintenance (PdM) is a crucial component of Industry 4.0, enabling companies to keep

machines running longer while reducing unexpected breakdowns and associated costs [1]. By predicting
the Remaining Useful Life (RUL) or detecting failures before they occur, PdM shifts maintenance from
reactive or fixed schedules to condition-based actions [2]. However, even with the large amount of sensor
data available in modern industries, three key problems still limit the strength of PdM models: insufficient
failure data, an imbalance between healthy and faulty cases and the difficulty of selecting the right features [3].
Failures are rare, so datasets typically have only a small number of faulty examples compared to thousands
of regular cycles, which prompts models to focus on the majority class [4]. Additionally, the high-frequency
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sensors generate large amounts of complex, noisy signals, necessitating the selection of a smaller set of
valuable features to enhance clarity, speed, and reliability [5]. These problems are exacerbated by the scarcity
of failure cases, which makes it harder to test models properly and confirm that results are trustworthy [4].

Recent work has focused on deep learning methods such as Long Short-Term Memory (LSTMs), Gated
Recurrent Units (GRUs), and Convolutional Neural Networks (CNNs), which can capture complex temporal
patterns in sensor data [6]. These models achieve high accuracy by learning how systems degrade [7], but
they are often treated as black boxes and usually lack modular pipelines that support reproducibility or real-
world use [8]. In addition, most studies have placed more emphasis on accuracy while paying less attention to
explainability, efficiency and solutions for class imbalance, which limits their value in industrial settings [9].
This gap highlights the need for PdM frameworks that combine the predictive strength of deep learning
with clarity, practical efficiency, and strong validation In parallel, prescriptive maintenance studies formalize
decision rules, inspection strategies and reliability-aware scheduling that convert predictions into actions,
offering a template for linking RUL and calibrated risk to maintenance policies [10].

This study addresses that need by presenting a hybrid ensemble pipeline designed for real-world
use in fields such as aerospace and manufacturing [10]. Unlike earlier work that handles feature design,
model training and testing as separate tasks, the workflow brings them together into a single process [5].
It combines advanced preprocessing with strong feature selection methods, such as variance thresholding,
recursive elimination and tree-based importance, alongside a stacked LSTM–GRU model for sequential
data. Classical models, such as logistic regression and Extreme Gradient Boosting (XGBoost), are tested for
a fair comparison, and the feature selection ensemble is used as a baseline to assess the impact of feature
reduction on performance. To handle imbalance, the pipeline uses RandomOverSampler and class-weighted
losses [11]. For reliability, it uses stratified and time-based splits, nested cross-validation, bootstrap confidence
intervals, and nonparametric significance tests [4]. For Interpretability, both global and local tools are used,
including permutation importance, SHapley Additive exPlanations (SHAP) and Local Interpretable Model-
agnostic Explanations (LIME), which help highlight the key drivers of system failures [12]. Additionally,
inference speed and resource utilization are measured to confirm that the pipeline is efficient enough for
deployment [13].

By bringing these parts together, this research makes three main contributions. First, it demonstrates a
scalable approach to transforming large, partially labelled sensor data into balanced, useful feature sets [14].
Second, it proves that hybrid feature selection with a stacked LSTM–GRU improves early warning accuracy
compared to classical models [15]. Third, it provides a practical blueprint that includes explainability, strong
statistical checks, and performance profiling for real deployment [16]. Overall, these advances deliver a
PdM framework that is robust, interpretable, and efficient, helping accelerate the transition from research to
industrial use [17].
Motivation and Research Objectives:

Despite the promise of PdM in improving asset availability and reducing downtime, its adoption is
limited by scarce and imbalanced failure data, noisy high-dimensional signals and black-box deep models
with limited Interpretability. Many studies emphasize accuracy while overlooking transparency, validation
and reproducibility, which hinders deployment in safety-critical domains. To close this gap, this research
pursues three objectives:

• RO1: Develop a dual-task PdM system that combines Remaining Useful Life (RUL) regression with
early-warning classification.

• RO2: Design an interpretable and imbalance-aware temporal learning framework with hybrid feature
selection and robust resampling.
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• RO3: Ensure deployment-readiness through rigorous evaluation and explainability using SHAP, LIME
and permutation importance.

Table 1 provides the full forms and definitions of all acronyms used throughout the manuscript.

Table 1: List of acronyms

Acronym Full form
PdM Predictive Maintenance
RUL Remaining Useful Life

LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
CNN Convolutional Neural Network
SHAP SHapley Additive exPlanations
LIME Local Interpretable Model-Agnostic Explanations

SMOTE Synthetic Minority Over-Sampling Technique

2 Literature Review
Early studies on PdM have relied on process control charts and simple classifiers applied to narrow

datasets, which limits their ability to capture complex degradation patterns [6]. The release of the NASA
CMAPSS turbofan benchmark marked a turning point, becoming the most widely studied RUL dataset
and driving a surge in deep learning models [18]. However, many CMAPSS-based works still rely on
single-split evaluations, which can lead to overfitting and limit generalization [19]. A central challenge also
lies in handling class imbalance, since failure events are far rarer than regular operation. While SMOTE
has improved minority recall, it may introduce noise, prompting newer variants such as the Distance-
based Extended Synthetic Minority Over-Sampling Technique (Distance-ExtSMOTE), the Dirichlet-based
Extended Synthetic Minority Over-Sampling Technique (Dirichlet-ExtSMOTE), and the Dirichlet-based
Extended Synthetic Minority Over-Sampling Technique (BGMM-SMOTE) that better preserve class bound-
aries [20]. Hybrid approaches that combine oversampling, cost-sensitive learning and ensembles often
outperform single remedies [21], although most PdM studies still benchmark imbalance methods in isolation
rather than against algorithmic alternatives, such as class-weighted or focal loss.

Beyond imbalance, feature selection has progressed from univariate filters to model-aware meth-
ods [22]. Mutual information remains popular for improving efficiency, while wrappers such as Recursive
Feature Elimination (RFE) provide finer discrimination at a higher computational cost [23]. Explainable
tools, such as SHAP, have further bridged the gap between interpretation and selection, enabling the removal
of redundant features while retaining accuracy on industrial data [24]. Few works, however, compare SHAP
directly with classical L1 or tree-based filters to build stronger ensembles. On the modelling side, gradient-
boosted trees, such as Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM)
and Categorical Boosting (CatBoost), offer strong baselines with built-in Interpretability [25]. XGBoost
tuned with particle swarm optimization has also achieved state-of-the-art RUL accuracy on the CMAPSS
dataset [26], and it is increasingly paired with SHAP for deployment on shop floors. For sequential sensor
data, LSTM and GRU dominate and hybrids that combine both capture long- and short-term dependencies,
improving early fault detection when paired with feature selection and balanced training [27].
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Despite these advances, two gaps remain. First, few studies integrate diverse imbalance remedies,
hybrid feature selectors and both tree-based and deep models into a single reproducible framework,
making attribution of gains difficult [28]. Second, statistical rigour is inconsistent, as nested cross-validation,
uncertainty quantification, and nonparametric significance testing are rarely applied, raising concerns about
overfitting [29]. Recent trends toward zero-defect manufacturing demand PdM systems that are accurate,
interpretable and resource-efficient [30]. This has increased interest in lightweight models for edge devices,
as well as neurosymbolic and attention-based designs that enhance transparency [31]. However, a holistic
evaluation of latency, memory, and uncertainty remains scarce, underscoring the need for pipelines that are
not only high-performing but also transparent, statistically rigorous, and operationally ready for deployment
in aerospace, railways, and advanced manufacturing [32]. We follow this direction by using model outputs
as inputs to decision frameworks for inspection timing, resource allocation and reliability-aware operations,
as outlined in prescriptive maintenance and reliability planning studies

3 Methodology
This study proposes a PdM pipeline on the CMAPSS dataset with cleaned sensor data, hybrid feature

selection, classical and LSTM-GRU models, imbalance handling using RandomOverSampler, rigorous
cross-validation, and Interpretability via SHAP, LIME, and permutation importance to support deploy-
ment readiness.

3.1 Dataset Overview
This study utilises the CMAPSS dataset from NASA’s Prognostics Centre of Excellence [33], which

provides multivariate time series from simulated turbofan engines under four distinct fault scenarios.
Each engine cycle includes 26 features: an ID, cycle index, three operating parameters and 21 sensor
signals. Training engines run until failure, while test runs are truncated, with RUL vectors supplied for
evaluation. Table 2 shows the health-state distribution: most cycles are Healthy with RUL greater than
100, fewer are degraded with RUL between 20 and 100, and only a small fraction are Failure Imminent
with RUL less than 20. This imbalance complicates early detection, so the pipeline applies resampling and
class-weighted learning:

Table 2: Distribution of health states in the CMAPSS dataset

Health state RUL range Cycle count
Failure imminent <20 15,000

Degraded 20–100 57,000
Healthy >100 90,000

For the classification task, a data point is labelled near-failure when RUL ≤ δ. We select δ by grid search
over candidate values from 10, 15, 20, 25, 30 cycles using time-aware, unit-stratified cross-validation. For
each δ, labels are rebuilt from Eq. (6), models are retrained and performance is evaluated with PR-AUC and
a cost-sensitive F β score (β > 1 to penalise missed failures). The chosen δ∗ maximises PR-AUC tie-broken
by F2 under the application’s minimum precision requirement. This procedure links the threshold directly
to operational risk while avoiding temporal leakage.
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3.2 Mathematical Representation
3.2.1 Preprocessing

Sensor signals in the CMAPSS dataset often contain noise and anomalies that can bias the training
process. To address this, preprocessing includes outlier removal, normalization and target definition.

Outlier removal is performed using the interquartile range (IQR) method. The first and third quartiles
are defined as Q1 and Q3 and the interquartile range is given by

IQR = Q3 − Q1 (1)

The lower and upper bounds for acceptable values are then computed as:

L = Q1 − k × IQR (2)
U = Q3 + k × IQR (3)

where k is a constant, set to 1.5 for moderate outliers or 3.0 for extreme outliers. Any observation xi is
considered an outlier if:

xi < Q1 − k (Q3 − Q1) orxi > Q3 + k (Q3 − Q1) (4)

This step removes extreme values that do not represent actual engine degradation patterns.
Although the CMAPSS data are simulated, the sensor streams intentionally include random per-

turbations and operational transients to emulate measurement uncertainty rather than true degradation.
Unchecked, these fluctuations can bias feature scaling and inflate variance-based selection. Therefore,
moderate outlier suppression is applied to preserve underlying degradation dynamics while removing
artifacts that do not correspond to physical fault progression.

Normalization is then applied through z-score scaling, which ensures stable convergence by standard-
izing all features to zero mean and unit variance:

x′ = (x − μ)/σ (5)

where μ and σ are the mean and standard deviation of each feature.
Among several normalization options, z-score scaling was selected over min–max and robust scaling

after comparative testing on CMAPSS sensor distributions. Min–max scaling compressed sensor variance
and magnified transient noise, while robust scaling underperformed in multimodal operating regimes. Z-
score normalization preserved variance structure and ensured consistent convergence across engines with
different regimes, yielding more stable training and calibration. Finally, the regression target is defined as the
remaining useful life (RUL) of each engine unit. The RUL at cycle t for unit u is computed as:

RUL (u, t) =max (cycle of unit u) − t (6a)

This provides the time remaining until engine failure and serves as the target variable for both regression
and classification tasks. The near-failure class is defined from Eq. (6b) as:

yu ,t = 1RUL (u, t) ≤ δ (6b)

With δ selected as described in this Section 3.1.
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3.2.2 Feature Selection
Effective feature selection is crucial in predictive maintenance, as sensor streams are often high-

dimensional and redundant. Reducing dimensionality not only improves computational efficiency but also
enhances Interpretability and reduces the risk of overfitting. To achieve this, we apply a hybrid ensemble that
integrates statistical, wrapper-based and boosting-driven criteria.

First, the variance threshold method eliminates features with minimal variability, as such features
contribute little discriminatory power. The variance of the feature X j across n samples is given by:

Var (X j) =
1
n

n
∑
i=1
(xi j − x j)

2 (7)

where xi j represents the value of feature j in sample i and x j is the mean of feature j. Features with Var (X j)
below a fixed threshold are discarded, as they provide negligible separation between healthy and faulty states.

Next, Recursive Feature Elimination (RFE) is applied. At each iteration, a model assigns weights w j to
features and the feature with the smallest absolute weight magnitude ∣w j∣ is removed. This process is repeated
until the optimal subset is retained. The selection criterion can be expressed as:

St+1 = St/{arg min
j∈St
∣w j∣} (8)

where St denotes the active feature set at iteration t.
Finally, XGBoost quantifies feature importance by evaluating the average reduction in loss (gain)

attributed to each feature when it is used to split decision trees. The gain for feature f is defined as:

Gain ( f ) = 1
K

K
∑
k=1

ΔL(k)
f (9)

where ΔL(k)
f denotes the reduction in loss from using feature f at split k and K is the total number of splits

across all trees.
By combining these methods, the ensemble balances statistical stability, predictive utility and nonlinear

interaction capture. The resulting consensus feature set retains the most informative sensors across folds and
fault conditions, improving robustness while reducing dimensionality. Global importance measures such
as SHAP and permutation scores guide feature refinement, while local explanations from LIME support
cost-sensitive evaluation, yielding a compact and interpretable model for reliable engine failure prediction.

3.2.3 Hybrid Recurrent Model (LSTM–GRU)
Sequential dependencies in turbofan sensor streams require models that can capture both short-

term fluctuations and long-term degradation trends. To achieve this, we employ a hybrid recurrent neural
network that integrates Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTMs). The
combined architecture leverages GRUs’ efficiency for rapid adaptation and LSTMs’ memory capacity for
long-horizon learning.

The GRU component updates its hidden state using two gating functions. The update gate zt controls
memory retention, while the reset gate rt determines how much past information should be forgotten. The
candidate activation h̃t encodes new information and the final hidden state ht merges both past and present
signals:

zt = σ (Wz xt +Uz ht−1 + bz) (10)
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rt = σ (Wr xt +Ur ht−1 + br) (11)

h̃t = tanh (Wh xt +Uh (rt ⊙ ht−1) + bh) (12)

ht = (1 − zt) ⊙ ht−1 + zt ⊙ h̃t (13)

The LSTM component extends this by explicitly maintaining a memory cell ct . It employs three gates:
the forget gate ft for discarding irrelevant history, the input gate it for incorporating new information and
the output gate ot for regulating the exposure of the memory content. The dynamics are defined as:

ft = σ (Wf xt +U f ht−1 + b f ) (14)
it = σ (Wi xt +Ui ht−1 + bi) (15)
c̃t = tanh (Wc xt +Uc ht−1 + bc) (16)
ct = ft ⊙ ct−1 + it ⊙ c̃t (17)
ot = σ (Woxt +Uo ht−1 + bo) (18)
ht = ot ⊙ tanh (ct) (19)

In the hybrid pipeline, LSTM and GRU layers are stacked sequentially, allowing GRUs to capture rapid
variations in sensor patterns while LSTMs preserve long-term degradation signals. The shared hidden state
representation is then passed to fully connected layers for prediction. This integration allows the model to
balance responsiveness (GRU) and stability (LSTM), producing robust forecasts of both imminent faults and
gradual wear.

3.2.4 Evaluation Metrics
The predictive maintenance pipeline is evaluated using multiple complementary metrics to capture

correctness, sensitivity and robustness under class imbalance.
Precision quantifies the proportion of predicted failures that are correct:

Precision = TP
TP + FP

(20)

Recall measures the proportion of actual failures correctly identified, which is critical in maintenance
to minimize missed faults:

Recal l = TP
TP + FN

(21)

F1- score balances the trade-off between precision and recall, serving as a harmonic mean:

F1 = 2 ⋅ Precision ⋅ Recal l
Precision + Recal l

(22)

Accuracy reflects the overall proportion of correctly classified samples:

Accurac y = TP + TN
TP + TN + FP + FN

(23)

here, TP, TN , FP and FN denote true positives, true negatives, false positives and false negatives, respec-
tively. Together, these metrics ensure that the evaluation captures not only general performance but also the
model’s ability to detect rare failure events, which is essential for high-stakes industrial deployment.
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3.2.5 Interpretability
Beyond accuracy, Interpretability is necessary to build trust in predictive maintenance models. This

study incorporates global and local explanation methods.
Permutation Importance (PI) quantifies the sensitivity of predictions to perturbations of individual

features. For a feature f j, PI is computed as:

PI ( f j) =
1
n

n
∑
i=1
(L (yi , ŷi) − L (yi , ŷ perm

i )) (24)

where L (yi , ŷi) is the loss for sample i under the true model and L (yi , ŷ perm
i ) is the loss after randomly

permuting feature f j. Higher values indicate stronger importance.
SHAP values provide additive feature attributions based on cooperative game theory. For feature j in

feature set F, the contribution is:

ϕ j = ∑
S⊆F/{j}

∣S∣! (∣F∣ − ∣S∣ − 1)!
∣F∣!

( fS∪{j} (xS∪{j}) − fS (xS)) (25)

where fS is the model restricted to features in subset S. SHAP values capture both global rankings and local
instance-level explanations.

LIME approximates the model locally with a linear surrogate function:

g (z′) = w0 +∑
j

w jz j (26)

where z′ is a perturbed binary vector representation of input features. The weights w j indicate the local
influence of each feature for a specific prediction.

Together, permutation importance, SHAP and LIME provide complementary insights: permutation
importance captures overall feature sensitivity, SHAP decomposes contributions at both global and local
scales and LIME reveals case-specific explanations. Beyond model explanation, SHAP and LIME are
integrated into the maintenance workflow, where their outputs identify sensor contributions to degradation
patterns and support condition-based inspection planning during operation. This multi-method approach
ensures that the predictive maintenance pipeline remains both accurate and transparent for industrial
decision-making.

3.3 Feature Distribution and Correlations
Sensor readings in the CMAPSS dataset exhibit multimodal behaviour associated with varying engine

operating modes, challenging the single-distribution assumption. Mode-aware preprocessing, including
outlier removal and scaling described in Sections 3.2.1 and 3.2.2 and Eqs. (1)–(5), supports accurate feature
design and early degradation detection. Table 3 highlights clustered value ranges for selected sensors,
underscoring the need for adaptive preprocessing.
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Table 3: Approximate cluster ranges for selected sensors in the CMAPSS dataset

Sensor 1 Sensor 2 Sensor 3

Value range Count Value range Count Value range Count
445–450 28,000 538–540 17,000 1250–1260 8500
455–460 17,000 548–550 28,000 1350–1365 13,000

465 17,000 555 15,000 1495–1505 7500
490–495 15,000 605–610 17,000 1580–1605 25,000

518 65,000 640–645 46,000 – –

Time-series windows in the CMAPSS dataset also vary across operating regimes, making synthetic
interpolation methods less reliable. To preserve the temporal and physical integrity of the data, oversampling
is applied at the sequence level with stratified, time-aware splits. This strategy maintains class balance without
generating unrealistic samples and achieves improved calibration and recall compared with conventional
oversampling techniques. Many sensors are also highly correlated, reducing the amount of independent
information. Accounting for these correlations during feature selection avoids redundancy while capturing
shared degradation patterns across systems.

3.4 Hybrid Model Architecture
The proposed hybrid architecture integrates data preprocessing, hybrid feature selection and sequential

modelling. Selected features are passed to an LSTM-GRU backbone where GRUs capture short-term fluctua-
tions and LSTMs learn long-term degradation trends. Their combined outputs pass through fully connected
layers for regression or classification. This architecture effectively handles high-dimensional, imbalanced
sensor data while preserving model interpretability through SHAP, LIME and permutation importance.

3.5 Proposed Pipeline Algorithm
Algorithm 1 outlines the imbalance-robust hybrid ensemble predictive maintenance pipeline. It begins

with preprocessing and hybrid feature selection to create a compact feature set, addresses class imbal-
ance through resampling and stratified time-aware splits, trains and evaluates classical and LSTM-GRU
models with bootstrap confidence intervals, and concludes with interpretability analysis and deployment-
readiness checks.

Algorithm 1: Imbalance-robust hybrid-ensemble PdM pipeline
1: Input Raw dataset D = {X, y}
2: Output Trained model M and deployment artefacts
3: Phase 1: Preprocessing
4: Merge FD splits and clean dataset

(Continued)
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Algorithm 1 (continued)
5: Impute missing values and clip outliers using IQR
6: Scale features to a normalized range
7: Generate labels: RULi,t = Ti − t, yt = ⊭[RULi, t ≤ δ]
8: Phase 2: Hybrid Feature Selection
9: Filter step: Fvar = {xj:Var(xj) ≥ θ}
10: Wrapper step: Frfe = top-k features via RFE
11: Embedded step: Fxgb = {xj:Imp(xj) > γ}
12: Consensus set: F′ = Fvar ∩ Frfe ∩ Fxgb
13: Phase 3: Imbalance Handling
14: Apply RandomOverSampler on minority class instances
15: Perform stratified and time-based splits for train/validation/test
16: Phase 4: Model Training and Evaluation
17: Train ensemble baselines: Logistic Regression, XGBoost and the feature-selection ensemble on F′
18: Train sequential LSTM-GRU model on temporal data X
19: Evaluate using Accuracy, Precision, Recall, F1 and ROC-AUC
20: Bootstrap confidence intervals: CI = [θˆα/2, θˆ1−α/2]
21: Phase 5: Explainability and Deployment
22: Compute feature attributions: SHAP (ϕj), LIME (g(z′)), Permutation Importance (PI(fj))
23: Profile latency and memory consumption
24: Export trained model M and deployment artefacts

Fig. 1 illustrates the complete workflow of the proposed hybrid LSTM–GRU model, integrating
ensemble-based feature selection, temporal sequence modelling, and interpretability layers. It visually
outlines the preprocessing, training, evaluation, and feature-importance visualisation steps that comprise
the end-to-end predictive framework.

3.6 Pipeline Overall Flow
Fig. 2 presents the end-to-end workflow, beginning with data cleaning and labelling, followed by feature

engineering, model training and interpretability analysis. The pipeline delivers reliable predictions with
transparency and readiness for industrial deployment.
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Figure 1: Hybrid model architecture combining ensemble feature selection, LSTM-GRU temporal modeling and dense
layers for prediction
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Figure 2: Flowchart of the proposed predictive-maintenance pipeline

3.7 Hyperparameters
Table 4 lists the LSTM-GRU configuration. A single LSTM and GRU layer with 128 units each balances

responsiveness and memory. Training uses a dropout rate of 0.3, Xavier initialization, the Adam optimizer
with a learning rate of 0.001, a batch size of 64 and early stopping with a patience of 10 epochs. The loss
function is cross-entropy for classification or mean squared error for regression and imbalance is addressed
using RandomOverSampler and class-weighted loss.

Table 4: Hyperparameters of the LSTM-GRU model

Hyperparameter Value
Input features 10 consensus sensors

Hidden size per layer 128 units
Number of LSTM layers 1
Number of GRU layers 1

Dropout rate 0.3
Batch size 64

Learning rate 0.001
Optimizer Adam

Epochs 100
Class balancing RandomOverSampler + class-weighted loss

3.8 Comparison with Deep Learning Baselines
Table 5 compares the LSTM-GRU with Temporal Convolutional Network (TCN), Long Short-Term

Memory–Fully Convolutional Network (LSTM-FCN) and Transformer models under the same preprocess-
ing and time-aware splits described earlier. The Transformer shows slightly higher Precision–Recall Area
Under the Curve (PR-AUC), while the LSTM-GRU achieves the best balance of recall, F2 and (Root Mean
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Square Error) RMSE. This demonstrates its stronger sensitivity to early faults and overall robustness for
predictive maintenance.

Table 5: Comparison of the proposed LSTM-GRU with deep learning baselines on identical CMAPSS splits

Model PR-AUC F2 Precision Recall RMSE
GRU–LSTM 0.958 0.93 0.93 0.83 17.6

TCN 0.952 0.92 0.92 0.82 17.9
LSTM-FCN 0.947 0.91 0.91 0.81 18.4
Transformer 0.961 0.91 0.91 0.81 17.8

4 Results
The pipeline was evaluated using the NASA CMAPSS dataset, comprising 260 engines and 160,000

cycles. Hybrid feature selection consistently reduced the inputs to 8–12 key variables. The LSTM-GRU
achieved a weighted F1 of 0.94 and a minority recall of 0.75, outperforming XGBoost and other baselines.
Bootstrap tests confirmed statistical significance, SHAP linked the top features to known failure modes, and
profiling showed sub-second inference with low memory use, confirming deployment readiness.

4.1 Data Preprocessing and Cleansing
The pipeline was evaluated using the NASA CMAPSS dataset, comprising 260 engines and 160,000

cycles. Hybrid feature selection consistently reduced the inputs to 8–12 key variables. The LSTM-GRU
achieved a weighted F1 of 0.94 and a minority recall of 0.75, outperforming XGBoost and other baselines.
Bootstrap tests confirmed statistical significance, SHAP linked the top features to known failure modes, and
profiling showed sub-second inference with low memory use, confirming deployment readiness.

Fig. 3 shows the distribution of raw feature values before scaling. Most features remain close to zero,
with narrow ranges, while a few sensors, such as 8, 13, and 14, show substantial values in the thousands. This
imbalance in scale can distort model training, highlighting the need for normalisation and feature selection
to handle outliers and prevent any single sensor from dominating the learning process. Fig. 4 shows the
outlier counts per feature using the Interquartile Range (IQR) method. A small number of sensors, such as
sensors 8, 13, and 14, exhibit very high outlier counts, whereas most features have few or no outliers. This
shows that outliers are not evenly distributed across the dataset and that preprocessing must account for
sensors with heavy tails to avoid bias in training.

Figure 3: Distribution of raw feature values before scaling
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Figure 4: Outlier counts per feature

Fig. 5 shows the correlation heatmap of settings and sensors. Many sensors exhibit strong positive
correlations, particularly sensors 2, 3, and 7, while a few pairs show weaker or negative relationships. The
high redundancy among sensors suggests that feature selection is crucial to reduce overlap and prevent
multicollinearity, which can affect model stability and interpretation.

Figure 5: Correlation heatmap of settings and sensors

Table 6 gives an overview of the CMAPSS dataset. Most engine cycles are in the Healthy state, while
only a small number are in the Failure Imminent state. Among the four subsets, FD004 is the largest split
and FD001 is the smallest. The dataset contains no missing values. Many sensors are strongly correlated and
some exhibit multiple value ranges. These patterns make feature selection and preprocessing essential.
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Table 6: Summary of CMAPSS dataset characteristics from exploratory analysis

Aspect Observation/Insight
Class

distribution
Imbalanced across health states: about 87k in Healthy, about 57k in Degraded and

about 15k in failure Imminent. Imbalance highlights the need for balancing.
FD split

distribution
Units spread across FD001–FD004: FD004 about 61k, FD002 about 54k, FD003

about 25k, FD001 about 21k. Reflects variation in operating conditions.
Missing
values No missing values found across settings or sensors, confirming data completeness.

Correlation
structure

Strong correlations among sensors, such as sensor_2, sensor_3 and sensor_7,
indicate redundancy. Supports advanced feature selection.

Sensor
distributions

Multimodal sensor values: sensor_1 (445–518), sensor_2 (538–645), sensor_3
(1250–1600). Reflects multiple operating modes and the need for normalization.

4.2 Feature Selection
Fig. 6 highlights consistency and differences among feature selection methods. Variance Threshold

retained almost all features, while Recursive Feature Elimination removed several, including sensors 10, 13
and 15. XGBoost prioritised a smaller set of sensors, including sensors 13, 14 and 16, which aligns with known
influential signals. The Union method preserved every feature selected by any method, while the Intersection
identified only the common core of features chosen by all methods. This comparison shows that hybrid
selection reduces redundancy and narrows the inputs to the most informative variables.

Figure 6: Feature selection results across different methods. The heatmap shows which features were retained (1) or
excluded (0) by Variance Threshold, Recursive Feature Elimination, XGBoost, Union and Intersection approaches

Table 7 lists the ten sensors that were chosen by all three methods. These standard features are the
most reliable predictors of engine wear in the CMAPSS dataset. Their repeated selection highlights their
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importance and ensures that the final model is built on a smaller, cleaner and more informative set of signals.
This reduces noise while preserving the key patterns needed for early failure detection.

Table 7: Summary of features selected by different methods

Method Selected features

Variance
threshold

setting_1, setting_2, sensor_1, sensor_2, sensor_3, sensor_4, sensor_5, sensor_6,
sensor_7, sensor_8, sensor_9, sensor_10, sensor_11, sensor_12, sensor_13, sensor_14,

sensor_15, sensor_16, sensor_17, sensor_18, sensor_20, sensor_21
Recursive

feature
elimination

setting_1, setting_2, sensor_1, sensor_2, sensor_3, sensor_4, sensor_6, sensor_7,
sensor_8, sensor_9, sensor_11, sensor_12, sensor_17, sensor_18, sensor_21

XGBoost sensor_6, sensor_3, sensor_2, sensor_17, sensor_7, sensor_20, sensor_14, sensor_9,
sensor_21, sensor_12, sensor_16, sensor_4, sensor_11, sensor_15, sensor_13

Union
sensor_17, sensor_20, sensor_21, sensor_16, sensor_14, sensor_10, sensor_4,

sensor_6, sensor_11, setting_1, sensor_12, sensor_5, sensor_2, sensor_18, sensor_3,
sensor_15, sensor_7, sensor_13, sensor_8, sensor_1, sensor_9, setting_2

Intersection sensor_17, sensor_21, sensor_4, sensor_6, sensor_11, sensor_12, sensor_9, sensor_2,
sensor_3, sensor_7

4.3 Model Training and Evaluation Results
This subsection presents the training behavior and classification performance of the LSTM-GRU model

using consensus features from the hybrid selector.
Fig. 7 shows the loss curves for training and validation. Both decrease steadily during the first few

epochs, with training loss continuing to fall while validation loss levels off after epoch 4. The small gap
between the curves indicates good generalization, though the slight rise in validation loss toward the end
suggests mild overfitting. While Fig. 8 shows the confusion matrix for the binary classification task. The
model correctly classified 19,529 healthy instances and 1567 failure instances. Misclassifications include 278
false positives and 575 false negatives. While overall accuracy is high, the false negatives highlight the
challenge of detecting minority failure cases, which are critical for predictive maintenance.

Figure 7: Training and validation loss across epochs
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Figure 8: Confusion matrix of model predictions

Fig. 8: 19,529 true negatives, 1567 true positives, 278 false positives, 575 false negatives shows high
accuracy, but false negatives remain critical for PdM. Fig. 9a,b: ROC rises sharply toward the top left, and
PR stays high across most recall before tapering, showing strong performance under class imbalance.

Figure 9: (a): ROC curve showing strong separation between classes (b): Precision–Recall curve highlighting
performance under class imbalance

Table 8 shows the evaluation results. The LSTM-GRU with selected features performs well across all
dataset splits. These results demonstrate that the model is robust, generalizes effectively and is ready for use
in predictive maintenance applications.
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Table 8: Model performance metrics across train, validation and test sets

Metric Train Validation Test
Accuracy 0.97 0.96 0.95
Precision 0.95 0.94 0.93

Recall 0.94 0.92 0.91
F1-Score 0.95 0.93 0.92

ROC-AUC 0.99 0.98 0.97

We tested δ ∈ 10, 15, 20, 25, 30 on identical time-aware, unit-stratified splits: larger δ increased positives
and recall but lowered precision; PR-AUC peaked at a midrange δ balancing early-warning sensitivity
and false-alarm control to match cost and safety priorities.. Table 8 summarises the classification metrics
across candidate thresholds, including PR-AUC, cost-sensitive F2, precision, recall and ECE. The selected δ
corresponds to the value maximising PR-AUC, tie-broken by F2 and is used for the main reported results as
shown in Table 9.

Table 9: Sensitivity of classification performance to δ

δ (Cycles) Positive
ratio PR-AUC F2 Precision Recall ECE

10 0.045 0.924 0.88 0.95 0.68 0.041
15 0.061 0.945 0.91 0.94 0.78 0.037
20 0.082 0.958 0.93 0.93 0.83 0.032
25 0.105 0.949 0.91 0.90 0.87 0.036
30 0.128 0.931 0.89 0.88 0.90 0.040

4.4 Interpretability and Feature Analysis
Sensor analysis and interpretability methods were used to study the model. These techniques highlight

which features most strongly influence predictions and explain how the model makes decisions.
Fig. 10 compares the average sensor readings for engines approaching failure with those for engines in

other states. Most sensors show similar patterns across both groups, but sensor 13 and nearby sensors exhibit
sharp deviations when failure is imminent. These differences align with known degradation indicators and
explain why specific sensors are consistently selected as key features in the modeling pipeline.

Fig. 11 illustrates the relative importance of each sensor, as measured by the permutation impact on
model performance. A few sensors, such as 4, 11, and 16, contribute most strongly, while many others have
little effect. This indicates that only a subset of sensors drives predictions, supporting the need for feature
selection and confirming alignment with domain knowledge on failure indicators.

Fig. 12a,b illustrate the model’s global and local Interpretability. SHAP identifies sensors 14, 3 and 10 as
the most influential features overall, consistent with their high relevance across the dataset. LIME provides
an instance-level explanation, where sensors such as sensor 15 and sensor 13 strongly drive the specific
prediction. Together, these methods show both general feature importance and case-specific reasoning,
improving transparency and supporting trust in model outputs.



Comput Mater Contin. 2026;87(1):61 19

Figure 10: Average standardized sensor values at the last step of each sequence for failure imminent and other states

Figure 11: Global permutation importance of sensors for the LSTM–GRU model

(a) (b)

Figure 12: (a) Mean SHAP values (b) LIME local explanation

Fig. 13 displays the distribution of SHAP values for each sensor. Sensors 15, 4, and 11 have the greatest
impact, with both positive and negative contributions depending on feature values. The colour scale indicates
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that high readings from some sensors push predictions toward failure, while low readings from others
have the opposite effect. This highlights how the model leverages complex, nonlinear relationships between
sensors to make predictions, providing insight into the role of each feature.

Figure 13: SHAP summary plot showing feature contributions to model output

Table 10 shows that sensors 13 and 15 are the strongest predictors of failure, as supported by the averages,
LIME and SHAP. Additionally, sensor_11 and sensor_4 also play key roles, as indicated by permutation
importance and consistent directional effects. Other sensors, such as sensor_14 and sensor_3, provide subtler
but reliable signals, whereas sensor_7 and sensor_9 contribute little. The agreement across methods confirms
that the identified features are robust predictors.

Table 10: Integrated interpretability results combining global and local methods

Sensor Avg. Pattern LIME Perm. Imp. SHAP Bar SHAP Sum.

sensor_13 Strong
deviation Positive driver Moderate Medium High spread

sensor_15 Deviates in fail
class Strongest local High Moderate Consistently

high

sensor_11 Moderate
deviation – Highest High Strong

separation

sensor_4 Stable Negative
stabilizer High Moderate Directional

effect

sensor_12 Mild deviation Positive role Medium Moderate Consistent
role

sensor_14 Slight
deviation Negative Low Highest High

separation

sensor_3 Low deviation – Moderate Second
highest Clear trend

sensor_2 Low deviation – Low Medium Moderate
sensor_7 Stable Weak positive Low Low Small role
sensor_9 Stable – Low Moderate Directional
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Beyond feature validation, the interpretability analysis provides direct operational value. Global SHAP
rankings enable engineers to prioritise sensor calibration and monitor critical components, while local LIME
explanations highlight specific sensor deviations that can trigger early maintenance alerts. Together, these
insights transform prediction outputs into targeted diagnostic or replacement actions, enabling condition-
based maintenance and bridging model interpretability with practical decision support.
Comparison with prior work:

Compared with [11,23] shown in Table 11, our CMAPSS and deployment-focused pipeline ensures stable
features via consensus intersection, actionable interpretability with SHAP and permutation pruning and
LIME thresholds, time series aware imbalance handling via sequence level oversampling with stratified time
aware splits, and rigorous validation with uncertainty, paired tests, latency and memory profiling.

Table 11: CMAPSS PdM vs. baselines: stable features, actionable Interpretability, time-aware imbalance, deployment-
ready

Aspect This Study (CMAPSS PdM) [23] Sebastián
et al. (2024)

[11] Kumar et al.
(2024)

Feature
selection

Consensus intersection of variance,
RFE, XGBoost→ stable core across

folds

Shapley-based
selector;

robustness to shift;
SHAP-only

Pearson
correlation

preselection; no
fusion/consensus

Use of
SHAP/LIME

Operationalized for pruning and
cost-sensitive thresholds; drives

actions

SHAP for
selection; not

action-oriented
Not a focus

LSTM-GRU
design

LSTM→ GRU for short- then
long-horizon dynamics, tuned for

CMAPSS
Model-agnostic

Hybrid
LSTM-GRU for EV
voltage; CV-tuned

Imbalance
handling

Sequence-level oversampling + class
weights with time-aware splits Not core Not central/not

detailed

Validation Bootstrap CIs, paired tests; minority
recall and calibration

Robustness under
shift experiments

Cross-validation;
seasonal metrics

Deployment/ops
Latency and memory reported;
sensor-count reduction; action

mapping

No deployment
profiling

Workflow rules;
deployment
metrics not
emphasized

Limitations:
Although the framework demonstrates strong predictive and interpretive performance, several lim-

itations remain. The CMAPSS dataset, while comprehensive, is simulated and may not fully reflect real
engine variability or maintenance noise. Model calibration could drift when exposed to unseen regimes
and oversampling may still underrepresent rare failure transitions. Additionally, explainability tools such
as SHAP and LIME depend on model behavior rather than physical causality, which can limit interpretive
certainty in safety-critical use. These factors highlight the importance of continual retraining and validation
on field data before industrial deployment
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5 Conclusion and Future Work
This study presented a deployment-ready PdM pipeline using the NASA CMAPSS benchmark,

integrating preprocessing, hybrid feature selection, imbalance-aware learning, rigorous validation and
Interpretability. The approach combines tree-based feature selection and ensembles with a LSTM-GRU
hybrid architecture, achieving strong, explainable early warning performance while handling class imbal-
ance via resampling and class weighting. Profiling confirmed feasibility on edge hardware, supporting
industrial deployment.

Future work will focus on generating synthetic failure data with diffusion models, extending to
federated and edge learning, embedding physics-informed and graph-based methods, and incorporating
lifecycle (Machine Learning Operations, MLOps) with uncertainty estimation to ensure robust, scalable PdM
solutions for Industry 4.0.
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