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ABSTRACT: Although Named Entity Recognition (NER) in cybersecurity has historically concentrated on threat
intelligence, vital security data can be found in a variety of sources, such as open-source intelligence and unprocessed
tool outputs. When dealing with technical language, the coexistence of structured and unstructured data poses serious
issues for traditional BERT-based techniques. We introduce a three-phase approach for improved NER in multi-source
cybersecurity data that makes use of large language models (LLMs). To ensure thorough entity coverage, our method
starts with an identification module that uses dynamic prompting techniques. To lessen hallucinations, the extraction
module uses confidence-based self-assessment and cross-checking using regex validation. The tagging module links
to knowledge bases for contextual validation and uses SecureBERT in conjunction with conditional random fields to
detect entity boundaries precisely. Our framework creates efficient natural language segments by utilizing decoder-
based LLMs with 10B parameters. When compared to baseline SecureBERT implementations, evaluation across four
cybersecurity data sources shows notable gains, with a 9.4%-25.21% greater recall and a 6.38%-17.3% better Fl-score.
Our refined model matches larger models and achieves 2.6%-4.9% better Fl-score for technical phrase recognition
than the state-of-the-art alternatives Claude 3.5 Sonnet, Llama3-8B, and Mixtral-7B. The three-stage architecture
identification-extraction-tagging pipeline tackles important cybersecurity NER issues. Through effective architectures,
these developments preserve deployability while setting a new standard for entity extraction in challenging security
scenarios. The findings show how specific enhancements in hybrid recognition, validation procedures, and prompt
engineering raise NER performance above monolithic LLM approaches in cybersecurity applications, especially for
technical entity extraction from heterogeneous sources where conventional techniques fall short. Because of its modular
nature, the framework can be upgraded at the component level as new methods are developed.
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1 Introduction

One of the most important tasks in the field of natural language processing (NLP) is named NER. Its
main goal is to determine things in a text that have particular meanings, like names, places, associations,
and more proper nouns. NER has wide applications in a range of fields, such as text analysis, information
extraction, systems for question-answering, machine translation, and classification. Both entity extraction
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and entity classification are included in this task. Through the refinement of previously trained models [1,2],
The Transformer architecture indicates that the performance of NER has observed notable advancements.

Social media, blogs, technical forums, news websites, threat intelligence reports, and scholarly articles
are just a few of the many and diverse open-source intelligence (OSINT) sources available in the cybersecurity
space [3]. Both structured and unstructured data forms coexist, and the quality of this information varies
widely. The model must have the relevant domain expertise to use the many technical terms, acronyms, and
specific names found in these sources, like RPC, SQL, and APT [4]. Data integration and standardization
are further complicated by the fact that cybersecurity instruments such as intrusion detection systems and
network traffic monitoring tools provide data in a variety of formats, including structured (like JSON), semi-
structured, and unstructured data [5].

The majority of the NER techniques used in cybersecurity nowadays are based on optimized BERT
models [6]. Although these models work well with text data that has been properly preprocessed, they
become less successful when working with complex and diverse data types. New breakthroughs have been
brought about by recent developments in NLP, including Decoder-Only designs like GPT [7] and Llama
models [8], as well as Encoder-Decoder structures like GLM [9]. These models do exceptionally well on
challenges involving dialogue production and question responding. Scholars are investigating how these
massive language models might be able to use the information they have learned during training. However,
whereas NER has historically been viewed as a sequence labeling task, these models are primarily made for
text production tasks. Using generative models to solve the NER problem may result in subpar performance
due to the target inconsistency of tasks.

For a variety of domain-specific tasks, transformer-based models, especially BERT, have been used in
recent developments in NER. However, when applied to complex and diverse data types frequently seen in
this sector, existing models—particularly in cybersecurity—face major constraints. Although BERT-based
models perform well on clean, preprocessed text, they have trouble generalizing to real-world cybersecurity
data, which frequently contains noisy, incomplete, or adversarially altered input. To manage the inherent
unpredictability and obfuscation frequently seen in cyber threat intelligence (CTI) datasets, entities like IP
addresses, domain names, and URLs in particular require sophisticated methodologies. In order to close
this gap, this study suggests a novel hybrid NER framework that combines adversarial fine-tuning, LLM-
driven perturbations, and SecureBERT, a resilient transformer model. We specifically aim to fill the following
deficiencies in current cybersecurity NER techniques:

o Lack of Adversarial Robustness: When faced with adversarial techniques such as token obfuscation
or symbol insertion, current models frequently perform badly. These attacks can significantly impair
model performance and are prevalent in cybersecurity datasets. To increase robustness against such
perturbations, our method combines SecureBERT with adversarial training.

o  Unable to Manage Complicated Cybersecurity Data Types: The dynamic and diverse nature of cyber-
security data is a challenge for current NER algorithms. Our methodology improves SecureBERT
capacity to handle a variety of entity kinds, including IP addresses, domain names, and URLs, by
using LLMs (e.g., Mixtral, Claude, LLaMA) to create adversarial perturbations that mimic real-world
data unpredictability.

« Absence of Pipelines for Hybrid Fine-Tuning: The majority of current models work independently,
concentrating on heuristic-based augmentations or clean data. In order to provide a reliable, compre-
hensive solution for cybersecurity NER, we provide a hybrid framework that combines the pre-trained
capabilities of SecureBERT with adversarial perturbation generation and fine-tuning.
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2 Related Work

Due to the variety of entity kinds and the intrinsic complexity of the entities themselves, Named Entity
Recognition has encountered many difficulties in recent years. With the advancement of deep learning
technology, novel approaches to this work have been made possible by deep learning-based NER models
[10-12]. These models automatically learn the attributes and contextual information of entities, enabling
them to be recognized with great precision. The most often used deep learning NER models at the moment
are Transformer models, and Convolutional Neural Networks (CNN) [13]. NER problems are usually solved
using sequence labeling approaches, and various datasets and algorithms are developed accordingly.

By using larger model parameters, more data, and longer training cycles, RoBERTa [14] improves on seg-
ment understanding and sequence labeling capabilities of BERT and is able to generalize to downstream tasks
more effectively than BERT. In sentence-level classification tasks, LBERT [15], a lexicon-aware Transformer-
based bidirectional encoder representation model, investigates local and global contextual representations
and demonstrates notable gains over BioBERT [16] in terms of biological entity relationship extraction. The
goal of FInBERT-MRC [17] is to turn unstructured texts into a machine reading comprehension challenge
in order to extract significant financial knowledge from them.

With adjustments to the pre-training weights, SecureBERT [18] is pre-trained on a sizable corpus of
cybersecurity texts using RoBERTa. APTNER [19] is a comprehensive named entity recognition dataset
that defines 21 types of entities relevant to cybersecurity by manually annotating named entities in the
cybersecurity threat intelligence data derived from APT reports of different cybersecurity businesses. The
cybersecurity threat intelligence NER dataset LDNCTT [20] tackles label imbalance by implementing a
Transformer model that incorporates a triplet loss and a ranking gradient coordination mechanism (TSGL).
Mostly consisting of HTML and PDF documents, CTIBERT [21] has compiled a cybersecurity corpus
from numerous reliable data sources. It enables improved execution of NLP tasks in the cybersecurity
arena by accurately extracting cyber threat intelligence. Lastly, in the work on Al-driven IoT cybersecurity
solutions [22], the integration of robust threat intelligence pipelines is crucial for smart city networks.

3 Method

The Identification Module, Extraction Module, and Tagging Module are the three main modules that
make up the architecture, as shown in Fig. 1. By strategically utilizing the deep contextual understanding
offered by encoder-type models and the generative capacity of decoder-type large language models, this
system is intended to analyze and identify items within multi-source cybersecurity data.

The Identification Module uses a large language model that has been pre-trained on large corpora to
understand various text forms and efficiently convey cybersecurity data from several sources. This model is
guided by rapid engineering to generate text representations that are most closely matched to the particular
goals of the Named Entity Recognition job. The Extraction Module is responsible for self-verification of
content. Prior to final labeling, this crucial phase ensures logical consistency of the processed information,
completeness, and initial accuracy. Finally, the Tagging Module leverages a fine-tuned encoder-type model
to handle precise tasks such as tokenization, encoding, and the final classification of the processed text. The
accurately detected cybersecurity entities and their accompanying labels are output by this module.
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Figure 1: Our three-layer LLM framework for cybersecurity entity recognition is designed in its entirety. The system
uses dynamic prompting techniques to analyze data from four sources (Shodan, Whois, Dig, and Nmap). Token
embedding and three decoder layers come next. Prior to encoder processing and CRF-based sequence refining for final
entity classification, regex checking ensures structural integrity

The entry point of the SecureBERT hybrid framework is the identification module, which filters,
decodes, and prepares cybersecurity text prior to entity extraction. This module uses a dynamic prompting
mechanism coupled with large language models like Mixtral, LLaMA, and Claude to improve contextual
alignment and decrease noise sensitivity. Dynamic prompting modifies its structure and phrasing according
to the linguistic and semantic characteristics of the input text, in contrast to static or template-based
prompts as shown in Fig. 1. Because of its flexibility, the system can manage many data sources, including
DIG, Shodan, Nmap, and WHOIS, which frequently differ in terms of formatting, token composition, and
information density. Three steps comprise the dynamic prompting process in practice: semantic refining,
adaptive template selection, and context evaluation. The input text is examined during context assessment
in order to identify the likely entity type and contextual category, such as host information, network
configuration, or system vulnerability. The appropriate prompt pattern that corresponds with the identified
context is then retrieved using adaptive template selection. Lastly, semantic refinement uses controlled
LLM-based rephrasing to modify the lexical structure of prompt so that it matches decoding patterns of
anticipated SecureBERT. By reducing entity recognition errors brought on by erratic or hostile text, this
dynamic prompting technique enhances the overall performance of model. By guaranteeing that every input
instance is semantically preconditioned prior to tokenization, it also improves decoding accuracy. In hostile
test instances, where contextually inconsistent or symbol-perturbed text samples were otherwise difficult for
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static prompt-based decoding systems, empirical evaluations showed that dynamic prompting contributed
to a quantifiable improvement in Fl-score and recall.

The LLM is employed in the extraction module to look for information omissions. The preceding stage
material may lack crucial details or be poorly relevant to the intended content. This is addressed by adding a
reflection and validation step, in which the model assesses whether too much information has been left out.
The text is regenerated in the event that notable omissions are found. The final text section is generated after
this process is repeated until either the maximum number of iterations is reached or no more omissions are
found. Fig. | shows an example of transforming NMAP data into a natural language paragraph that flows
naturally without losing any information. Few-shot learning was found to greatly increase this efficiency
of extraction process. Each port status and associated service are shown on distinct lines without natural
language fluency in the original Nmap data, which shows the outcomes of a port scan on a single IP address.
To improve contextual comprehension, the model is given the role of a penetration testing analyst when
creating the prompt. The assignment entails translating technical scan data into comprehensible, natural
language that displays each port and the service that goes with it using both full names and acronyms and
discusses the Nmap method. This enhanced output offers important background information for the tagging
stage that follows.

Before the text is delivered to the Extraction and Tagging phases, the Identification Module normalizes
and decodes incoming data to produce a context-preserving representation of the text. The process of
decoding ensures the restoration of text in a stable and semantically coherent format that has been tainted
by adversarial perturbations like character-level noise, token obfuscation, and symbol insertion.

Decoding for Claude-based architectures is handled as a two-step alignment and denoising procedure.
First, the system uses Unicode canonical forms (NFKC) and punctuation unification to normalize characters
at the character level. After that, a transformer-based autoencoder rebuilds the token embeddings to lessen
fragmentation brought on by typographical or hostile symbol insertions. In contrast to previous LLMs,
Claude models are predicted to exhibit less performance but display consistent decoding with greater
consistency across adversarial datasets, lowering token boundary errors in subsequent extraction.

Adversarial-aware subword realignment is integrated into decoding for LLaMA-based systems. Due
to the sensitivity of LLaMA tokenization to even small character changes, decoding aligns learnt canonical
embedding dictionaries with subword embeddings to reconstruct them. To determine whether a subword
is an adversarial version of a known token, distance measurements are used to project each subword into a
latent consistency space. The model uses weighted confidence blending to replace the canonical vector when
mismatches are found. According to experimental data, this method maintains over 90% of entity boundary
integrity when random symbol insertions are included, and also decreases misclassification under obfuscated
token attacks by about 4.5%. Even with noisy input, the procedure ensures that the Identification Module
produces reliable token representations.

Mixtral uses expert consensus for decoding. Multiple lightweight expert sub-decoders that specialize
in typographical, semantic, and symbol-level noise are used by the system to process the same noisy input.
A softmax-weighted consensus rule based on level of confidence on each expert is employed to fuse the
results. When dealing with heterogeneous adversarial inputs—where various noise types overlap—this
method works very well. Combining three expert decoders under symbol insertion and character swap noise
improved accuracy by an average of 5.1% in controlled studies when compared to using only one expert
decoder. Error transmission into the Extraction Module is further minimized by the consensus decoding.

As a transformer-based model, SecureBERT is particularly good at generating token-level predictions
and comprehending contextual relationships within the input text. For every token in the sequence, these
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predictions are produced as a collection of probability distributions that indicate the possibility of different
entity types (such as IP address, domain name, etc.). The sequential associations between neighboring entity
tags, which are essential in NER tasks because entities are frequently associated (e.g., “IP address” followed
by “port number”), are not naturally modeled by SecureBERT, even if it captures the local and global context
of the sequence. Conditional Random Fields (CRFs) are useful in this situation. The dependencies between
successive labels are explicitly modeled by CRFs, a kind of probabilistic graphical model. CRFs take up the
work of fine-tuning SecureBERT predictions by taking into account the sequential context of the entity labels.
For instance, the CRF layer can enforce that the next token (such as “1”) is probably a part of the same entity if
SecureBERT classifies the token “192.168.0” as an IP address. This improves accuracy by enforcing valid label
transitions (such as IP address — IP address). SecureBERT and CRF are collaboratively refined on labeled
data in an end-to-end manner during training. Accordingly, the CRF layer refines the high-quality token
predictions that SecureBERT learns to generate by taking into account their sequential dependencies. By
backpropagating via the SecureBERT and CREF layers concurrently, the fine-tuning process enables the CRF
to modify the entity label predictions in accordance with the contextual associations that SecureBERT has
learnt. The cross-entropy loss (for SecureBERT token-level predictions) and the negative log-likelihood loss
(for CRF label sequence predictions) are combined to form the loss function utilized during fine-tuning. In
order for SecureBERT to produce high-confidence entity predictions and the CRF to enforce correct entity
sequences, the ultimate goal is to minimize both losses.

The creation of a specific dataset from four important cybersecurity intelligence sources—DIG, Shodan,
Nmap, and WHOIS—forms the basis of this work. Programmatic API queries and local command execution
are both used in the data acquisition technique. Using its official REST API, the Shodan data is retrieved. To
ensure comprehensive coverage, queries are created to return a wide range of results, including particular
services, ports, and vulnerabilities. The methodology for both Nmap and DIG depends on local execution;
DIG queries several DNS record types for the same set of domains, while Nmap scans are performed
programmatically against a prepared list of target IPs and domains using a range of command-line options
to generate a variety of output. In order to manage the irregular formatting between registrars, WHOIS data
for the specified IPs and domains is then obtained and parsed using a specialized library.

To handle the significant memory needs of processing large-scale, multi-source cybersecurity text
datasets, the SecureBERT model was fine-tuned on a high-performance computer cluster outfitted with
multiple NVIDIA A100 80 GB GPUs. In order to maximize computational performance and minimize
memory footprint without compromising numerical stability, the training made use of a mixed-precision
technique using the BF16 format. We explicitly describe the configuration and validation pipeline used
during fine-tuning in order to improve reproducibility. The following question templates were used to access
the LLM modules (Mixtral, Claude, and LLaMA) using standardized APIs: “Paraphrase or symbolically
obfuscate the following entity while keeping its contextual meaning: [entity]” Two layers were used to
validate the generated samples: a semantic coherence check based on cosine similarity thresholds greater
than 0.82 and a syntactic filter to eliminate incomplete or incorrect outputs. In order to prevent catastrophic
forgetting of prior cybersecurity-specific knowledge of the model, we implemented a full-parameter fine-
tuning regimen with a low learning rate (2e—5) and a linear learning rate scheduler with warmup using
the Hugging Face Transformers library. The batch size was carefully adjusted to enhance throughput while
preserving training stability based on the available VRAM. The PyTorch ecosystem was used to handle the
entire process, ensuring reproducibility and smooth integration of our bespoke data collators made for the
distinct tokenization and labeling format of NER jobs in cybersecurity. To make the model development
lifecycle easier, this dataset is then methodically separated into training (80%), validation (10%), and testing
parts (10%). The use of APIs, especially Shodan, is subject to stringent terms of service that need to be
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carefully examined, particularly with regard to automated data collection, academic use, and the limitations
on redistributing the raw data itself, even though tools like Nmap and DIG can generate an infinite amount
of data locally. The combined dataset comprised 42,000 labeled samples collected from DIG, Shodan, Nmap,
and WHOIS sources. The corpus has over 5.8 million tokens and 128,000 annotated items spread across
six primary categories after preprocessing and normalization: organization, domain, IP address, software,
service, and version. The distribution of entities was somewhat uneven, with IP address and organization
entities together making up over 47% of all references. To ensure uniform evaluation across adversarial
perturbation scenarios, each dataset subset (training, validation, and testing) maintained proportionate
token and entity-type ratios.

The incorporation of adversarial training in the Mixtral fine-tuning process is primarily motivated
by the inherent instability of token boundaries and entity recognition when subjected to perturbed or
disguised cybersecurity data. In the combined DIG, Shodan, Nmap, and WHOIS corpora, the text typically
exhibits noisy, machine-generated patterns, erratic capitalization, and adversarial distortions such as altered
IP formats or obscured domain names. Standard supervised training tends to overfit to surface-level lexical
regularities, producing performance loss under even slight perturbations. Adversarial training counteracts
this issue by injecting model-aware noise during fine-tuning, effectively exposing the Mixtral architecture to
its own failure modes. By optimizing on adversarially modified inputs alongside clean samples, the model
learns perturbation-invariant feature representations and enhances its alignment between token embeddings
and entity boundaries. This technique assures that Mixtral’s decoder can maintain consistent tagging even
when encountering character-level corruption or symbol interference unseen during regular training.

Dropout optimization complements adversarial training by regularizing the internal representations
and preventing overconfidence in feature activation patterns that may be brittle under distributional
alterations. In large decoder-only models such as Mixtral, excessive dropout can lead to underfitting, whereas
insufficient dropout results in memorization of superficial token connections. To stabilize this trade-off,
dropout values were systematically modified across attention and feed-forward layers to increase redundancy
in contextual encoding. This method promotes generalization and minimizes variance in model confidence
when exposed to disturbed sequences. Empirically, the optimized dropout configuration mitigates the
variance observed in gradient updates during adversarial training and helps to more stable convergence and
preserving model.

In order to regulate the sensitivity of the gradient flow of model during adversarial optimization,
gradient masking was added as an additional stability technique as illustrated in Algorithm 1. Uncontrolled
gradient magnitudes can lead to overshooting in weight updates during adversarial fine-tuning, which
can result in oscillatory or divergent behavior, particularly when learning from adversarially amplified loss
surfaces. Gradient masking limits the adversarial loss amplification while preserving directional learning by
introducing a controlled attenuation of gradient propagation for high-sensitivity parameters. By doing this,
robustness is increased without unduly flattening the optimization landscape. A Mixtral model that learns
smoother, more invariant decision boundaries over noisy and obfuscated cybersecurity text is produced by
the combination of gradient masking and dropout regularization. When combined, these methods match
the training dynamics to the goal of attaining interpretability and resilience in adversarial NER challenges,
guaranteeing that the model operates consistently in clean, corrupted, and unseen perturbation domains.
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Algorithm 1: Optimizing mixtral via gradient masking, dropout optimization, and adversarial training

Initialize model parameters 0;
for each training step t do
Sample mini-batch (x, y) from combined dataset (DIG, Shodan, Nmap, WHOIS);
Generate adversarial variant x,,4, by applying perturbations to x;
Forward pass with dropout: compute logits z = f(Xady; Pdrop )
Compute loss L = aLcjean (x’ }/) + ﬁLadV (xadv’ )’)§
Compute gradients g = VgL;
Apply gradient masking: ¢’ = g ® M, where M limits high-sensitivity updates;
Update parameters: 0 < 6 — ng’;
return robust model parameters 0*

Beyond standard preprocessing or data normalization, the SecureBERT pipeline incorporates the large
language models (Mixtral, Claude, and LLaMA). In accordance with the adversarial training paradigm,
each LLM functions as a semantic perturbation generator, producing paraphrased, symbol-altered, or
obfuscated text samples. The Identification Module receives these LLM-driven samples and uses contextual
decoding and normalization to identify language patterns that are important for named entity. Under shared
adversarial, dropout, and gradient-masking restrictions, SecureBERT simultaneously processes native and
LLM-augmented representations during fine-tuning. By enforcing cross-model consistency, this configura-
tion ensures that SecureBERT learns invariant entity boundaries in spite of lexical or syntactic disturbances
brought forth by the generative models. Consequently, the LLMs actively participate in SecureBERT internal
representation learning, creating a hybrid configuration in which knowledge transfer happens implicitly
through multi-source adversarial alignment instead of static data augmentation. The LLM components
communicate directly with the SecureBERT fine-tuning layers via a semantic perturbation interface, as
shown in Fig. 2.

4 Experiments

We make use of the Claude 3.5 Sonnet, LLaMA3-7b, and Mixtral-7 x 8b models through both the official
Anthropic API and the Hugging Face web interface. Furthermore, we decided to use the Claude 3.5 Sonnet,
Mistral-7B, and Llama3-8B smaller-parameter versions of these models. Where appropriate, these open-
source models were chosen for local deployment in order to facilitate inference. Llama and Mixtral were
locally deployed and had a decoder-only design, whereas Claude 3.5 Sonnet was accessible through an API.
To provide consistent evaluation across both locally deployed and cloud-based instances, we used APIs to
trigger these models and perform tests.
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Figure 2: The LLM ensemble (Mixtral, Claude, and LLaMA) is included in the SecureBERT fine-tuning pipeline. By
introducing paraphrased, symbol-inserted, and obfuscated text variations, the LLMs function as semantic perturbation
generators. Before moving on to the SecureBERT fine-tuning stage, where adversarial training, dropout optimization,
and gradient masking maintain cross-model consistency and robust entity tagging, these variations go through the
Identification and Extraction Modules

Three important metrics—precision, recall, and the F1 score—are commonly used to evaluate efficacy
of model in named entity recognition trials. Precision in mathematics is defined as
. TP
Precision = —— (1)
TP + FP
The proportion of accurately named entities to all actual entities in the text is known as recall. By
showing the proportion of real things that were successfully identified, it gauges the capacity of model to
prevent false negatives. Recall is defined mathematically as
TP
Recall = —— (2)
TP + FN
The F1 score is calculated by taking the harmonic mean of recall and precision. It offers a single statistic
that strikes a balance between recall and precision. Better model performance, with high precision and high
recall, is indicated by an F1 score near 1, whereas lower performance is indicated by an F1 score near 0. This
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is how the Fl1 score is determined:

Precision x Recall
Fr=2x — (3)
Precision + Recall

The performance evaluation of each approach across four different cybersecurity data sources is shown
in Table 1. According to the experimental results, our named entity recognition method shows notable
performance advantages while processing open-source cybersecurity data when it is implemented using
an identification module, extraction module, and tagging module architecture. Our approach efficiently
converts unstructured and structured data into comprehensible natural language representations and makes
use of sophisticated contextual understanding tools to precisely detect and categorize cybersecurity entities.
With Fl-score enhancements ranging from 6.38% to 17.3%, the combined performance metrics across all
assessed datasets show that our system outperforms the optimized SecureBERT baseline by a significant
margin. These outcomes demonstrate how well our multi-module architecture works and how it can use
large language models to improve cybersecurity entity recognition.

Table 1: Performance comparison of cybersecurity NER methods across multiple OSINT data sources. The table
presents the total number of correctly recognized entities for each method, with delta values A indicating performance
improvement over the fine-tuned SecureBERT baseline. All variants of our proposed method demonstrate significant
improvements across all data sources, with the Mixtral 8x7B variant showing particularly strong performance in Shodan
and Nmap data parsing. The consistent positive deltas validate the effectiveness of our identification and extraction
modules in processing heterogeneous cybersecurity text data

Methods Shodan Delta Whois Delta Dig Delta Nmap Delta
Fine-tuned SecureBERT (Baseline) 159 0 64 0 77 0 73 0
Our Method + Claude 3.5 Sonnet 352 193t 190 126t 98 21t 163 901
Our Method + Llama 3 8B 338 1791 175 11t 89 121 182 1091
Our Method + Mixtral 8x7B 375 216t 228 1641 112 357 225 1521

To determine the four models” performance across all datasets, we combined the data. Table 2 displays
the data. The efficacy of the framework is confirmed by the discovery that our approach produces better F1
scores than SecureBERT, the state-of-the-art open-source NER model, by more than 24.5%. This suggests that
large language models typically provide standardized information that faithfully captures the original content
when input text is processed through the identification module. This method greatly lowers the likelihood
of hallucinations when combined with an information extraction step that makes use of the original
text. Additionally, by clarifying implicit information in open-source cybersecurity data, this methodology
improves the accuracy of entity recognition and its subsequent use in security applications.

Table 2: Comprehensive performance evaluation of our method against the fine-tuned SecureBERT baseline across
multiple cybersecurity data sources. The results demonstrate significant improvements across all metrics, with our
method achieving 9.4%-25.2% higher recall and 6.38-17.3% better Fl-score compared to the baseline implementa-
tion. Furthermore, our approach outperforms state-of-the-art models, including Claude 3.5 Sonnet, Llama3-8B, and
Mixtral-8B, by 2.6%-4.9% in overall effectiveness

Methods Precision Recall F1-Score
Fine-tuned SecureBERT (Baseline) 0.932 0.527 0.669
Our Method + Claude 3.5 Sonnet 0.928 0.577 0.712

(Continued)
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Table 2 (continued)

Methods Precision Recall F1-Score
Our Method + Llama3-8B 0.954 0.659 0.780
Our Method + Mixtral-8B 0.961 0.660 0.785

To further support the Character-level perturbation and Token obfuscation and symbol insertion we
conduct some experiments. These experiments are as follow

Character-level perturbation in Experiment 1: By inserting controlled substitutions and deletions
within entity tokens such IP addresses, domains, and service identifiers, a character-level adversarial evalua-
tion was carried out on the combined DIG, Shodan, Nmap, and WHOIS dataset. About 12% of the entity-level
characters were perturbed in order to simulate the text degradation seen in network scans. For example,
“Shodan detected service at 192.168.10.45” was changed to “Shodan detected service at 192.168.10.45” The
adversarially fine-tuned Mixtral outperformed both LLaMA and Claude under the same perturbation
intensity, achieving the highest stable performance of all assessed models with a precision of 0.96, recall
of 0.66, and Fl-score of 0.78. The test confirmed that Mixtral pipeline for decoding and tagging efficiently
maintained entity boundaries in the face of character-level noise.

Experiment 2—Insertion of symbols and token obfuscation: This experiment replicated adversarial
text obfuscation by applying token-level distortions to the same combined dataset using leetspeak, abbrevia-
tion, and embedded zero-width or markup symbols. Examples of alterations included “Server: Apache/2.4.54
(Ubuntu)” being changed to “Server: Apache/2.4.54 (Ubiintu)” and “nmap scan for google.com” becoming
“nmap scan for goOogle.com” Analysis showed that the adversarially fine-tuned Mixtral maintained its
strong trend, maintaining accuracy 0.96 and F1 0.78 with no loss of confidence, but LLaMA and Claude
showed deteriorated border recognition under these distortions. The outcomes validate that Mixtral design
successfully reduces hostile token fragmentation and symbol interference that are common in cybersecurity
text streams.

The experimental findings, which are shown in Figs. 3 and 4, clearly show how much better our
suggested multi-module structure is than the optimized SecureBERT baseline. The comparison between the
three common evaluation metrics—precision, recall, and F1-score—for each model version is shown in Fig. 3.
While both models maintain excellent precision, the grouped bars clearly demonstrate that our technique,
when combined with the Mixtral 8x7B model, achieves a large lead in both recall (0.660) and F1-score (0.785),
with the latter improving by 17.3% over the baseline. This shows that our framework provides a superior
balance between accuracy and coverage by detecting more real entities in the text without increasing false
positives. This is especially true of its identification and extraction modules.

In order to implement confidence-based self-assessment, each predicted entity is given a confidence
score that is determined using the probability distribution that SecureBERT produces for each token. In
particular, we quantify the confidence of model in each entity extraction using the softmax probability
values produced during token classification. The minimum acceptable confidence level for an entity to be
deemed legitimate is set at 0.85. Because they are likely to be incorrectly classified, entities with confidence
scores below this threshold are either warned for additional review or eliminated. Based on practical trials
where models consistently demonstrated accuracy in both clean and adversarial test cases at this level, the
confidence criterion of 0.85 was chosen. Higher criteria (e.g., 0.95) decreased the capacity of model to identify
less common or unclear items, whereas lower thresholds (e.g., 0.75) increased false positives.
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Performance Comparison of Models Across Metrics
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Figure 3: OM in the figure means our method. Performance comparison of models across precision, recall, and F1-score
metrics

The extraction module uses a set of regex patterns in addition to the confidence score to assess entities
according to their semantic significance and structure. These regex patterns are specifically designed to match
typical entity types found in cybersecurity datasets, including system services, IP addresses, domain names,
and URLs. A regex pattern for an IP address, for instance, would resemble this:

A((25 [0-5]—2 [0-4] [0-9]— [01]? [0-9] [0-9])\.){3}(25 [0-5]—2 [0-4] [0-9]— [01]? [0-9] [0-9]?)$

By rejecting any incomplete or malformed strings, this pattern ensures that only legitimate IP addresses
in the proper format—such as 192.168.0.1—are kept. Before being approved as final outputs, all anticipated
entities are subjected to regex patterns. Even if a predicted entity has a high confidence score, it is eliminated
it it does not fit any of the established regex patterns. On the other hand, entities that fit the pattern but
have a low confidence score can be further refined using extra context analysis or semantic checks. The
extraction module improves the overall robustness and reliability of the model in real-world cybersecurity
applications while also refining the entity extraction process through the combination of confidence-based
self-assessment and regex validation.

The raw count of accurately recognized entities from the four different cybersecurity data sources—
Shodan, Whois, Dig, and Nmap—is shown in Fig. 4, which supports this conclusion even more. Every
data source shows a consistent and significant performance difference between our technique and the
baseline. Once more, the Mixtral 8x7B variation is the best performer, particularly when it comes to
processing complex data from Nmap and Shodan, which identify 225 and 375 entities, respectively. The
primary hypothesis—that using large language models for the first identification and standardization of
heterogeneous security text provides a better basis for the subsequent tagging module, which in turn leads to
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more thorough and accurate named entity recognition—is validated by the universal improvement, which
is shown by the positive delta values across the board.

Number of Recognized Entities by Model and Data Source
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Figure 4: OM in the figure means our method. Number of recognized entities by model and data source

Several significant benefits of our framework from a research standpoint are revealed by the qualitative
analysis. Our approach shows deep contextual comprehension by recognizing links between items and
extracting layered information, whereas the baseline model only extracts fundamental port information
superficially. The ability for security teams to instantly compare software versions (OpenSSH 8.4pl, nginx
1.18.0) with known CVEs makes this information especially useful for vulnerability assessment, as shown
in Table 3. Likewise, more focused security hardening techniques are made possible by the extraction of
Ubuntu operating system information.
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Table 3: Comparison of entity recognition results qualitatively using a sample of Nmap data. Our approach outperforms
the refined SecureBERT baseline in terms of contextual understanding and information extraction

Component Fine-Tuned SecureBERT (Baseline) Our Method + Mixtral 8x7B

Nmap scan report for example.com (192.0.2.10). Host is up (0.21s latency).
PORT STATE SERVICE VERSION. 22/tcp open ssh OpenSSH 8.4pl Ubuntu

Raw input ; .
5. 80/tcp open http nginx 1.18.0. 443/tcp open ssl/https nginx 1.18.0. 53/tcp
closed domain.
. . . Comprehensive contextual analysis with full
Output Basic port state and service extraction

entity recognition
© HOST: example.com, IP: 192.0.2.10, STATUS:
online, LATENCY: 0.21 s
® PORT: 22, STATE: open, SERVICE: ssh,
SOFTWARE: OpenSSH 8.4pl, OS: Ubuntu,
PROTOCOL: 2.0
® PORT: 80, STATE: open, SERVICE: http,
SOFTWARE: nginx 1.18.0
© PORT: 443, STATE: open, SERVICE: https,
SOFTWARE: nginx 1.18.0
® PORT: 53, STATE: closed, SERVICE: domain
Only minimal port information is extracted by the baseline model, which lacks
important security context, including operating systems, software versions, and
service statuses. By retrieving 13 security-relevant entities instead 9 of baseline
Research insight (a 44% increase in information extraction quality),
our method demonstrates a major improvement in contextual understanding.
Better threatassessment and vulnerability management in cybersecurity
operations are closelycorrelated with these improved capabilities.

o PORT: 22, SERVICE: ssh, STATE: open
Identified entities o PORT: 80, SERVICE: http, STATE: open
o PORT: 443, SERVICE: https, STATE: open

5 Discussion

The experimental findings show a distinct and significant improvement above current cybersecurity
NER approaches, which have mostly depended on customized, optimized models such as SecureBERT.
Despite achieving a respectable level of accuracy, these traditional methods have serious shortcomings in
terms of contextual understanding and are unable to extract multi-layered or implicit information from
unstructured cybersecurity text. The qualitative analysis shows that the models™ practical applicability in
actual threat intelligence scenarios is significantly limited by their inability to identify software versions,
operating systems, and service states. These drawbacks are caused by the intrinsic architectural limitations
of encoder-only models, which are unable to generate the generating and reasoning skills necessary to
create cohesive stories from disparate security data. By incorporating a structured pipeline that separates
the identification, extraction, and tagging phases, our suggested methodology fills these gaps and makes it
possible for more thorough and nuanced entity recognition.

Due to financial and computational limitations, implementing such a model in a production setting
was outside the purview of this study. Practical factors including inference delay, model scalability, API
integration costs, and real-time processing demands were not assessed because the experiments were carried
out in a controlled environment using offline datasets. Additionally, even though our approach significantly
improves performance, it is still dependent on the capabilities of the underlying open-weight LLMs (Claude
3.5 Sonnet, Llama 3, Mixtral), which could potentially introduce mistakes particular to a given domain or
inconsistencies if additional specialized tuning is not done.

The extent of the existing LLM integration is another drawback. Mixtral, LLaMA, and Claude models
were mainly used in the study to generate and fine-tune perturbations. The investigation of more sophis-
ticated architectures like GPT-4, Gemini, or Claude-Next could further improve semantic understanding
and resilience against challenging adversarial inputs, even if Mixtral demonstrated more precision and
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overall stability. Therefore, future research will take into account expanding the framework to these models
and assessing their effects on contextual accuracy and generalization across other cybersecurity tasks.
Furthermore, a combined dataset from sources including DIG, Shodan, Nmap, and WHOIS was used in the
current studies. This dataset captures realistic cybersecurity entities but has a smaller scope than global-scale
intelligence corpora. Additional information about model scalability and data sensitivity may be discovered
by a methodical assessment using bigger and more diverse datasets. Lastly, in order to determine the best
training settings for cybersecurity NER systems that are suitable for deployment, further research might
examine how different data augmentation intensities, fine-tuning hyperparameters, and adversarial masking
techniques affect model performance.

An ablation study was carried out across multiple configurations to evaluate the specific contribu-
tions of each component in the suggested adversarially fine-tuned SecureBERT framework. The baseline
configuration included the complete setup, which comprised adversarial training, dropout optimization, gra-
dient masking, consistency regularization, and LLM-driven adversarial perturbations produced by Mixtral,
LLaMA, and Claude. With a precision of 0.96, an Fl-score of 0.78, and a recall of 0.66 on the combined
DIG, Shodan, Nmap, and WHOIS dataset, Mixtral attained the maximum resilience in this configuration.
The adversarial Fl-score significantly decreased and the attack success rate rose when the LLM-generated
adversarial samples were eliminated, suggesting that adding semantically coherent but perturbed inputs
generated by the LLM ensemble was essential for improving generalization under adversarial conditions.

Similar degradation resulted by disabling adversarial training while maintaining the enriched data,
indicating that a large portion of the observed robustness is due to joint minimax optimization rather
than straightforward data exposure. The consistency of entity boundaries under noisy or obfuscated inputs
decreased when gradient masking was excluded, leading to slightly less stable gradients and increased
variance across training sessions. The relevance of controlled stochastic regularization in preserving invari-
ance is supported by the fact that eliminating dropout optimization—fixing dropout to a static, untuned
value—caused mild overfitting and worse generalization to unseen attacks. Lastly, stability under symbol-
insertion attacks decreased when the consistency loss between clean and disturbed samples was turned
off, demonstrating that this auxiliary term aids the model in aligning representations of semantically
equivalent tokens.

6 Conclusion

To summarize up, our research offers a scalable and reliable named entity identification framework
for cybersecurity that performs noticeably better than traditional fine-tuned models. Our method sig-
nificantly improves recollection, Fl-score, and the qualitative richness of retrieved items by utilizing the
complementing characteristics of contemporary LLMs in a modular design. Future studies will build on
this work by using more cutting-edge language models, like GPT-4 and Gemini, in an effort to further
push the limits of generalizability and performance. Because of its private nature, related inference costs,
and poor reproducibility for academic benchmarking, GPT-4 was excluded from the current trials. These
issues go against our emphasis on open, reproducible, and resource-efficient methods. The ultimate goal
of this research direction is to create a new generation of natural language processing (NLP) technologies
that can deliver actionable intelligence at scale and keep up with the constantly changing complexity of
cybersecurity threats.
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