
echT PressScience

Doi:10.32604/cmc.2025.072937

ARTICLE

Multi-Area Path Planning for Multiple Unmanned Surface Vessels

Jianing Wu1, Yufeng Chen1,*, Li Yin1, Huajun He2 and Panshuan Jin2

1Institute of Systems Engineering, Macau University of Science and Technology, Macau, 999078, China
2Guangzhou Jiafan Computer Co., Ltd., Room 601, Building A8, No. 11 Kaiyuan Avenue, Huangpu District, Guangzhou, 510000,
China
*Corresponding Author: Yufeng Chen. Email: chyf01@163.com
Received: 07 September 2025; Accepted: 24 November 2025; Published: 10 February 2026

ABSTRACT: To conduct marine surveys, multiple unmanned surface vessels (Multi-USV) with different capabilities
perform collaborative mapping in multiple designated areas. This paper proposes a task allocation algorithm based on
integer linear programming (ILP) with flow balance constraints, ensuring the fair and efficient distribution of sub-areas
among USVs and maintaining strong connectivity of assigned regions. In the established grid map, a search-based path
planning algorithm is performed on the sub-areas according to the allocation scheme. It uses the greedy algorithm and
the A* algorithm to achieve complete coverage of the barrier-free area and obtain an efficient trajectory of each USV.
The greedy algorithm enables fast local traversal of unvisited grids, while the A* algorithm ensures navigation to escape
from deadlock areas and maintains global path continuity. The comparison of task allocation results proves that the
task allocation algorithm based on ILP improves the mapping efficiency and task distribution fairness. The proposed
allocation method and result analysis provide a certain reference for the practical application of Multi-USV to perform
survey tasks collaboratively.

KEYWORDS: Multiple unmanned surface vessels; multiple areas; integer linear programming

1 Introduction
In recent years, marine research and protection have garnered increasing global attention, with substan-

tial resources and technologies invested to advance marine science and promote the growth of the marine
economy. In line with the “Maritime Power” strategy, the application of advanced technologies in marine
research is crucial. Unmanned surface vessels (USVs), as high-tech platforms, have emerged as key tools for
marine exploration and protection due to their automation and operational versatility.

However, the coverage area and task processing capabilities of a single USV are inherently limited when
performing tasks. To overcome these limitations, Multi-USV cooperative operation has gradually become
a significant focus of research and application. Multi-USV cooperative task execution can significantly
improve the efficiency and accuracy of tasks. The challenges of Multi-USV path planning mainly include
task allocation and area path planning.

The core of Multi-USV multi-area task allocation is how to reasonably distribute tasks within the capa-
bilities of each vessel to maximize overall task execution efficiency. This requires systematically considering
technical indicators such as the navigation speed, payload, and endurance of each USV. Additionally, tasks
must be allocated to the most suitable vessel based on the nature and priority of the tasks.

Copyright © 2026 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
https://doi.org/10.32604/cmc.2025.072937
https://www.techscience.com/doi/10.32604/cmc.2025.072937
mailto:chyf01@163.com

2 Comput Mater Contin. 2026;87(1):44

Significant progress has been made in task allocation research. Ma et al. [1] enhance Multi-USV task
allocation using an improved k-means alsgorithm and a self-organizing map for task execution, addressing
communication constraints to improve autonomy. A Multi-USV task allocation and path planning approach
is developed by Liu et al. [2] by combining a self-organizing map and the fast marching method, while also
considering energy efficiency and communication constraints. Xia et al. [3] address multiple task assignment
and path planning for Multi-USVs, proposing an improved self-organizing map for task allocation and
an improved genetic algorithm for path planning. This approach, verified through simulation, effectively
allocates tasks and ensures collision-free navigation. Zhou et al. [4] introduce a novel region-construction
method for Multi-USV target allocation, resolving target deadlock and local optimization issues by integrat-
ing unsupervised clustering, market-based mechanisms, and ant colony optimization. This strategy improves
operational efficiency and reduces the time for USVs to reach target positions. An exact algorithm for Multi-
USV task allocation is presented by Xue et al. [5], focusing on minimizing the maximum task time. Task
time is reduced by utilizing the Hungarian algorithm and the fast marching square method, considering both
travel and turning times. A multi-agent deep reinforcement learning approach is explored by Wen et al. [6],
using the multi-agent deep deterministic policy gradient to optimize navigation, obstacle avoidance, and
area assignment for Multi-USVs. Autonomy is enhanced by simultaneously addressing dynamic navigation
and task allocation. Lyu et al. [7] propose Pathfinder, a deep reinforcement learning-based framework
for multi-robot scheduling in smart factories. It dynamically selects scheduling rules and optimizes task
allocation in real time. Aminu et al. [8] apply an improved particle swarm optimization for task allocation
in edge computing, balancing energy consumption and execution time while outperforming benchmark
methods. Shen et al. [9] investigate wind-powered unmanned sailboats in island environments, proposing
the BCO-ARA and GDRA algorithms to address boundary complexity and area proportionality under
wind constraints.

A chaotic-evolution optimization (CEO) metaheuristic is presented by Dong et al. [10] by exploiting
hyperchaotic memristive maps to generate multiple random search directions, demonstrating superior
convergence speed and zero-bias robustness against recent swarm-intelligence algorithms. Wang et al. [11]
propose the Status-based Optimization (SBO) algorithm, which emulates human status-seeking behavior
to balance exploration and exploitation, and demonstrate its superior performance in global optimization,
feature selection, and image segmentation tasks. Akbari et al. [12] establish the Holistic Swarm Optimization
(HSO) algorithm, which leverages information from the entire population to adaptively balance exploration
and exploitation, achieving robust and competitive performance across complex multimodal and real-world
optimization problems.

Integer linear programming (ILP) is a mathematical optimization method that seeks to optimize a linear
objective function subject to given constraints, requiring some or all decision variables to take integer values.
It provides precise optimal solutions, which are crucial for high-precision task allocations. As a deterministic
approach, ILP avoids the randomness inherent in heuristic algorithms, ensuring predictable results while
accurately considering task priorities, vessel performance, and inter-task distances. Compared with heuristic
methods, such as k-means and genetic algorithms, which may converge to suboptimal solutions, ILP delivers
globally optimal allocation with higher precision and stability. In multi-area cooperative task allocation,
ILP ensures fair and efficient distribution of sub-areas while maintaining strong connectivity among
assigned regions. Modern ILP solvers, such as CPLEX and Gurobi, can efficiently compute optimal solutions
even under complex multi-constraint conditions, improving both execution speed and the reliability of
task completion.

Many research works have used ILP to derive optimal solutions. Lei et al. [13] employ mixed-integer
linear programming (MILP) to obtain optimal solutions for power generation scheduling, transforming

Comput Mater Contin. 2026;87(1):44 3

nonlinear constraints into linear formulations through integer programming techniques. Optimal schedul-
ing solutions for NASA’s Deep Space Network are derived by Sabol et al. [14] through MILP application,
efficiently allocating limited communication resources via integer programming techniques. Liu and Fan [15]
utilize MILP to derive optimal resource allocation solutions in multi-cloudlet environments, jointly optimiz-
ing latency, reward, and resource utilization through integer programming. Therefore, this paper focuses on
a multi-area, Multi-USV task allocation method based on an ILP mathematical model.

In the complete coverage path planning (CCPP) of sub-areas, there are various classic algorithms to
choose from, including area traversal algorithms and search algorithms. Typical area traversal algorithms
include the random coverage method [16], the back-and-forth coverage approach [17], the spiral coverage
strategy [18], the spanning tree covering technique [19], and the cell decomposition coverage scheme [20].
These algorithms ensure complete coverage of the sub-areas through different path-generation strategies.

On the other hand, search algorithms also play an important role in path planning. Depth-first
search [21] and breadth-first search [22] are two fundamental search methods, with the former prioritizing
deep exploration of paths and the latter expanding the search layer by layer. The A* algorithm [23] enhances
search efficiency by incorporating heuristic information. The artificial potential field method [24] guides the
path by simulating the attraction and repulsion forces of a physical field. The genetic algorithm [25] optimizes
paths by mimicking biological behaviors in nature. The bio-inspired neural network algorithm [26] leverages
the learning capabilities of neural networks and biologically inspired mechanisms to solve path-planning
problems. Considering the advantages and limitations of these algorithms within the context of our specific
environment—a static, obstacle-free grid map requiring complete coverage, this paper employs a hybrid
strategy for sub-area path planning.

In recent years, a single algorithm often cannot meet the complete coverage requirements in complex
environments, so path planning increasingly employs a strategy of combining multiple algorithms. The
advantage of this combined algorithm approach lies in its ability to integrate the strengths of various algo-
rithms and address the shortcomings of any single algorithm. Zhao and Bai [27] develop a joint-optimized
framework for USV-assisted offshore bathymetric mapping, emphasizing integrated path optimization
within a single complex region. In the same year, they further examine energy-efficient coverage path plan-
ning for USV-assisted inland bathymetry under current effects, analyzing how sweep direction influences
energy consumption [28].

While most research has concentrated on Multi-USV coordination within a single area, relatively little
attention has been paid to task allocation and path planning across multiple areas. Multi-area operations
introduce additional complexity, such as balancing resource distribution among areas and ensuring overall
operational efficiency. This study aims to address these challenges by optimizing task allocation and
path planning for Multi-USV across multiple areas, thereby reducing resource waste and improving task
execution efficiency.

The main contribution of this paper is the proposal of a Multi-USV multi-area complete coverage task
planning framework that combines an ILP-based task allocation model with search-based path planning.
The ILP model is used to minimize the overall makespan and determine the optimal task area for each USV.
We also apply the greedy algorithm and the A* algorithm to achieve complete coverage of the barrier-free
area and obtain the driving path of each USV. Simulation results show that the proposed method improves
coverage efficiency and resource utilization, demonstrating strong robustness and scalability.

This paper breaks down the Multi-USV multi-area complete coverage task into three aspects for
research: environment model establishment, task area division, and sub-area coverage. First, the latitude
and longitude points of each area are converted into a Cartesian coordinate system to establish a grid map.

4 Comput Mater Contin. 2026;87(1):44

Second, an ILP mathematical model is used to solve the task area for each vessel. Third, a search-based
complete coverage algorithm is employed for sub-area traversal. Finally, simulation experiments and analysis
results are presented.

The rest of the paper is organized as follows. Section 2 outlines the main methodology used in the
implementation. In Section 3, we conduct experiments using specific case studies to demonstrate the
effectiveness of our approach. Section 4 provides a comparative analysis with state-of-the-art algorithms to
further validate the performance of the proposed method. Finally, we conclude the paper in Section 5.

2 Path Planning for Multiple Unmanned Surface Vessels
In this study, a static, obstacle-free environment within the task areas is assumed to simplify the

modeling and planning process. This assumption is reasonable for scenarios such as open-water surveys,
where the operational area is clear of dynamic or unpredictable obstacles. Although the assumption may
not cover all real-world situations, it provides a basis for developing and validating effective Multi-USV path
planning strategies under controlled conditions.

2.1 Environmental Modeling
Environmental modeling involves creating mathematical or computer models to describe the spatial

characteristics and obstacle distribution of the environment in which the USVs operate, thus providing the
necessary information support for path planning. These models can help USVs understand and analyze the
environment, determine feasible paths, and avoid collision risks. In USV path planning, commonly used
environmental maps include grid maps, topological maps, and geometric maps.

A grid map is a commonly used method for environmental modeling and path planning. It divides
the environment into regular grid cells, with each cell representing a small area of the environment and a
specific value indicating the state of that area, such as passable, impassable, or unknown. Due to its simplicity,
intuitiveness, and ease of updating, a grid map is highly suitable for USV path planning. Grid maps can
effectively represent obstacles and free areas in the environment, supporting various efficient path-planning
algorithms, and enabling USVs to find safe and feasible paths in complex environments.

The latitude and longitude coordinates of the task area boundaries are transformed into a Cartesian
coordinate system. The grid is generated based on the USV’s scanning width and observation range, ensuring
sufficient resolution to accurately model the environment while maintaining computational efficiency. Even
in the absence of obstacles, the boundaries are expanded, and grid cells outside the task area are marked as
obstacles to enhance the safety and robustness of path planning.

2.2 Task Allocation
In Multi-USV path planning, task allocation is a critical issue that aims to effectively utilize the resources

and capabilities of each vessel to optimize the overall efficiency of task completion. The task allocation
method based on ILP can find the optimal task allocation plan by solving a linear objective function under
a set of linear constraints.

The set of USVs is denoted by U = {u1 , u2, . . . , un}, and the set of task areas is denoted by
A = {a0, a1 , . . . , am}, where a0 represents the assembly area. The goal is to ensure that every point within
each area is visited by a USV exactly once. To solve the problem of n USVs completely covering m areas, this
paper proposes the task allocation algorithm based on ILP.

Comput Mater Contin. 2026;87(1):44 5

Mathematical Model
Let T be the makespan in seconds. By minimizing the makespan, the optimal solution for task allocation

can be obtained. The objective function is as follows:

Minimize T (1)

Let ti be the total task time of the i-th USV in seconds. For each USV, its total task time should be
smaller than the makespan, i.e.,

ti ≤ T ,∀i ∈ {1, 2, . . . , n} (2)

Let si j represent the scanned area in square meters of the j-th task area detected by the i-th USV. For
each USV, the assembly area does not require scanning, meaning the scanned area for the assembly area is
zero, leading to

si0 = 0,∀i ∈ {1, 2, . . . , n} (3)

Let S j be the total area of the j-th task area, and Xi j ∈ {0, 1} indicates whether the i-th USV needs to
scan the j-th task area. Specially, Xi j = 0 represents that USV ui does not detect area a j, and Xi j = 1 indicates
ui detects a j. To ensure that the area scanned by each USV in each task area does not exceed the actual area
of the task, we have

si j ≤ S j ⋅ Xi j ,∀i ∈ {1, 2, . . . , n}, j ∈ {0, 1, . . . , m} (4)

To ensure that the total scanned area by all USVs exactly covers the entire area of each task, the sum of
the assigned scan areas for the USVs in the area of each task should equal the total area of the task. Formally,
we have

n
∑
i=1

si j = S j ,∀ j ∈ {0, 1, . . . , m} (5)

A USV ui has two attributes: wi and vi , where wi and vi represent the scanning width and speed of
ui , respectively. Let Zi k p ∈ {0, 1} indicate whether the i-th USV travels through the path from the k-th area
to the p-th area, where i ∈ {1, 2, . . . , n}, k ∈ {0, 1, . . . , m}, and p ∈ {0, 1, . . . , m}. Specifically, Zi k p = 0 means
that the i-th USV does not travel through the path from the k-th area to the p-th area, while Zi k p = 1 stands
for the i-th USV does. Lk p denotes the length of the path from the k-th area to the p-th area, measured in
meters. To minimize the extra time spent in transit, this paper adopts the shortest path between task areas.
The total task time for each USV, including the time spent scanning the assigned task area and the time spent
traveling to and from the task area, is given

∑m
j=0 si j

wi ⋅ vi
+

m
∑
k=0

m
∑

p=0, p≠k

Zi k pLk p

vi
= ti ,∀i ∈ {1, 2, . . . , n} (6)

Additionally, each USV starts from the assembly area, i.e.,

Xi0 = 1,∀i ∈ {1, 2, . . . , n} (7)

6 Comput Mater Contin. 2026;87(1):44

We need to add a condition: for any USV, if it detects a certain area, there must be one path entering
and one path exiting that area, represented by

Xi j =
m
∑

p=0, p≠ j
Zi j p =

m
∑

k=0,k≠ j
Zi k j ,∀i ∈ {1, 2, . . . , n}, j ∈ {0, 1, . . . , m} (8)

For any USV, the constraint that only one path from area ak to area ap or from area ap to area ak can
be selected, either by passing through or not passing through, can be expressed by

Zi k p + Zi pk ≤ 1,∀i ∈ {1, 2, . . . , n}, k, p ∈ {1, 2, . . . , m}, k ≠ p (9)

The flow balance constraints ensure that the number of inflows and outflows for each area is balanced,
maintaining the strong connectivity of the task assignment graph. Specifically, these constraints guarantee
that every sub-area assigned to a USV is both reachable and connected to other sub-areas within its task
region, ensuring continuous and feasible task execution. Let fi k p represent the flow of the i-th USV moving
from area ak to area ap. For all USVs, the flow along a path only exists when a valid path exists from area ak
to area ap; otherwise, the flow is zero. This can be enforced by constraining fi k p to be less than or equal to a
sufficiently large constant M multiplied by Zi k p, which is defined as

fi k p ≤ M ⋅ Zi k p ,∀i ∈ {1, 2, . . . , n}, k, p ∈ {0, 1, . . . , m}, k ≠ p (10)

The sum of the flow of each USV departing from the assembly area must equal the total number of paths
between the task areas assigned to that vessel, resulting in
m
∑
p=1

fi0p =
m
∑
k=0

m
∑

p=0, p≠k
Zi k p ,∀i ∈ {1, 2, . . . , n} (11)

To ensure that each USV returns to the assembly area after completing its task, the sum of the flow
returning to the assembly area must equal one, which can be written as
m
∑
k=1

fi k0 = 1,∀i ∈ {1, 2, . . . , n} (12)

Finally, to ensure the conservation of flow, if a USV is assigned to task area a j, there is a flow loss of one
when entering and leaving that task area. If the vessel is not assigned to task area a j, no flow can enter or exit
that area. As a result, we have

m
∑
k=0

fi k j −
m
∑
p=0

fi j p = Xi j ,∀i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , m} (13)

By combining Eqs. (1)–(13), we obtain an ILP, namely Task Allocation Problem (TAP), as follows:
The objective function is:

Minimize T
subject to:

ti ≤ T ,∀i ∈ {1, 2, . . . , n}
si0 = 0,∀i ∈ {1, 2, . . . , n}

Comput Mater Contin. 2026;87(1):44 7

si j ≤ S j ⋅ Xi j ,∀i ∈ {1, 2, . . . , n}, j ∈ {0, 1, . . . , m}
n
∑
i=1

si j = S j ,∀ j ∈ {0, 1, . . . , m}

∑m
j=0 si j

wi ⋅ vi
+

m
∑
k=0

m
∑

p=0, p≠k

Zi k pLk p

vi
= ti ,∀i ∈ {1, 2, . . . , n}

Xi0 = 1,∀i ∈ {1, 2, . . . , n}

Xi j =
m
∑

p=0, p≠ j
Zi j p =

m
∑

k=0,k≠ j
Zi k j ,∀i ∈ {1, 2, . . . , n}, j ∈ {0, 1, . . . , m}

Zi k p + Zi pk ≤ 1,∀i ∈ {1, 2, . . . , n}, k, p ∈ {1, 2, . . . , m}, k ≠ p
fi k p ≤ M ⋅ Zi k p ,∀i ∈ {1, 2, . . . , n}, k, p ∈ {0, 1, . . . , m}, k ≠ p
m
∑
p=1

fi0p =
m
∑
k=0

m
∑

p=0, p≠k
Zi k p ,∀i ∈ {1, 2, . . . , n}

m
∑
k=1

fi k0 = 1,∀i ∈ {1, 2, . . . , n}

m
∑
k=0

fi k j −
m
∑
p=0

fi j p = Xi j ,∀i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , m}

ti , T , si j , S j , wi , vi , Lk p , fi k p ≥ 0
Xi j , Zi k p ∈ {0, 1}

Solving TAP yields the makespan for all USVs to complete coverage and return to the assembly area. It
also determines the task areas assigned to each USV and the corresponding paths, providing an approximate
estimate of task completion time. Note that this makespan constitutes an idealized estimate, as it does
not account for factors such as USV turning within scanning areas or unpredictable environmental effects
on speed.

For the ILP task allocation, the model contains nm2 binary variables and flow constraints, where n is the
number of USVs and m is the number of task areas. An ILP problem with binary variables is NP-hard, and
the worst-case time complexity is exponential in the number of variables. However, in practice, for small- to
medium-scale problems, commercial solvers like CPLEX can often find optimal solutions within seconds.

The ILP-based task allocation guarantees a globally optimal solution concerning the objective of
minimizing the makespan, as it solves a deterministic optimization model with exact constraints. Thus, the
assignment of USVs to task areas is optimal under the given assumptions and model formulation.

2.3 Path Planning
This paper employs a hybrid path planning approach for sub-area coverage, integrating the greedy

algorithm with the A* algorithm. The input consists of a grid-based two-dimensional matrix representing
each task area and the corresponding starting points. The greedy algorithm is employed for rapid local path
decision-making, enabling efficient coverage of the area by continuously selecting the current optimal path.
When a deadlock area is encountered or direct movement is obstructed, the A* algorithm is utilized to
find the shortest path to continue the coverage process, ensuring obstacle avoidance and maintaining route
continuity. This process is repeated until all task areas are fully covered. Finally, the output is a sequence of

8 Comput Mater Contin. 2026;87(1):44

coordinate points forming the complete coverage path, which is subsequently plotted as a path map. The
flowchart of the CCPP algorithm based on the greedy algorithm and A* algorithm is shown in Fig. 1.

Figure 1: Process of CCPP

Greedy Complete Coverage Path Algorithm
The greedy algorithm is used for traversing a two-dimensional grid to cover all feasible areas. The

algorithm starts from the initial point and moves according to a fixed priority order (usually left, down, up,
right), marking the visited points to ensure that each feasible area is covered once. Its core idea is to select
the locally optimal solution at each step to achieve the overall coverage objective. The specific steps of the
algorithm are shown in Algorithm 1.

Algorithm 1: Greedy complete coverage path algorithm
Input: mapp
start_position
Output: route
open_list ← ∅
current_pos← start_position
num0← countFreeCells(mapp)
while ∣open_l ist∣ < num0 do

(Continued)

Comput Mater Contin. 2026;87(1):44 9

Algorithm 1 (continued)
Mark current_pos as visited; add to open_list;
Append current_pos to route;
if free unvisited neighbors exist then

Move to the next unvisited neighbor;
else

target_pos← findNearestFreeUnvisited(mapp, open_list);
Astar_list ← Astar(current_pos, target_pos);
Append Astar_list to route;
current_pos← target_pos;

route← cleanRoute(route)
return route

Algorithm 1 takes two main parameters: the 2D grid map mapp and the starting position
start_position. The starting position serves as the initial point of the path planning, and the map provides
the layout of the environment. The output of the algorithm is a path route, listing all visited coordinates
in order.

First, the algorithm initializes an empty list open_l ist to record the visited cells. The current position is
set as the starting position, and the function countFreeCel l s(mapp) is used to calculate the total number of
free cells in the map, denoted as num0. This value determines whether the complete coverage path planning
has been accomplished.

The core of the path planning process is carried out in a loop. The algorithm checks whether all the free
cells have been visited. In each iteration, the current position current_pos is marked as visited, added to the
open_l ist, and the position is appended to the final path route. If unvisited neighbors exist, the algorithm
moves to the nearest one. Otherwise, it invokes the A* algorithm, to find the nearest unvisited cell by using
the function f indNearestFreeUnvisited(mapp, open_l ist) and computing the shortest path Astar_l ist
to it. The resulting path is appended to route, and current_pos is updated accordingly.

Once all the free cells have been visited and the path planning is complete, the algorithm cleans up the
final path by calling the function cl eanRoute(route), which removes duplicate coordinates in the path to
ensure that the returned path is concise and without redundancy. Finally, the algorithm returns the complete
path route, which contains the sequence of coordinates visited by the USV starting from the initial position
and covering all free cells in the map.

Several hyperparameters are involved in the proposed search-based path planning algorithm. The
heuristic coefficient in the A* algorithm controls the balance between search optimality and computational
efficiency, where a larger coefficient accelerates convergence but may slightly increase path length. In
addition, the choice of the search direction order in the greedy coverage strategy influences the traversal
sequence, while the use of Euclidean distance for deadlock escape point selection helps generate smoother
and shorter recovery paths. These parameters are empirically determined to ensure stable and efficient
coverage performance.

In summary, the greedy algorithm ensures efficient path planning by selecting the nearest unvisited
neighbor cell, while the A* algorithm guarantees the shortest path when direct movement is not possible.
To address the potential issue of local optimality or deadlock in greedy-based planning, the algorithm
introduces the A* algorithm as a fallback strategy. When the greedy algorithm cannot proceed due to the
absence of unvisited neighbors, the planner switches to A* to find the shortest path to the nearest unvisited
cell. This not only helps escape from local traps but also prevents infinite loops during the coverage process.

10 Comput Mater Contin. 2026;87(1):44

Moreover, a loop condition based on the number of visited free cells is used to ensure proper termination
once full coverage is achieved, thereby avoiding unnecessary iterations. The main goal is to enable the USV
to traverse all free cells in the map using a concise and efficient path while minimizing repeated visits.

Currently, the ILP-based task allocation and the search-based path planning are implemented
sequentially but independently. While this modular design simplifies implementation and allows separate
optimization, it may limit the potential to achieve a globally optimal solution across both task assignment
and coverage execution. Future work will explore integrated task-path planning approaches that incorporate
estimated path costs into the allocation model to improve global optimality.

The time complexity of the greedy planner is O(k), where k is the number of free cells. When deadlock
occurs, the A* algorithm is invoked, which has a worst-case complexity of O(g2 log g), where g × g is the
local grid size. Since A* is only used intermittently during deadlock escape, i.e., when the greedy search is
blocked and A* is invoked to find a bypass path to continue coverage, the overall runtime remains efficient
in practice.

It should be noted that the sub-area path planning is heuristic. While A* guarantees the shortest
path to the next reachable point when invoked, the greedy algorithm makes locally optimal decisions
that may not lead to a globally optimal path. As a result, the method prioritizes practical efficiency over
theoretical path optimality. In future research, the global path optimization techniques such as reinforcement
learning or genetic algorithms will be explored to improve convergence toward near-optimal solutions in
complex environments.

3 Experimental Results
To verify the effectiveness of the task allocation based on ILP, a simulation experiment for Multi-USV

and multi-area path planning was conducted using Python. In the context of an ocean survey mission, three
USVs with different capabilities were selected to perform cooperative mapping in designated task areas.
USV 1 has a maximum speed of 4 knots with a scanning width of 20 m, USV 2 has a maximum speed of 6
knots with a scanning width of 20 m, and USV 3 has a maximum speed of 6 knots with a scanning width of
30 m. The selected USV parameters are based on practical specifications, referencing the SE40 USV
commonly used in survey and monitoring operations.

Four irregularly shaped areas were randomly selected within a sea region as the assembly and task areas.
The geographic coordinates of all vertices are based on real-world latitude and longitude data, resulting in
realistic area sizes and inter-area distances. This approach ensures diversity in area shapes and enhances the
robustness of the experimental setup. The survey areas are shown in Fig. 2. In Fig. 2, the assembly area is
marked in red, and the task areas are marked in green. The task areas, in order of increasing distance from
the assembly area, are Task Area 1, Task Area 2, and Task Area 3. The numbers in the image represent the
vertex numbers of each area.

The USVs need to start from the assembly area, autonomously navigate to their respective task areas for
complete coverage scanning, and return to the assembly area upon completing their tasks.

Based on the latitude and longitude information of the regions, the grid sizes are set to 20 meters and
30 m, respectively, and the three task areas are mapped into grid maps. As shown in Fig. 3, the left map has
a grid size of 20 m, while the right map has a grid size of 30 m. By selecting different grid sizes, the resulting
grid maps exhibit noticeable differences.

Comput Mater Contin. 2026;87(1):44 11

Figure 2: Task area map

Figure 3: Grid map

Based on the data in the case, the following parameters are set: n = 3, m = 3, S1 = 13,058, S2 = 30,517,
and S3 = 154,934. Define ui as a tuple ui = (vi , wi), we have u1 = (2.0576, 20), u2 = (3.0864, 20), and
u3 = (3.0864, 30).

Select Point 2 in the assembly area, which is closest to the task areas from the assembly
area, as the starting point for the USVs. Calculate the shortest distance between each region. Then,
we have L01 = 159, L02 = 434, L03 = 855, L10 = 159, L12 = 283, L13 = 699, L20 = 434, L21 = 283, L23 = 427, L30 =
855, L31 = 699,and L32 = 427. Table 1 lists all the parameters of this case.

12 Comput Mater Contin. 2026;87(1):44

Table 1: Problem parameters

Parameter Value Parameter Value
n 3 m 3
S1 13,058 S2 30,517
S3 154,934 u1 (2.0576, 20)
u2 (3.0864, 20) u3 (3.0864, 30)
L01 159 L02 434
L03 855 L10 159
L12 283 L13 699
L20 434 L21 283
L23 427 L30 855
L31 699 L32 427

By the mathematical model provided earlier, the specific data was substituted, and the problem was
solved using CPLEX. By solving the ILP, an optimal solution is obtained, with T = 1558.02, t1 = 1484.62, and
t2 = t3 = 1558.02. Task allocation resulted in USV 1 being assigned to Task Areas 1 and 2. The task area for
Task Area 1 is 13,058 square meters, and for Task Area 2, it is 30,517 square meters. Vessels 2 and 3 only
went to Task Area 3, with task areas of 61,973.6 square meters and 92,960.4 square meters, respectively. Fig. 4
visualizes the execution process of the optimal task allocation, clearly distinguishing sailing and scanning
periods for each USV.

Figure 4: USV mission timeline

Table 2 provides a comparison of the task allocation results for this case using ILP against three other
allocation methods. Method 2 involves assigning each vessel to complete a specific task area: USV 1 is assigned
to Task Area 1, USV 2 to Task Area 2, and USV 3 to Task Area 3. Method 3 calculates the area for each
vessel after equally dividing the total task area among the three vessels, and then assigns tasks based on
each vessel’s capability. Method 4 has all three vessels simultaneously complete the three task areas, meaning
each vessel covers an equal portion of each task area. By comparing the makespan, it is evident that the task
allocation method based on ILP results in the shortest makespan, significantly improving task efficiency.
This improvement can be attributed to the ILP model’s capability of finding globally optimal solutions under
deterministic constraints. The incorporation of flow balance constraints ensures strong connectivity between
assigned sub-areas and equitable workload distribution among USVs. Quantitatively, the ILP method yields

Comput Mater Contin. 2026;87(1):44 13

lower total execution time and a more balanced distribution of sub-areas, which enhances mapping efficiency
and demonstrates the effectiveness of the proposed allocation model.

Table 2: Comparison of four task allocation methods

Methods Total task time
taken by USV 1

Total task time
taken by USV 2

Total task time
taken by USV 3 Makespan

(1) Task allocation based
on ILP 1484.62 1558.02 1558.02 1558.02

(2) One vessel completes
one task area 471.86 775.61 2227.34 2227.34

(3) Divide the total task
area equally 2439.00 1626.00 1273.22 2439.00

(4) Divide each task area
equally 2445.80 1630.54 1273.22 2445.80

Finally, the greedy algorithm and A* algorithm are used for path planning in sub-areas, with each USV
completing its assigned sub-task area. Fig. 5 shows the sub-area path planning under the task allocation based
on ILP. In the figures, white areas represent reachable regions, black areas represent unreachable regions, blue
lines indicate the path routes, and red dashed lines represent the routes taken to escape the deadlock areas.

Figure 5: Sub-area path planning map. (a) The path planning for USV 1 covering Task Area 1; (b) The path planning
for USV 1 covering Task Area 2; (c) The path planning for USV 2 covering Task Area 3; (d) The path planning for USV
3 covering Task Area 3

14 Comput Mater Contin. 2026;87(1):44

To comprehensively analyze the influence of various parameters on the solving time of the ILP-based
task allocation model, a series of experiments is conducted by varying one parameter at a time while keeping
the others constant. The considered parameters include the number of task areas m, the number of USVs
n, the area of each task region S, the USV speed v, the scanning width w, and the distance between task
areas L. All experiments run on a Windows 10 system with an Intel64 processor (16 physical cores, 22 logical
threads), 15.46 GB of RAM, and Python 3.11.9. The ILP model is solved using IBM ILOG CPLEX through
the Python docplex library (version 2.29.241).

As summarized in Table 3, the number of task areas has the greatest impact on solving time. As m
increases, the number of binary variables and constraints in the ILP model grows rapidly, leading to a sharp
increase in computational complexity. For instance, when m reaches 21, the solving time surges to over 18 s,
accompanied by a memory usage of 75.76 MB.

Table 3: Solving time and memory usage for different parameters

m n S v w L Solving
time (s)

Memory
usage (MB)

3 3 10,000 2.0576 20 100 0.32 38.08
5 3 10,000 2.0576 20 100 0.46 43.26
10 3 10,000 2.0576 20 100 0.19 37.98
15 3 10,000 2.0576 20 100 2.25 56.51
20 3 10,000 2.0576 20 100 1.75 51.34
21 3 10,000 2.0576 20 100 18.23 75.76

3 3 10,000 2.0576 20 100 0.32 38.08
3 5 10,000 2.0576 20 100 0.20 40.52
3 10 10,000 2.0576 20 100 0.15 40.72
3 20 10,000 2.0576 20 100 0.17 43.50

3 3 10,000 2.0576 20 100 0.32 38.08
3 3 20,000 2.0576 20 100 0.20 39.12
3 3 50,000 2.0576 20 100 0.33 39.34
3 3 1,00,000 2.0576 20 100 0.16 38.85

3 3 10,000 2.0576 20 100 0.32 38.08
3 3 10,000 3.0864 20 100 0.24 38.88
3 3 10,000 4.1152 20 100 0.19 38.27
3 3 10,000 5.1440 20 100 0.23 37.90

3 3 10,000 2.0576 20 100 0.32 38.08
3 3 10,000 2.0576 30 100 0.29 38.48
3 3 10,000 2.0576 40 100 0.26 38.00

3 3 10,000 2.0576 20 100 0.32 38.08
3 3 10,000 2.0576 20 200 0.19 38.27
3 3 10,000 2.0576 20 500 0.19 38.12
3 3 10,000 2.0576 20 1000 0.25 38.13

Comput Mater Contin. 2026;87(1):44 15

In contrast, increasing the number of USVs does not lead to a monotonic rise in solving time. Adding
more USVs initially reduces solving time due to increased flexibility in task allocation, which allows the
solver to find feasible solutions more efficiently. The changes in task area size, USV speed, scanning width,
and inter-area distance have relatively minor effects on solving time and memory usage, as they primarily
affect the cost coefficients rather than the problem scale. These results indicate that while the ILP model
remains efficient for small to moderate problem sizes, solving large-scale instances with many task areas may
require the use of heuristic or approximate methods in future work.

4 Comparison with State-of-the-Art Methods
As shown in Table 2, the proposed ILP-based task allocation algorithm already outperforms the

conventional methods in terms of makespan, demonstrating its effectiveness and efficiency in distributing
tasks among Multi-USV across multiple areas. To further validate the superiority of the ILP-based approach,
this study compares it with three state-of-the-art algorithms: CEO [10], SBO [11], and HSO [12].

The experiments are conducted in different scale environments, and the environment size defined as the
number of USVs n multiplied by the number of task areas m, which are set to 3 × 3, 3 × 5, 3 × 7, and 3 × 9.
The makespan results obtained from these simulations are shown in Table 4.

Table 4: Comparison with CEO, SBO, and HSO

Instance ILP CEO SBO HSO

Makespan Makespan Makespan Makespan
3 × 3 1558.02 1631.52 1632.61 1636.71
3 × 5 1725.86 1841.09 1841.42 1844.95
3 × 7 1900.37 2085.48 2090.98 2095.07
3 × 9 2040.03 2339.60 2399.09 2354.60

In Table 4, it is observed that the ILP-based method consistently achieves the shortest makespan across
all tested scenarios, outperforming the CEO, SBO, and HSO algorithms. This comparison demonstrates the
effectiveness and robustness of the proposed ILP-based task allocation strategy in addressing Multi-USV
scenarios with multiple areas.

The Friedman test is applied to compare the different performances of the four algorithms. The
results are summarized in Table 5. The value of asymptotic significance (Asymptotic. Sig) is lower than
the significance level of 0.05, indicating that a significant difference exists in performance among these
four algorithms.

Table 5: The statistical results of the Friedman test

Test Statistic
N 4

Chi-Square 11.100
df 3

Asymp.Sig 0.011

16 Comput Mater Contin. 2026;87(1):44

The rank distribution of the four algorithms is illustrated in Fig. 6, where a lower mean rank value
indicates better performance. It can be observed that the ILP-based algorithm consistently obtains the lowest
mean rank among all tested cases, confirming its superior capability in minimizing the makespan. The CEO
algorithm ranks second, while the SBO and HSO algorithms show relatively lower performance.

Figure 6: The rank distribution

These results demonstrate that the proposed ILP-based task allocation approach achieves more efficient
and stable performance in multi-area task allocation for Multi-USV cooperation.

5 Conclusion
In this paper, a task allocation algorithm based on ILP is proposed within the context of cooperative

path planning with USVs of varying capabilities across multiple task areas. This algorithm integrates the
capabilities of the USVs and the paths between areas to address the task allocation problem in multi-area
scenarios, thereby meeting the requirement to minimize the makespan. By comparing the makespan of four
different task allocation methods, the efficiency of the ILP-based task allocation is demonstrated. Finally,
based on the results of the ILP-based task allocation algorithm, search-based CCPP is implemented on the
established grid maps to achieve overall planning.

This study aims to provide a foundational framework with potential applications in related fields such as
marine environmental monitoring, search and rescue, maritime surveillance, and hydrographic surveying.
However, the current research is conducted in a static and fully known environment, and does not account
for dynamic obstacles or the endurance limitations of USVs.

Future work will focus on addressing these practical application environments and exploring more
complex scenarios for in-depth research. Specifically, collision avoidance mechanisms based on dynamic
obstacle prediction and real-time path replanning will be integrated into the planning framework to enhance
the operational safety of USVs. Furthermore, uncertainty modeling, such as accounting for weather-induced
latency and communication delays, will be introduced to enhance the robustness of the system in dynamic
marine environments. Additionally, USV endurance constraints will be incorporated into the task allocation

Comput Mater Contin. 2026;87(1):44 17

model to ensure feasible and energy-efficient mission execution. To further improve scalability and solution
quality, we also plan to combine the ILP with heuristic or learning-based methods for efficient task allocation
under larger problem sizes. Moreover, global optimization strategies will be explored to enhance the overall
path planning performance beyond the current local and reactive approaches.

Acknowledgement: Not applicable.

Funding Statement: This work was supported in part by the International Science and Technology Project of
Guangzhou Development District under Grant 2023GH08, in part by the Science and Technology Development Fund,
MSAR, under Grants 0029/2022/AGJ and 0029/2023/RIA1, and in part by the Program of Guangdong under Grant
2023A0505020003.

Author Contributions: Conceptualization: Jianing Wu; methodology: Jianing Wu, Yufeng Chen; validation, Jianing
Wu; writing—original draft preparation: Jianing Wu; writing—review and editing: Jianing Wu, Yufeng Chen, Li Yin,
Huajun He, Panshuan Jin; visualization: Jianing Wu; supervision: Yufeng Chen, Li Yin, Huajun He, Panshuan Jin;
funding acquisition: Yufeng Chen, Li Yin, Huajun He, Panshuan Jin. All authors reviewed the results and approved the
final version of the manuscript.

Availability of Data and Materials: Data available on request from the authors.

Ethics Approval: Not applicable.

Conflicts of Interest: Authors Huajun He and Panshuan Jin were employed by Guangzhou Jiafan Computer Co.,
Ltd. The remaining authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.

Abbreviations
USV Unmanned Surface Vessel
Multi-USV Multiple Unmanned Surface Vessels
ILP Integer Linear Programming
CCPP Complete Coverage Path Planning

References
1. Ma S, Guo W, Song R, Liu Y. Unsupervised learning based coordinated multi-task allocation for unmanned surface

vehicles. Neurocomputing. 2021;420(6):227–45. doi:10.1016/j.neucom.2020.09.031.
2. Liu Y, Song R, Bucknall R, Zhang X. Intelligent multi-task allocation and planning for multiple unmanned surface

vessels (USVs) using self-organising maps and fast marching method. Inf Sci. 2019;496(4):180–97. doi:10.1016/j.
ins.2019.05.029.

3. Xia G, Sun X, Xia X. Multiple task assignment and path planning of a multiple unmanned surface vessels system
based on improved self-organizing mapping and improved genetic algorithm. J Mar Sci Eng. 2021;9(6):556. doi:10.
3390/jmse9060556.

4. Zhou Z, Li M, Hao Y. A novel region-construction method for multi-USV cooperative target allocation in air-ocean
integrated environments. J Mar Sci Eng. 2023;11(7):1369. doi:10.3390/jmse11071369.

5. Xue K, Huang Z, Wang P, Xu Z. An exact algorithm for task allocation of multiple unmanned surface vessels with
minimum task time. J Mar Sci Eng. 2021;9(8):907. doi:10.3390/jmse9080907.

6. Wen J, Liu S, Lin Y. Dynamic navigation and area assignment of multiple USVs based on multi-agent deep
reinforcement learning. Sensors. 2022;22(18):6942. doi:10.3390/s22186942.

7. Lyu C, Dong C, Xiong Q, Chen Y, Weng Q, Chen Z. Pathfinder: deep reinforcement learning-based scheduling
for multi-robot systems in smart factories with mass customization. Comput Mater Contin. 2025;84(2):3371–91.
doi:10.32604/cmc.2025.065153.

https://doi.org/10.1016/j.neucom.2020.09.031
https://doi.org/10.1016/j.ins.2019.05.029
https://doi.org/10.1016/j.ins.2019.05.029
https://doi.org/10.3390/jmse9060556
https://doi.org/10.3390/jmse9060556
https://doi.org/10.3390/jmse11071369
https://doi.org/10.3390/jmse9080907
https://doi.org/10.3390/s22186942
https://doi.org/10.32604/cmc.2025.065153

18 Comput Mater Contin. 2026;87(1):44

8. Aminu J, Latip R, Hanafi ZM, Kamarudin S, Gabi D. Efficient task allocation for energy and execution time trade-
off in edge computing using multi-objective IPSO. Comput Mater Contin. 2025;84(2):2989–3011. doi:10.32604/
cmc.2025.062451.

9. Shen J, Zhu Z, Bai G, Deng Z, Xue Y, Cao X, et al. Multiple unmanned sailboats cooperative coverage: task allocation
and path planning in island environments. Ocean Eng. 2025;339(4):122172. doi:10.1016/j.oceaneng.2025.122172.

10. Dong Y, Zhang S, Zhang H, Zhou X, Jiang J. Chaotic evolution optimization: a novel metaheuristic algorithm
inspired by chaotic dynamics. Chaos Soliton Fract. 2025;192(1):116049. doi:10.1016/j.chaos.2025.116049.

11. Wang J, Chen Y, Lu C, Heidari AA, Wu Z, Chen H. The status-based optimization: algorithm and comprehensive
performance analysis. Neurocomputing. 2025;647(3):130603. doi:10.1016/j.neucom.2025.130603.

12. Akbari E, Rahimnejad A, Gadsden SA. Holistic swarm optimization: a novel metaphor-less algorithm guided by
whole population information for addressing exploration-exploitation dilemma. Comput Methods Appl Mech
Eng. 2025;445(19):118208. doi:10.1016/j.cma.2025.118208.

13. Lei Y, Liu F, Li A, Su Y, Yang X, Zheng J. An optimal generation scheduling approach based on linear relaxation
and mixed integer programming. IEEE Access. 2020;8:168625–30. doi:10.1109/ACCESS.2020.3023184.

14. Sabol A, Alimo R, Kamangar F, Madani R. Deep Space Network scheduling via mixed-integer linear programming.
IEEE Access. 2021;9:39985–94. doi:10.1109/ACCESS.2021.3064928.

15. Liu L, Fan Q. Resource allocation optimization based on mixed integer linear programming in the multi-cloudlet
environment. IEEE Access. 2018;6:24533–42. doi:10.1109/ACCESS.2018.2830639.

16. Balch T. The case for randomized search. In: Proceedings of Workshop on Sensors and Motion, IEEE International
Conference on Robotics and Automation; 2000 Apr 24–28; San Francisco, CA, USA.

17. Choset H, Pignon P. Coverage path planning: the boustrophedon cellular decomposition. In: Zelinsky A, editor.
Field and service robotics. London, UK: Springer; 1998. p. 203–9. doi:10.1007/978-1-4471-1273-0_32.

18. Shen C, Mao S, Xu B, Wang Z, Zhang X, Yan S, et al. Spiral complete coverage path planning based on conformal slit
mapping in multi-connected domains. Intl J Robotics Res. 2024;43(14):2183–203. doi:10.1177/02783649241251385.

19. Gabriely Y, Rimon E. Spanning-tree based coverage of continuous areas by a mobile robot. In: Proceedings of the
2001 IEEE International Conference on Robotics and Automation (ICRA); 2001 May 21–26; Seoul, Republic of
Korea. p. 1927–33.

20. Choset H. Coverage for robotics—a survey of recent results. Ann Math Artif Intell. 2001;31(1):113–26. doi:10.1023/
A:1016639210559.

21. Doucette A, Lu W. An intelligent robotic system for localization and path planning using depth first search. In:
Proceedings of the International Conference on Artificial Intelligence (ICAI); 2015 Jul 27–30; Las Vegas, NV, USA.
p. 401–2.

22. Tripathy HK, Mishra S, Thakkar HK, Rai D. CARE: a collision-aware mobile robot navigation in grid environment
using improved breadth first search. Comput Electr Eng. 2021;94(1):107327. doi:10.1016/j.compeleceng.2021.107327.

23. Ammar A. ERA*: enhanced relaxed A* algorithm for solving the shortest path problem in regular grid maps. Inf
Sci. 2024;657(10):120000. doi:10.1016/j.ins.2023.120000.

24. Ren C, Fu F, Yin C, Yan Z, Zhang R, Wang Z. Improved artificial potential field method based on robot local path
information. Int J Adv Robot Syst. 2024;21(5):17298806241278172. doi:10.1177/17298806241278172.

25. Yakoubi MA, Laskri MT. The path planning of cleaner robot for coverage region using genetic algorithms. J Innov
Digital Ecosyst. 2016;3(1):37–43. doi:10.1016/j.jides.2016.05.004.

26. Zhu D, Yang SX. Bio-inspired neural network-based optimal path planning for UUVs under the effect of ocean
currents. IEEE Trans Intell Veh. 2022;7(2):231–9. doi:10.1109/TIV.2021.3082151.

27. Zhao L, Bai Y. Joint-optimized coverage path planning framework for USV-assisted offshore bathymetric mapping:
from theory to practice. Knowl Based Syst. 2024;304:112449. doi:10.1016/j.knosys.2024.112449.

28. Zhao L, Bai Y. Energy efficient coverage path planning for USV-assisted inland bathymetry under current effects:
an analysis on sweep direction. Ocean Eng. 2024;305:117910. doi:10.1016/j.oceaneng.2024.117910.

https://doi.org/10.32604/cmc.2025.062451
https://doi.org/10.32604/cmc.2025.062451
https://doi.org/10.1016/j.oceaneng.2025.122172
https://doi.org/10.1016/j.chaos.2025.116049
https://doi.org/10.1016/j.neucom.2025.130603
https://doi.org/10.1016/j.cma.2025.118208
https://doi.org/10.1109/ACCESS.2020.3023184
https://doi.org/10.1109/ACCESS.2021.3064928
https://doi.org/10.1109/ACCESS.2018.2830639
https://doi.org/10.1007/978-1-4471-1273-0_32
https://doi.org/10.1177/02783649241251385
https://doi.org/10.1023/A:1016639210559
https://doi.org/10.1023/A:1016639210559
https://doi.org/10.1016/j.compeleceng.2021.107327
https://doi.org/10.1016/j.ins.2023.120000
https://doi.org/10.1177/17298806241278172
https://doi.org/10.1016/j.jides.2016.05.004
https://doi.org/10.1109/TIV.2021.3082151
https://doi.org/10.1016/j.knosys.2024.112449
https://doi.org/10.1016/j.oceaneng.2024.117910

	Multi-Area Path Planning for Multiple Unmanned Surface Vessels
	1 Introduction
	2 Path Planning for Multiple Unmanned Surface Vessels
	3 Experimental Results
	4 Comparison with State-of-the-Art Methods
	5 Conclusion
	Abbreviations
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

