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ABSTRACT: Automated grading of dandruff severity is a clinically significant but challenging task due to the inherent
ordinal nature of severity levels and the high prevalence of label noise from subjective expert annotations. Standard
classification methods fail to address these dual challenges, limiting their real-world performance. In this paper, a
novel, three-phase training framework is proposed that learns a robust ordinal classifier directly from noisy labels.
The approach synergistically combines a rank-based ordinal regression backbone with a cooperative, semi-supervised
learning strategy to dynamically partition the data into clean and noisy subsets. A hybrid training objective is then
employed, applying a supervised ordinal loss to the clean set. The noisy set is simultaneously trained using a dual-
objective that combines a semi-supervised ordinal loss with a parallel, label-agnostic contrastive loss. This design allows
the model to learn from the entire noisy subset while using contrastive learning to mitigate the risk of error propagation
from potentially corrupt supervision. Extensive experiments on a new, large-scale, multi-site clinical dataset validate our
approach. The method achieves state-of-the-art performance with 80.71% accuracy and a 76.86% Fl-score, significantly
outperforming existing approaches, including a 2.26% improvement over the strongest baseline method. This work
provides not only a robust solution for a practical medical imaging problem but also a generalizable framework for
other tasks plagued by noisy ordinal labels.

KEYWORDS: Dandruff severity grading; ordinal regression; noisy label learning; self-supervised learning; contrastive
learning; medical image analysis

1 Introduction

The application of deep learning and artificial intelligence is rapidly transforming medical image anal-
ysis, offering tools that promise to enhance the speed, objectivity, and accessibility of clinical diagnosis [1].
Within this field, the automated analysis of dermatological conditions via computer vision is a significant and
advancing area of research. Among common afflictions, scalp health issues such as excessive dandruff affect a
large global population. Beyond physical discomfort, these conditions can significantly impact an individual’s
psychological well-being and daily life, while also serving as potential indicators for inflammatory disorders
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like seborrheic dermatitis [2]. Although deep learning has achieved remarkable success in medical imaging,
its application to the fine-grained task of grading dandruft severity from microscope images presents a
unique and challenging set of problems that have not been fully addressed by prior work [3-5].

The primary challenges are rooted in the fundamental nature of the data and its annotation. First,
severity grading is an ordinal classification task. The labels, ranging from “no dandruff” to “severe,’
possess a natural monotonic order. Standard classification methods that treat categories as independent and
nominal ignore this crucial relationship, which can lead to clinically implausible errors, such as penalizing a
misprediction from “severe” to “moderate” equally as one to “none”. Second, collecting large-scale, accurately
labeled medical datasets is notoriously difficult. The visual assessment of dandruft is highly subjective, leading
to significant inter- and intra-rater variability. This issue is exacerbated in scalp analysis, where symptoms
often manifest as subtle, fragmented visual cues. This results in minimal inter-class variance between
adjacent severity levels, making consistent annotation exceptionally difficult even for trained experts [4].
Consequently, any realistic training dataset is inevitably corrupted with substantial label noise, which
severely degrades the generalization performance of deep neural networks that are prone to memorizing
incorrect labels.

This presents a significant dilemma for existing methods. While various approaches have been proposed
to tackle either ordinal regression [6] or learning with noisy labels (LNL) [7] independently, they are
insufficient for this problem. State-of-the-art LNL frameworks are class-agnostic, meaning they ignore the
crucial monotonic order of severity and thus risk producing ordinally inconsistent results. Conversely, most
ordinal regression methods inherently assume that the training labels are accurate and can be severely
compromised by the high degree of annotation noise. This leaves a critical, unaddressed research gap for
a framework that can simultaneously handle both the ordinal constraints and the endemic label noise in a
unified manner.

To bridge this specific gap, our primary objective is to develop a novel framework for dandruft severity
grading that learns robustly from noisy, ordered data. Our approach synergizes a self-supervised strategy for
noisy label handling with an ordinal regression objective. Inspired by semi-supervised learning techniques,
our method dynamically partitions the training data into presumed “clean” and “noisy” sets based on an
ordinally-aware loss metric. For the noisy samples, where labels are deemed unreliable, a dual-objective is
employed. This objective trains the noisy subset using a semi-supervised ordinal loss derived from pseudo-
labels in parallel with a label-agnostic contrastive loss. This design allows the model to leverage the full
dataset while the contrastive component acts as a robust regularizer, mitigating the risk of error propagation
from potentially incorrect pseudo-labels. This entire process is built upon an ordinal regression backbone,
which recasts the multi-class problem into a series of simpler, rank-consistent binary tasks. This ensures the
model’s predictions respect the inherent order of dandruft severity, leading to more reliable and clinically
meaningful results.

In summary, our main contributions are as follows:

o We are the first to propose a deep learning framework that jointly addresses the coupled challenges of
ordinal classification and label noise for automated dandruff severity grading.

«  Weintroduce an ordinally-aware sample partitioning strategy that leverages the rank-based ordinal loss
as its metric. This enables the partitioning process to be sensitive to the magnitude of ordinal errors,
providing a more reliable separation of clean and noisy data than standard class-agnostic approaches.

o A hybrid training objective is proposed, which applies a supervised ordinal loss to the clean set while
simultaneously training the noisy set with both a semi-supervised ordinal loss and a label-agnostic
contrastive loss. This dual-objective design mitigates the risk of error propagation, as the contrastive
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loss provides a robust, label-agnostic learning signal to counteract potential errors introduced by the
pseudo-labels.

o An ordinal regression objective is incorporated throughout the learning process, enforcing the mono-
tonic relationship between severity levels and significantly reducing the frequency of large, clinically
implausible prediction errors.

o  This study is validated through extensive experiments on a new, large-scale, multi-site dandruff severity
grading dataset, demonstrating that the proposed method achieves state-of-the-art performance and
significantly outperforms baseline approaches.

2 Related Works

Our research addresses the automated grading of dandruff severity, a task situated at the intersection
of medical image analysis, ordinal classification, and robust learning under label noise. In this section, we
review the literature from these three perspectives to contextualize our contribution.

2.1 Automated Dandruff Severity Grading

The application of deep learning to scalp analysis has gained significant traction. Early works focused on
general scalp problem classification using CNN-based architectures [8,9] or robust representation learning
in edge-cloud systems [10]. More recent work has shifted focus towards the more nuanced task of grading the
severity of these conditions. Some approaches have repurposed object detection models, inferring severity
from the density of detected problem areas [11,12]. However, this indirect method can be biased by non-scalp
features or fail to capture fine-grained, fragmented symptoms. Consequently, a more direct approach based
on established medical grading standards [13] has become prevalent. Jhong et al. enhanced a CNN with
attention mechanisms [2], while Jin et al. [3] fine-tuned an EfficientNet for fine dandruff classification. Other
works have explored ensemble models for robustness on limited data [5]. Or employed Vision Transformers
(ViT) for grading multiple scalp conditions simultaneously [4]. While these studies demonstrate the potential
of deep learning, they predominantly treat severity grading as a standard classification task. This overlooks
two critical challenges: (1) the labels are ordinal in nature, and standard classification losses fail to capture
this intrinsic order; (2) the labels are inherently noisy due to subjective expert assessment, which can degrade
model performance. Our work explicitly addresses these two challenges in tandem.

2.2 Ordinal Classification

Ordinal classification (or regression) aims to solve tasks where labels possess a natural ranking. A
prominent and modular strategy involves decomposing a K-class ordinal problem into K-1 independent
binary classification sub-problems [14]. This rank-based approach is particularly adept at addressing the
challenge of ambiguous instances, which are samples that fall near the blurred boundaries between adjacent
categories and are a common issue in subjective grading. Foundational deep learning models like MO-
CNN [14] first operationalized this concept by training multiple binary classifiers to distinguish adjacent
ranks. More recent methods, such as CORAL [15], have refined this approach to enforce rank consistency
with greater efliciency. For contrast, other families of methods, such as Distribution Ordering Learning,
seek to model the ordinal relationship by learning the label distribution directly. Techniques in this category
include using soft labels [16]. While effective in certain contexts, these distribution-based methods often rely
heavily on the precise location of the ground-truth label to anchor the distribution. This can make them
potentially more sensitive to the high degree of label noise present in our dataset, where the ground-truth
label itself is often unreliable. Therefore, for our framework, we adopt the rank-based decomposition strategy.
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Its proven effectiveness, modularity, and high compatibility with other learning paradigms make it an ideal
backbone for integrating the noisy label learning methods we leverage.

2.3 Learning with Noisy Labels

To combat the memorization effect of deep networks on incorrect labels, various Learning with Noisy
Labels (LNL) strategies have been proposed. These approaches can be broadly categorized into methods like
Loss Adjustment and Sample Selection. Loss adjustment methods, such as Bootstrapping [17], attempt to
correct the training signal for all samples, for example by using the model’s own predictions as a soft target.
However, these correction-based approaches risk error propagation, especially in high-noise environments;
if the model’s initial predictions are wrong, the corrected label will also be wrong, potentially reinforcing the
error. In contrast, sample selection methods are particularly effective and relevant to our work. They operate
on the principle that models learn from clean examples with small losses before fitting to noisy examples
with large losses. Early methods in this domain, such as Co-teaching [18], utilized multiple networks to
cross-filter clean samples for each other, mitigating confirmation bias. A leading approach, DivideMix [19],
operationalizes this by modeling the per-sample loss distribution with a Gaussian Mixture Model (GMM) to
dynamically separate the dataset into a likely clean set and a noisy set. Instead of discarding the noisy data,
DivideMix reframes the task as a semi-supervised problem, using model predictions as pseudo-labels for the
noisy subset. To further enhance feature learning on this subset without relying on potentially flawed pseudo-
labels, contrastive learning has proven powerful for learning robust representations from the underlying
images alone [20].

While these fields have advanced independently, a framework that synergistically integrates them is
non-trivial and remains a critical gap. Ordinal regression methods typically assume that training labels are
accurate [15,16]. Conversely, state-of-the-art LNL frameworks are class-agnostic [19] and do not enforce
ordinal constraints. For instance, a standard class-agnostic loss metric, as used in many LNL methods,
cannot differentiate minor from major ordinal errors, which is a vital distinction for robustly partitioning the
data. Furthermore, reliance on pseudo-labeling for noisy data, a common LNL strategy, risks propagating
ordinally-inconsistent errors. Our work bridges this gap by proposing the first unified framework built upon
a rank-based ordinal backbone. This framework introduces two key innovations: it uses an ordinally-aware
metric for robust sample partitioning and employs a dual-objective with contrastive learning to mitigate
pseudo-label error propagation.

3 Methodology
3.1 Overall Framework

The task of grading dandruff severity presents dual challenges: the ordinal nature of severity levels
and the prevalence of label noise. To address these, we propose a robust three-phase training framework
that synergizes ordinal regression with a cooperative noisy label learning strategy. Our pipeline, illustrated
in Fig. 1, progressively refines the model’s capability to handle noisy ordinal data. The process begins with
a crucial supervised pre-training phase. Two parallel networks are independently warmed-up on the entire
noisy dataset using an ordinal regression loss. This crucial first step ensures the models develop an initial
understanding of the ranking relationships between severity grades, which is a prerequisite for generating
meaningful loss distributions for sample partitioning. Leveraging these pre-trained models, the framework
then proceeds to a cooperative sample partitioning phase. At the start of each subsequent epoch, the two
networks use each other’s per-sample loss distributions to dynamically divide the dataset into a high-
confidence clean subset and a low-confidence noisy subset. This cross-supervision or co-training design is
critical for mitigating the confirmation bias inherent to self-training systems. With the data partitioned,
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the framework enters its main hybrid training phase, which employs a dual-objective learning strategy
tailored to these subsets. A semi-supervised ordinal loss is applied to data generated via MixUp from both
subsets, allowing the model to learn from the entire dataset. Concurrently, a label-agnostic contrastive loss is
applied exclusively to the noisy subset to learn robust, generalizable features without relying on their corrupt
labels. The subsequent sections provide a detailed exposition of each component. The complete procedure is
formalized in Algorithm 1.

Phase 1: Phase 2: Phase 3:
Supervised Pre-training with Ordinal Loss Cooperative Sample Partitioning Hybrid Training with Ordinal and Contrastive Losses
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Figure 1: Overview of our proposed three-phase training framework for robust ordinal classification from noisy labels.
(Phase 1) Supervised Pre-training: Two parallel networks are warmed-up on the full noisy dataset with an ordinal loss to
establish a baseline understanding of the severity ranking. (Phase 2) Cooperative Sample Partitioning: Each network’s
loss distribution is used to partition the data into clean and noisy subsets for its peer, a cross-supervision strategy
that mitigates confirmation bias. (Phase 3) Hybrid Training: A dual-objective strategy is employed. A semi-supervised
ordinal loss is computed on Mixup-augmented data from both subsets, while a contrastive loss learns label-agnostic
features exclusively from the noisy subset. The total loss combines these objectives for a comprehensive training update

dn-x1jAl
'

Cls. layer

Cls. layer

)

(<3

o

£

g

=

~ Nel
S o
£

< B
1
v
dn-x1q

Model 2 Model 2

Algorithm 1: Cooperative hybrid learning framework

Input: Labeled training set D = {(x;, yi)}f.\il, Two deep networks f(+; 61)andf(-;0,), Warm-up epochs
E\arm»> Total epochs Ey,ay, MixUp Beta parameter «, Partition threshold 7, Loss weight A, A,.
Output: Trained network parameters 6y, 6,
fore=1to E,arm do
Train 0, and 0, independently using Supervised Ordinal Loss (Fq. (2)) on all samples in D.
end for
fore=E,am + 1to Ehax do
fork=12do
Calculate /; for all samples in D using network 6.
Fit GMM to the loss distribution.
Calculate posterior probability w; = P(clean|l;) for each sample.
Partition D into Clean set X, (where w; > 1) and Noisy set X,, (where w; < 1).
Refine labels for X using Eq. (3): ?ll =w;-y, +(1-w;)-p,.
end for
fork=1,2do
Let m be the peer network (if k = 1, them m = 2; if k = 2, them m =1).
Use the partition sets x§’"> and x,sm) generated by the peer network.
for each mini-batch B sampled from x™ and x{™ do

(Continued)
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Algorithm 1 (continued)

Generate ensemble pseudo-labels y, for noisy samples by averaging
predictions from 6; and 0,.
Construct training batch combining refined clean samples and pseudo-labeled
noisy samples.
Apply MixUp augmentation to the batch inputs and targets using «.
Calculate Supervised Ordinal Loss L; (Eq. (2)) on the mixed batch.
Calculate Contrastive Loss L, (Eq. (5)) exclusively on noisy samples x,S’”).
Calculate Regularization Loss L, (Eq. (4)) for distribution alignment.
Compute total loss: Lyors; =Ls +AyL, + AL,
Update network parameters 05 via SGD to minimize Lyy;,;.
end for
end for
end for

3.2 Ordinal Regression for Severity Classification

Standard multi-class classification, which typically employs a softmax output with categorical cross-
entropy loss, is suboptimal for severity grading as it treats labels as independent nominal entities. This
approach ignores the critical ordinal relationship between grades (e.g., grade 4 is more severe than grade
2). To formally integrate this structure, we adopt a rank-based methodology inspired by [15]. We reframe
the K-class ordinal problem into K — 1 simpler binary classification tasks. Specifically, a ground-truth label
y€{0,1,...,K—1} is transformed into a binary vector y’ € {0,1}""", where the k-th element indicates
whether the severity grade is greater than rank k:

y'(k):I()’Zk) forke{l,...,K-1} v

To guarantee rank consistency in predictions (e.g., P(y > 4) > P(y > 2)), we constrain the network
such that the final K — 1 output neurons share the weights of the penultimate feature layer but each maintains
an independent bias term. The model is then trained by minimizing the sum of binary cross-entropy (BCE)
losses across all tasks. For a batch of B samples, this supervised loss L, is defined as:

>~

-1

B !
Z BCE (o(g (x;,0) + bk,yi(k)) (2)

i=1 k=1

L=

o | =

where g (x;,0) denotes the feature vector from the penultimate layer, and by is the bias for the
k-th task. Minimizing this objective ensures that the learned biases are monotonically non-increasing
(b1 2 by > -+ > bg_), thereby guaranteeing rank-consistent probability estimates. This ordinal loss serves
as the core objective for the pre-training (Phase 1) and the supervised component of the hybrid training
(Phase 3).

3.3 Self-Supervised Learning via Cooperative Partitioning

A significant challenge in dandruff severity grading is the subtle visual distinction between adjacent
levels, leading to inevitable label noise that can degrade model generalization. To address this, we employ a
robust training strategy inspired by semi-supervised learning [19]. Instead of directly correcting labels, our
approach dynamically partitions the data into a trusted clean set and an untrusted noisy set.
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We posit that for a well-trained network, correctly labeled samples tend to exhibit lower losses than
mislabeled ones. To formalize this, at the beginning of each epoch, we compute the per-sample ordinal loss
for all training data. We then fit a two-component Gaussian Mixture Model (GMM) to the loss distribution to
statistically separate clean and noisy samples. This process yields a posterior probability w; = P(clean|l;) for
each sample x;. To prevent error accumulation from a single model (self-confirmation bias), we implement
a cooperative “co-training” framework. Specifically, the partition derived from Model I's loss distribution is
used to train Model 2, and vice-versa. Samples with w; exceeding a threshold t form the clean set X, while
the remainder form the noisy set X,, for which the original labels are discarded.

For samples in X, we further mitigate potential noise by applying a label refinement mechanism, as
shown in Fig. 2. We compute a “soft” target ¥} by linearly combining the original ground-truth label y; with
the model’'s own prediction p’ (averaged over augmentations):

Vi=wi-yi+(L-w;)-p; (3)

A pair of augmented A —w)-p;

clean data
Ground-truth Refined label
label y; i

Figure 2: The label refinement mechanism for the clean set. A stabilized model prediction pli is obtained by averaging
the outputs from two distinct augmentations of an input image. This prediction is then combined with the ground-

truth label }Ii in a weighted sum, where the weight w; is the sample’s estimated probability of being clean. }Ii adaptively
balances the influence of the original annotation and the model’s own prediction

This mechanism adaptively balances supervision: it trusts the provided label for high-confidence
samples (where w; ~ 1) while relying more on the model’s prediction for ambiguous cases.

3.4 Hybrid Training Strategy

With the data partitioned into a clean set X, (using refined labels ?Ii) and an unlabeled noisy set X,,, we
employ a hybrid training strategy to maximize feature learning. This strategy combines a semi-supervised
ordinal objective with a label-agnostic contrastive objective. First, we generate targets for the noisy subset
X, As illustrated in Fig. 3, we compute a robust ensemble prediction by averaging the outputs of both
co-trained networks, serving as the pseudo-label for samples in X,,. We then apply MixUp augmentation [21]
to construct interpolated training batches combining refined samples from X, and pseudo-labeled samples
from X,,. The supervised ordinal loss L, is minimized on these mixed batches.

To prevent the model from collapsing to a trivial solution (e.g., predicting a single class for all inputs),
we incorporate a regularization term L,. This forces the moving average of the model’s predictions p 4.1 to
align with the prior class distribution of the dataset p,;:

Lr = KL(pgt || pmodel) (4)
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Figure 3: Ensemble pseudo-label generation for the noisy set. The process for generating pseudo-labels for samples in
the noisy set X,,. We leverage the predictions from both co-trained networks (Model 1 and Model 2) to form a robust
ensemble estimate. Specifically, a pair of augmented views of a noisy image is fed through both networks. The resulting
output predictions are averaged to produce a single, high-confidence soft pseudo-label, which is then used as the target
in the semi-supervised learning phase

Concurrently, to extract discriminative features from the noisy data without relying on potentially
erroneous pseudo-labels, we apply a contrastive loss L, exclusively toX,,. We utilize the InfoNCE objective
to maximize the similarity between two augmented views (z;,z}) of the same image while minimizing
similarity with other samples:

sim(z,- z:’)
K

[4

L, =-log )

Nn sim(zi,zh)
Zj:l j#ie K
where sim(-,-) denotes cosine similarity, K is the temperature hyperparameter, and N,, is the batch size of
the noisy subset. The total training objective is a weighted summation:

Ltotal = Ls + )Lu . Lu + Ar . Lr (6)

where A, and A, are balancing hyperparameters.

4 Experiments

In this section, we present a comprehensive empirical evaluation of our proposed framework. We
begin by detailing our newly collected dataset and the evaluation protocol. We then provide a quantitative
comparison against state-of-the-art (SOTA) methods, followed by a thorough ablation study to dissect the
contribution of each core component of our methodology.

4.1 Dataset and Evaluation Metrics

To facilitate this research, we constructed a new, large-scale dataset for dandruff severity grading. The
data was collected in collaboration with Taipei Hospital, Ministry of Health and Welfare and MacroHI Co.,
Ltd. in Taiwan, ensuring a diversity of clinical settings. This study was conducted in strict accordance with
the Declaration of Helsinki and was approved by the Institutional Review Board (IRB) of Taipei Hospital,
Ministry of Health and Welfare (Protocol No. TH-IRB-0022-0021). Using a digital microscope, clinicians
and therapists captured images from eight distinct scalp regions, resulting in varied resolutions (768 x 576,
800 x 600, and 1024 x 768). A team of one dermatologist and three trained scalp therapists annotated a total
of 22,537 images. To ensure a consistent and high-quality standard across this large-scale dataset, a rigorous
adjudication protocol was employed. The trained therapists performed the initial annotations based on the
clinically validated Adherent Scalp Flaking Score (ASFS) standard [13]. The dermatologist then served as the
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final expert adjudicator, reviewing annotations and defining the ground-truth label for each image used in the
study. Each image was assigned to one of six severity levels {0, 2, 4, 6, 8,10} based on the ASFS standard. The
dataset exhibits a natural class imbalance representative of a clinical population: grade 0 (5817 images), grade
2(9062), grade 4 (2966), grade 6 (2085), grade 8 (1893), and grade 10 (714). We randomly partitioned the data,
allocating 18,871 images (~85%) for training and 3666 for testing, ensuring a consistent class distribution
across splits. Fig. 4 shows example images for different severity grades. The creation of this multi-site, expert-
annotated dataset is a key contribution to our work, providing a challenging and realistic benchmark for
this task. Following standard practice, we report overall Accuracy. To provide a more robust assessment
of our imbalanced dataset, we also report macro-averaged Precision, Recall, and F1-Score. The F1-Score is
particularly important as it provides a balanced measure of performance across all six severity classes.

Grade 0 o

Gade 6 Gade8 Grae 10

Figure 4: Representative images from our dandruff severity dataset. The six grades are annotated according to ASFS
standard

4.2 Experiment Settings

All experiments were conducted on an NVIDIA GeForce RTX 4090 GPU using a ResNet-50 backbone.
For our method, the backbone was modified in two ways: the final classification layer was changed to have
5 outputs to suit the ordinal regression task, and a 128-dimensional projection head was added in parallel to
facilitate contrastive learning. For data preprocessing, all input images were resized and randomly cropped
to 224 x 224. Across all experiments, we utilized the Adabelief optimizer with f; = 0.9 and , = 0.999, paired
with a cosine annealing learning rate schedule. The training protocols were set as follows. For baseline and
SOTA comparisons, models were trained for 450 epochs with a batch size of 64 and an initial learning rate
of 1 x10™*. Our proposed method involved a 10-epoch warm-up phase, followed by 250 epochs of hybrid
training with a batch size of 32, an initial learning rate of 1 x 107%, and a weight decay of 1 x 10°. The key
hyperparameters for our framework were set as: GMM partition threshold t = 0.5, contrastive learning
temperature K = 0.05, and regularization loss weight A, = 0.01. The contrastive loss weight A, was linearly
ramped up from 0 to 0.06 over the first 100 epochs to stabilize initial training.

4.3 Comparison with State-of-the-Art Methods

We compare our framework against several SOTA methods, as shown in Table 1. As the literature on
robust ordinal learning for dandruff grading is nascent, we benchmark against high-performing models
from related scalp analysis tasks [2-5,3]. All competing methods were trained on our dataset using the
parameter settings reported in their original papers. As shown in Table 1, our proposed method significantly
outperforms all other approaches across all metrics. Our ResNet-50-based model achieves an Accuracy of
80.71% and an F1-Score of 76.86%. This represents a substantial improvement of 2.26% in accuracy and
1.25% in Fl-score over the next best method, the Triple ensemble model proposed by Kim et al. [5]. Notably,
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our single, principled framework surpasses not only this complex ensemble approach but also advanced
architectures such as the Vision Transformer (ViT-B/16). These results validate that our framework’s core
principles of explicitly modeling ordinal relationships and robustly handling label noise provide a decisive
advantage over methods relying solely on architectural sophistication or ensembling.

Table 1: Performance comparison with SOTA methods

Method Backbone Accuracy Precision Recall F1-Score
Ha et al. [4] ViT-B/16 69.91% 68.66%  65.67% 66.78%
Jin et al. [3] EfficientNet-B0 74.71% 73.39% 70.48% 71.50%

Wang et al. [8] VGG-16 77.85% 75.81% 74.28% 74.81%

Jhongetal. [2]  Enhanced DenseNet-121 78.18% 76.50% 73.67% 75.06%
Kim et al. [5] Triple ensemble model 78.45% 7716% 75.10% 75.61%
This work Resnet-50 80.71% 79.95% 74.80% 76.86%

Note: The bold values indicate the best performance.

4.4 Ablation Studies

To verify the contribution of each component of our framework, we conducted a detailed ablation study.
Starting with a standard supervised ResNet-50 baseline, we incrementally integrated Ordinal Regression
(OR), our Self-Supervised noisy label learning strategy (SSL), and Contrastive Learning (CL). The quan-
titative results are summarized in Table 2. The baseline model achieves a respectable accuracy of 78.23%.
Introducing the OR formulation provides immediate gains, confirming the importance of modeling the
inherent ordinal structure of severity grades. Subsequently, incorporating the SSL strategy with cooperative
partitioning yields the most significant performance leap. As detailed in the per-class Fl-scores, this gain is
largely driven by a substantial improvement in Class 0 (rising from 75.68% to 80.03%), strongly suggesting
that the “no dandruff” category contains considerable label noise which our SSL mechanism successfully
mitigates. Finally, the addition of the CL module provides a further performance boost, achieving the highest
Accuracy (80.71%) and Macro Fl-score (76.86%). To rigorously assess performance on our imbalanced
dataset, we also evaluated the Weighted Fl-score. The proposed method achieves a Weighted F1 of 80.56%,
surpassing the baseline’s 78.18%. This metric confirms that our framework maintains robust classification
capabilities across all severity levels, rather than bias towards majority classes.

Table 2: Ablation study on each component for this study

o - 9 0
Method Per-class Fl-score (%) Overall performance (%) Runtime
igh
0 2 4 6 8 10 Macro F1 Welg . ted Accuracy
Baseline 76.39 82.58 66.67 74.77 80.97 71.76 75.52 78.18% 78.23 0.00264 s
OR SSL CL Proposed method
v/ 75.68 82.60 68.46  75.07 82.45 73.33 76.27 78.45% 78.45 0.00257 s
v 80.47 84.12 65.91 75.61 79.55 70.19 75.97 79.58% 79.60 0.00464 s
\/ \/ 80.03 85.23 67.14 75.36 81.20 71.43 76.73 80.29% 80.36 0.00455 s
\/ \/ \/ 80.28 85.80 67.17 73.78 81.88 72.27 76.86 80.56% 80.71 0.00476 s

To further investigate the sources of these performance gains, we visualized the confusion matrices
for the key ablation stages in Fig. 5. As observed in Fig. 5a, the Baseline model exhibits a dispersed
prediction pattern, with misclassifications frequently spanning across non-adjacent classes (e.g., confus-ing
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Grade 2 with Grade 6). Incorporating the OR module (Fig. 5b) effectively constrains these predic-tions,
resulting in a concentration of values along the diagonal and a significant reduction in large error margins.
Furthermore, Fig. 5¢,d illustrates the distinct contributions of the self-supervised strategies. The standalone
SSL strategy (Fig. 5¢) significantly corrects misclassifications in the noisy Grade 0 class. Subsequently, the
intermediate OR + SSL stage (Fig. 5d) demonstrates how combining these approaches begins to align
noise robustness with rank consistency. Finally, Fig. 5e presents the full Proposed Method (OR + SSL +
CL). By integrating the contrastive learning objective, the model achieves the clearest diagonal structure
with minimal off-axis errors. This visual evidence corroborates that our cooperative hybrid framework
synergistically mitigates label noise while preserving the intrinsic ordinal structure.
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Figure 5: Visual comparison of confusion matrices across different ablation stages. (a) The Baseline model shows
considerable confusion between adjacent severity grades. (b) The addition of OR concentrates predictions along the
diagonal and reduces extreme outliers. (c) The SSL strategy significantly corrects misclassifications in the noisy Grade
0 class. (d) Combining OR + SSL further refines the diagonal structure. (e) The Proposed Method (OR + SSL + CL)

achieves the most distinct diagonal with minimal off-axis misclassifications, demonstrating superior robustness against
label noise

Beyond classification performance, we also addressed the practical requirements for clinical deployment
by evaluating inference speed (Runtime) as reported in Table 2. While our hybrid framework introduces a
marginal increase in computational cost compared to the baseline (0.00476 s vs. 0.00264 s per image) due to
the architectural design, the system remains highly efficient. With an inference speed capable of processing
over 200 frames per second, our method proves to be computationally lightweight and well-suited for real-
time diagnostic applications.

5 Discussion

The experimental results presented in this study substantiate the efficacy of the proposed cooperative
hybrid learning framework in addressing the dual challenges of ordinal severity grading and label noise.
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A critical analysis of the performance metrics reveals that standard deep learning models often fail to
capture the subtle inter-class variations characteristic of dandruff severity, leading to ordinally inconsistent
predictions. By contrast, our method explicitly enforces rank consistency through the ordinal regression
backbone, which significantly reduces clinically implausible errors. This is visually corroborated by the
confusion matrices, where the predictions of our model are densely concentrated along the diagonal. Unlike
the baseline model that exhibits dispersed errors across non-adjacent classes, our approach ensures that even
when misclassification occurs, the predicted grade remains proximal to the ground truth. This characteristic
is vital for clinical decision support systems, as it minimizes the risk of drastic misdiagnosis that could
adversely affect treatment planning.

The ablation studies further highlight the specific contributions of the self-supervised partitioning and
contrastive learning components. A notable finding is the substantial performance gain in identifying Grade
0 samples. In clinical practice, distinguishing between a healthy scalp (Grade 0) and mild dandruff (Grade 2)
is notoriously difficult due to subjective interpretation, resulting in high label noise for these categories. The
proposed cooperative partitioning strategy successfully identified and filtered these ambiguous samples, pre-
venting the model from overfitting to inconsistent annotations. Furthermore, the integration of contrastive
learning on the noisy subset proved essential. By pulling representations of the same image together while
pushing others apart, the model learned robust and discriminative features directly from the visual data
without relying on potentially corrupt labels. This synergy explains why our method outperforms complex
architectures like Vision Transformers, which, despite their capacity, lack specific mechanisms to handle the
ordinal and noisy nature of this specific medical task.

While the proposed framework demonstrates SOTA performance, we acknowledge certain limitations
regarding the dataset demographics and imaging modality. The current study utilized a large-scale dataset
collected from clinical centers in Taiwan, representing a specific ethnic group with predominantly dark hair
and specific scalp characteristics. Consequently, the generalization of the model to other ethnic groups with
different hair textures or scalp pigmentations has not yet been empirically verified. Additionally, the study
focused exclusively on high-resolution digital microscope images. While this modality provides detailed
visual information necessary for fine-grained grading, it limits the immediate applicability of the model
to images captured by standard consumer devices or smartphones without distinct optical attachments.
Future research will aim to address these limitations by incorporating multi-ethnic datasets and exploring
domain adaptation techniques to extend the frameworks applicability across diverse populations and
imaging devices.

6 Conclusions

This study presents a novel cooperative hybrid learning framework designed to overcome the persistent
challenges of label noise and ordinality in automated dandruff severity grading. By synergizing a rank-
consistent ordinal regression backbone with a self-supervised sample partitioning strategy, the proposed
method effectively filters subjective annotation errors while preserving the intrinsic severity ranking. The
incorporation of contrastive learning further enhances feature discrimination on noisy data, ensuring robust
performance even when ground truth labels are unreliable. Extensive empirical validation on a large-
scale clinical dataset confirms that our approach significantly outperforms state-of-the-art methods in both
accuracy and stability. Beyond its theoretical contributions to noisy ordinal learning, this framework holds
substantial practical value for dermatological healthcare. It offers a reliable, automated second opinion
capable of standardizing diagnostic criteria and reducing inter-rater variability among clinicians. Further-
more, the high inference efficiency of the model supports its feasibility for deployment in real-time clinical
decision support systems. To further extend the applicability of this framework, future research will prioritize
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enhancing generalization capabilities by incorporating diverse multi-ethnic datasets and exploring domain
adaptation techniques for smartphone-based image analysis. These advancements will ultimately aim to
broaden the accessibility of professional scalp health diagnostics to a wider global population.
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