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ABSTRACT: The rapid development of information technology and accelerated digitalization have led to an explosive
growth of data across various fields. As a key technology for knowledge representation and sharing, knowledge
graphs play a crucial role by constructing structured networks of relationships among entities. However, data sparsity
and numerous unexplored implicit relations result in the widespread incompleteness of knowledge graphs. In static
knowledge graph completion, most existing methods rely on linear operations or simple interaction mechanisms for
triple encoding, making it difficult to fully capture the deep semantic associations between entities and relations.
Moreover, many methods focus only on the local information of individual triples, ignoring the rich semantic
dependencies embedded in the neighboring nodes of entities within the graph structure, which leads to incomplete
embedding representations. To address these challenges, we propose Two-Stage Mixer Embedding (TSMixerE), a
static knowledge graph completion method based on entity context. In the unit semantic extraction stage, TSMixerE
leverages multi-scale circular convolution to capture local features at multiple granularities, enhancing the flexibility and
robustness of feature interactions. A channel attention mechanism amplifies key channel responses to suppress noise
and irrelevant information, thereby improving the discriminative power and semantic depth of feature representations.
For contextual information fusion, a multi-layer self-attention mechanism enables deep interactions among contextual
cues, effectively integrating local details with global context. Simultaneously, type embeddings clarify the semantic
identities and roles of each component, enhancing the model’s sensitivity and fusion capabilities for diverse information
sources. Furthermore, TSMixerE constructs contextual unit sequences for entities, fully exploring neighborhood
information within the graph structure to model complex semantic dependencies, thus improving the completeness
and generalization of embedding representations.

KEYWORDS: Knowledge graph; knowledge graph complementation; convolutional neural network;
feature interaction; context

1 Introduction
With the rapid advancement of information technology, the volume of data across various domains

has surged, presenting unprecedented challenges in data storage, management, and analysis [1]. Knowledge
Graphs (KGs), which emerged from the fields of Artificial Intelligence and the Semantic Web, have
become a pivotal tool for knowledge management, aiming to enable efficient knowledge representation and
sharing. At their core, KGs extract entities from heterogeneous data sources and interconnect them through
structured relationships, thereby forming a semantic network. For instance, as illustrated in Fig. 1, the triple
(Einstein, married_to, Elsa Einstein) succinctly expresses the fact that “Einstein’s wife is Elsa Einstein.” Static
Knowledge Graphs (SKGs) are constructed under the assumption that entity relationships remain temporally
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invariant, with triples that do not encode temporal information, thereby facilitating systematic knowledge
storage [2]. KGs integrate heterogeneous data from multiple sources, support complex semantic reasoning,
and enable efficient information retrieval. These capabilities lead to their widespread applications in search
engines, recommender systems, intelligent question answering, and beyond. For example, in search engines,
KGs transcend traditional keyword matching by leveraging deep semantic parsing to construct semantic
association networks, thereby enabling precise answer extraction and diverse result recommendations [1,2].

Figure 1: Knowledge graph example

Despite the widespread adoption of KGs, incompleteness remains a pervasive challenge. Missing entity
information and relationships, often resulting from insufficient data collection, limit the effectiveness of
applications of KGs. Moreover, as real-world knowledge evolves dynamically over time, SKGs struggle to
capture such changes, further exacerbating the problem of incompleteness. Data sparsity also leads to weak
connections between entities, hindering the accurate representation of semantic relationships. To address
these issues, knowledge graph completion (KGC) has emerged as a critical research direction. Specifically,
static knowledge graph completion (SKGC) focuses on predicting missing information—such as absent
relationships or entities—based on the existing structures of KGs. In this work, we focus on the entity
prediction task: given a triple with either the head or tail entity missing, i.e., (s, r, ?) or (?, r, o), our objective
is to identify the correct missing entity o or s from the set of all possible entities.

Existing KGC methods predominantly rely on linear operations or simple interaction mechanisms
for triple encoding, representing entities and relations as points in vector space. Such approaches struggle
to capture deep semantic associations between entities and relations, often focusing solely on the local
information within individual triples while overlooking the rich semantic dependencies present in the
neighboring nodes of the graph structure. Moreover, the lack of effective mechanisms for perceiving
and leveraging the graph structure leads to incomplete embedding representations and limits the overall
expressiveness of the model [3]. To address these key challenges, we propose TSMixerE, a SKGC method
based on entity context. TSMixerE is designed to enhance the modeling of deep semantic associations
between entities and relations, and to achieve effective fusion of entity contextual information. The main
innovations of our approach are as follows:

(1) We introduce a Unit Semantic Extraction (USE) module that captures local features at multiple
granularities through Multi-Scale Circular Convolution (MSCC), thereby improving the flexibility and
robustness of feature interactions. In addition, a channel attention mechanism is incorporated to amplify
key channel responses, suppress noise, and enhance both the discriminative power and deep semantic
associations of feature representations.

(2) We design a Context Information Fusion (CIF) module that utilizes multi-layer self-attention to
enable deep interactions among contextual information, integrating local details with global context.
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Furthermore, type embeddings are introduced to clarify the semantic identities and roles of each
component, thereby improving the model’s sensitivity to, and fusion of, diverse information sources.

Extensive experiments demonstrate that TSMixerE achieves strong performance across all evaluation
metrics, fully validating its effectiveness in SKGC tasks.

2 Related Work
Existing KGC techniques primarily focus on the semantic modeling of entities and relations. Early

approaches are largely based on the geometric translation assumption, in which relations are treated as
spatial operations mapping head entities to tail entities, and semantic associations are captured through
vector translations. For instance, TransE [4] embeds entities and relations into a continuous vector space,
interpreting relations as translation vectors between head and tail entities. While TransE excels at modeling
one-to-one relations, it struggles with more complex relational patterns. To overcome this limitation,
TransH [5] models each relation as a translation operation on a relation-specific hyperplane, enabling
entities to have different representations under different relations, thus providing greater flexibility for
complex relations. RotatE [6] further extends this idea by defining relations as rotations in a complex vector
space, capturing diverse relational patterns through rotational operations; however, its ability to model
non-compositional relational paths remains limited. These geometric approaches offer low computational
complexity, strong scalability to large-scale KGs, and clear geometric interpretability. They are effective for
modeling hierarchical relationships and are well-suited for data-sparse scenarios. Nevertheless, they exhibit
weaknesses in handling complex relations, which can lead to semantic collapse. Moreover, they often require
additional constraints for special types of relations and are heavily reliant on the Euclidean space assumption,
which limits their capacity to express nonlinear semantic interactions.

Some studies seek to model the deep associations between entities and relations through implicit
semantic decomposition, employing tensor decomposition techniques to represent KGs as multidimensional
interaction matrices in a latent semantic space. The degree of matching between entity-relation combinations
is then quantified via product operations among latent vectors. For example, RESCAL [7] models KGs as
third-order tensors, decomposing them into products of entity vectors and relation matrices, and utilizes
bilinear interactions to capture higher-order semantic associations among entities. However, the number of
parameters in RESCAL grows linearly with the number of relations, leading to computational bottlenecks.
DistMult [8] simplifies the scoring function by constraining the relation matrix to be diagonal, significantly
reducing parameter size, but the symmetry of its scoring function makes it incapable of distinguishing
asymmetric relations. ComplEx [9] addresses this limitation by introducing complex-valued embeddings,
mapping entities and relations into a complex space to effectively model both symmetric and asymmetric
relations, though its ability to capture multi-hop compositional relations remains limited. TuckER [10]
leverages Tucker decomposition to factorize triples into combinations of a core tensor and entity/relation
embedding matrices, improving parameter efficiency through a multi-task learning mechanism with shared
parameters. These approaches offer flexible modeling of complex relational patterns, a strong capacity for
representing many-to-many semantic interactions, and better mathematical interpretability compared to
geometric translation models. However, they face challenges in scalability and in capturing higher-order
interactions, as computational complexity increases rapidly with the number of relation types. Furthermore,
the implicit decomposition process lacks an intuitive spatial geometric interpretation, which can limit the
transparency and interpretability of the learned representations.

With the continuous development of deep learning theory and applications, neural network-related
technologies have become one of the important technical paths in the field of KGC, greatly enriching the
means of entity and relation modeling. By capturing the nonlinear interaction characteristics of entities and
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relations through deep architectures, researchers have proposed a variety of implementation approaches,
such as graph neural networks, convolutional neural networks, and attention networks. Graph neural
networks convey node features through a neighborhood aggregation mechanism, fusing topological and
attribute information. R-GCN [11] introduces a relation-specific transformation mechanism to address
the challenge of modeling multi-relational structures, assigning independent weight matrices to different
relations, enabling nodes to distinguish semantic paths when aggregating neighbor information, and
retaining node features through self-connections to avoid information loss. CompGCN [12] integrates
the combination operations of entities and relations across KGs into the graph convolutional layer, and
achieves deep coupling of multi-relational information by dynamically and jointly learning the embedded
representations of nodes and relations. The feature extraction capability of convolutional neural networks
is also widely utilized in KGC tasks. ConvE [13] captures higher-order nonlinear interaction features in
local regions through a 2D convolutional kernel. The embeddings of the head entities and relations are
concatenated into a 2D matrix, and convolution is utilized to extract local semantic patterns, achieving rich
feature interactions through multilayer stacking. However, the fixed structure restricts the ability to capture
complex relations. InteractE [14] enhances embedding interaction capability through feature rearrangement,
feature reshaping, and circular convolution strategies, generating multi-view interaction patterns, avoiding
overfitting to fixed structures, and expanding the receptive field via checkerboard concatenation and
circular convolution to improve the diversity of feature interactions and the breadth of semantic coverage.
FMS [15] proposes a context-aware deformable scoring paradigm for semantically sensitive knowledge
graph completion. It explicitly models both local and global context in entity pair representations and
employs conditional flow matching to enable the scoring function to adapt continuously with context,
thereby adjusting the discrimination boundary adaptively. In contrast to static scoring or fixed convolutional
structures, this dynamic approach demonstrates significantly enhanced discriminative power and robustness
in scenarios characterized by complex relational semantics or distribution shifts. With the breakthrough
of the Transformer architecture [16] in natural language processing, related research has migrated this
architecture to KGC tasks. The attention mechanism captures global semantic dependencies by dynamically
assigning interaction weights through self-attention, computing the attention distribution after transforming
triples and graph-domain contexts into sequences. For example, HittER [17] adopts a hierarchical Trans-
former architecture, in which the lower entity Transformer models local interactions, and the upper context
Transformer aggregates multi-hop neighborhood information to construct global semantic representations,
effectively improving the modeling ability for complex relational patterns. PMRCA [18] introduces a pattern-
driven framework centered on multi-source resonance and cognitive adaptation. It utilizes structure-aware
contrastive learning to model multi-source narrative consistency and cluster-based contrastive learning
to achieve cognitive alignment. The model also integrates a Transformer-style context fusion mechanism
to capture long-range dependencies. Although initially designed for information diffusion prediction, its
contrastive learning and context fusion paradigms offer transferable insights for enhancing reasoning with
path-based or neighborhood contexts. Furthermore, lightweight deep networks help balance performance
and real-time efficiency in resource-constrained environments. MobileViT [19], developed for real-time con-
stellation diagram recognition, employs a lightweight architecture that combines the efficient receptive fields
of local convolutions with the global modeling capacity of streamlined self-attention. This design achieves an
effective accuracy-latency trade-off under edge computing constraints. Its efficient hybrid CNN-Transformer
structure provides valuable engineering insights for optimizing the deployment and inference efficiency of
knowledge graph models. These neural network-based techniques enhance the characterization of nonlinear
relationships through their capacity to fit complex functions, greatly enriching the technical landscape of
KGC. However, the extraction of deep semantic associations still needs improvement, and the failure to
effectively integrate the contextual information of entities affects overall completion performance [3].
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3 Entity Context-Based Static Knowledge Graph Completion Method

3.1 Method Overview
To effectively encode individual triple information and integrate contextual information from entity

graph neighborhoods, this paper proposes TSMixerE, a SKGC method based on MSCC and entity context
fusion, as illustrated in Fig. 2. The model consists of two main stages: USE and CIF. The USE module leverages
MSCC and channel attention to extract local features at multiple granularities, producing semantic vectors
denoted as h_unit. These vectors are then passed as input to the CIF module. Within CIF, a self-attention
mechanism dynamically weights the contributions of different contextual units, effectively integrating local
details with global dependencies. This architecture establishes a complementary relationship between the
two stages: USE specializes in fine-grained semantic extraction, while CIF is responsible for global semantic
integration. The USE stage is responsible for extracting semantic information from both the query unit and its
contextual units, while the CIF stage fuses the contextual semantic information obtained by USE to enhance
the overall representation.

···

···

CIF

USE USEUSE

Figure 2: TSMixerE model framework diagram

As shown in Fig. 2, the TSMixerE framework consists of the following four key steps:

(1) constructing a sequence of contextual units for each entity;
(2) performing USE using MSCC and channel attention;
(3) fusing entity context information through self-attention and type embedding;
(4) conducting an auxiliary masked entity prediction task.

The details of each step are described below.

3.2 Construct the Sequence of Context Units of the Entity
First, the scope of the context needs to be explicitly defined. Taking KGs such as the one in Fig. 3 as

examples, for the entity Guangzhou, their graph neighborhoods contain multiple related fact triples, e.g.,
(Guangzhou, Country, China), (Guangzhou, Province, Guangdong), (Guangzhou, Adjacent, Shenzhen), and
(Shenzhen, Adjacent, Guangzhou). In this case, assuming that the query unit is (Guangzhou, China), it can be
instantiated as (Guangzhou, Country, China). Then, the sequence of context units for the entity Guangzhou
corresponding to this query unit can be represented as the set C = {(Guangzhou, Country), (Shenzhen,
Adjacent), (Shenzhen, Adjacent−1), (Guangdong, Province−1)}, where the superscript −1 denotes the inverse
of the relation. Formally, for any query unit Q = (s, r, ?), its sequence of context units corresponding to the
head entity s can be represented as the query unit itself together with the set of fact triples associated with



6 Comput Mater Contin. 2026;87(1):92

the head entity s, as shown in Eq. (1):

C ((s, r, ?)) = {(s, r) , C1 , C2, . . . , Ck} (1)

where (s, r, ?) is a specific query unit, C is the sequence of context units for the head entity s, Ci = (si , ri)
denotes a triple unit associated with the head entity s, and k is the number of context units for the entity.

Figure 3: Example of a graph neighborhood context for an entity Guangzhou

In general, different entities are associated with varying numbers of other entities, resulting in incon-
sistencies in the total number of context units. To address this issue, a fixed number k of context units is
specified for all entities, with the specific value determined by the dataset. Specifically, if an entity has more
than k context units, k units are randomly selected to form the final sequence of context units; conversely, if
there are fewer than k context units, padding is applied to complete the sequence, and corresponding masks
are generated to indicate the padding positions. In addition, during the training phase, the true target entities
can typically be obtained directly from the neighborhoods of entities, whereas this condition is difficult to
satisfy during the testing phase.

To enhance the model’s adaptability to different context combinations, a neighborhood sampling
method analogous to data augmentation is introduced during the training phase: in each iteration, only n
out of the fixed k context units are randomly selected to form the sequence of context units. Meanwhile, to
reduce computational overhead, the input data dimension is transformed from four-dimensional (b, n, 2, d)
to three-dimensional (N , 2, d), where b denotes the batch size, n is the number of context units for each
entity in the batch, 2 corresponds to the embeddings of the head entity and the relation, d is the embedding
vector dimension, and N represents the number of valid units indicated by the mask (including both query
units and valid context units) in the current batch.

3.3 Unit Semantic Extraction
After constructing the contextual unit sequence for entities, it is necessary to extract the deep semantic

associations between entities and relations from each unit in the sequence. To this end, this paper proposes a
USE module based on MSCC and channel attention, as illustrated in Fig. 4. The core of this module employs
a four-branch parallel MSCC architecture with kernel sizes of 3 × 3, 5 × 5, 7 × 7, and 9 × 9. Each convolutional
branch produces 200 feature channels with circular padding. The outputs from all branches are summed
directly along the channel dimension. The resulting feature tensor is then processed by a channel attention
module that generates channel weights through global average pooling, two-layer 1 × 1 convolutions, and a
Sigmoid activation function. The module is developed with InteractE as its core and further extends it, with
its main idea centered on the integration of Feature Permutation (FP), Feature Reshaping (FR), MSCC, and
Channel Attention (CA) mechanisms. These components enable comprehensive feature interactions between
entity and relation embeddings, thereby obtaining complex semantic association representations. The USE
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module is capable of capturing local structural features at multiple scales, enhancing feature interactions,
highlighting key information while reducing noise interference, and mining deep semantic associations
between entities and relations. The multi-scale parallel processing ensures the capture of patterns across
varying granularities. Meanwhile, the channel attention mechanism directs convolutional kernels at different
scales to prioritize learning those patterns that are assigned higher importance by the attention mechanism.
This provides an accurate and fine-grained semantic foundation for subsequent context fusion. The following
section provides a detailed description of each sub-module.

Figure 4: Schematic diagram of the USE module

(1) Feature Rearrangement

The model first obtains the corresponding vectors from the embeddings of entities and relations, and
then performs random shuffling to rearrange the features of these embedding vectors. This operation is
repeated multiple times, as shown in Eq. (2). The purpose of feature rearrangement is to increase the number
of interactions between entities and relations, thereby enriching the feature space.

Pk = [(e1
s , e1

r) ; . . . ; (ek
s , ek

r )] (2)

where es ∈ Rd and er ∈ Rd denote the embedding vectors of the entity and the relation, respectively, and k
represents the number of feature rearrangement operations.

(2) Feature Reshaping

After feature rearrangement, the embeddings of each set of entities and relations are reshaped into a two-
dimensional matrix using checkerboard feature reshaping. Specifically, the embedding features of entities
and relations are alternately arranged on odd rows, while the embedding features of relations and entities are
alternately arranged on even rows, as shown in Eq. (3):

hchk = ϕchk (es , er) (3)

where es ∈ Rd and er ∈ Rd are the embedding vectors of entities and relations, respectively, and ϕchk (⋅)
denotes the checkerboard feature reshaping operation. The output hchx ∈ R1×2w×h is the reshaped two-
dimensional matrix, where 2w and h are the width and height of the matrix, and d = w × h.

The checkerboard feature reshaping ensures that the features surrounding each entity and relation can
form heterogeneous interactions with themselves, dispersing homogeneous features as much as possible
while maximizing the interactions between heterogeneous features. This provides richer input information
for subsequent convolutional operations.
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(3) Multi-Scale Circular Convolution

As illustrated in Fig. 5, the schematic diagram shows that each branch processes inputs using a specific
convolution kernel size (3 × 3, 5 × 5, 7 × 7, or 9 × 9) with circular padding. Each independent convolution
operation is configured with 200 output filters, producing 200 feature channels. The outputs of these four
branches are summed along the channel dimension to form the final output of this submodule. The MSCC
module extracts features in parallel using convolution kernels of different sizes and incorporates a circular
padding mechanism to ensure that features at the edges can also participate in the convolution operation,
thereby avoiding information loss caused by boundary truncation. The computation process is shown
in Eq. (4):

hmscc = ∑i∈{3,5,7,9} (hchx ∗ ωi×i) (4)

where hchx ∈ R1×2w×h is the output of the checkerboard feature reshaping, hmscc ∈ Rinum_ f i l t×2w×h is the
output of the MSCC module, and inum_ f i l t is the number of output channels. ωi×i denotes the i × i
convolution kernel, and ∗ represents the circular convolution operation.

Figure 5: Schematic diagram of MSCC

MSCC enables the model to achieve comprehensive coverage of feature information across different
scales, allowing it to capture fine-grained local features while also obtaining more global information from
larger receptive fields. This approach enhances both the flexibility and robustness of feature fusion.

(4) Channel Attention

As illustrated in Fig. 6, the channel attention module first applies global average pooling to compress
each channel, then generates channel attention weights through a sequence of operations: 1 × 1 convolution,
ReLU activation, and another 1× 1 convolution. Finally, the sigmoid function is used to normalize and obtain
the response weights for each channel. The computation process is given by Eqs. (5)–(7):

hpool ing =
1

h × 2w ∑
h
i=1∑

2w
j=1 hmscc (i , j) (5)

a = σ (δ (hpool ing ∗ ω1) ∗ ω2) (6)
hca = a ∗ hmscc (7)

where hmscc ∈ Rinum_ f i l t×2w×h is the output of the MSCC module, hpool ing ∈ Rinum_ f i l t×1×1 is the result of
global average pooling, ω1 and ω2 are two 1× 1 convolution kernels, and ∗ denotes the convolution operation.
δ is the ReLU function, σ is the sigmoid function, a is the channel attention, and hca ∈ Rinum_ f i l t×2w×h is the
output of the channel attention module.
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Figure 6: Schematic diagram of the channel attention network

Since semantic information of entity relationships is typically distributed across the entire feature map,
global average pooling effectively captures the global semantic distribution, thereby enhancing the model’s
capability to comprehend and retain crucial semantic information. The channel attention mechanism serves
to weight each channel of the convolutional output on an element-wise basis, enhancing the responses of
important channels while suppressing noise and irrelevant information. This process enables the subsequent
feature mapping to possess higher discriminative capability even before the flattening operation, thereby
laying a solid foundation for the extraction of deep semantic associations.

(5) Straightening Mapping

Finally, the output of the channel attention module is flattened into a vector, and this vector is mapped
to the joint semantic space through a fully connected layer, as shown in Eq. (8):

hunit = (W ⋅ vec (hca)) + b (8)

where hca ∈ Rinum_ f i l t×2w×h is the output of the channel attention module, vec (⋅) denotes the flattening
operation, and W and b are the trainable weight matrix and bias, respectively. hunit ∈ Rd is the output of the
USE module, representing the deep semantic associations between entities and relations within the unit.

The purpose of straightening is to extract the deep semantic associations between entities and relations,
integrating multi-dimensional local interaction information into a global representation. The fully connected
mapping serves not only for feature dimensionality reduction and integration, but also for the reconstruction
and enhancement of the high-dimensional features extracted by the preceding modules.

3.4 Context Information Fusion
After being encoded by the USE module, the entities and relations in each fact are mapped to deep

semantic embedding vectors. To fully integrate this semantic information, we propose a CIF module based
on a multi-layer BERT and type embedding, as illustrated in Fig. 7. The CIF module enables deep interactions
of contextual information through a self-attention mechanism, effectively capturing global dependencies and
integrating local details with global context, thereby enhancing the continuity and discriminative power of
semantic representations.
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Figure 7: Schematic diagram of the CIF module

The CIF module mainly consists of three components: categorization tagging, type embedding, and
BERT encoding, which are described in detail below. This simplified type embedding strategy categorizes
the input sequence into three distinct types—the [CLS] token, the query unit, and the contextual units—and
is designed to differentiate between their semantic origins with minimal computational overhead.

(1) Categorization Token

To effectively capture global semantic information, a special categorization token [CLS] is added at the
beginning of the sequence before embedding the USE output as input to BERT. The output corresponding
to this token can fully integrate the semantics of the entire sequence through the self-attention mechanism,
as shown in Eq. (9):

Itoken = [ecl s ; hquer y ; hc tx_1; ⋅ ⋅ ⋅; hc tx_n] (9)

where ecl s is the embedding vector of the categorization token [CLS], hquer y is the semantic embedding
representation of the query unit extracted by the USE module, and hc tx_1; ⋅ ⋅ ⋅; hc tx_n are the semantic
embedding representations of the sequence of context units extracted by the USE module.

During the encoding process, the categorization token [CLS] interacts with all elements in the sequence.
After multiple layers of self-attention, the output vector corresponding to the [CLS] token can be regarded as
a representation that incorporates the contextual information of the entire sequence. Compared with direct
averaging or using the representation of the last element, the [CLS] token—lacking explicit semantic content
itself—can more “fairly” integrate the semantic information of each element in the sequence, thereby yielding
a semantic representation that fully captures the overall meaning of the sequence.

(2) Type Embedding

To enable the model to clearly distinguish semantic information from different sources during context
fusion, and to preserve model simplicity and computational efficiency, we employ this simplified type
classification strategy. The CIF module adopts type embeddings instead of traditional positional embeddings.
Specifically, according to their semantic attributes, the three components—categorization token [CLS], query
unit, and the sequence of context units—are assigned corresponding type embedding vectors, as shown
in Eq. (10):

Ic tx = Itoken + et y pe = [ecl s ; hquer y ; hc tx_1; ⋅ ⋅ ⋅; hc tx_n ]+[ et y pe_0; et y pe_1; et y pe_2; ⋅ ⋅ ⋅; et y pe_2] (10)

where ecl s is the embedding vector of the categorization token [CLS], hquer y is the semantic embedding
representation of the query unit extracted by the USE module, hc tx_1; ⋅ ⋅ ⋅; hc tx_n are the semantic embedding
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representations of the sequence of context units extracted by the USE module, and et y pe_i , i ∈ {0, 1, 2}, are
the type embeddings that distinguish semantic information from different sources.

The introduction of type embeddings not only preserves the original semantic information, but also
clarifies the identity and role of each component through type information, reduces the risk of noise caused
by positional confusion, and enhances the model’s sensitivity and recognition ability to different semantic
sources.

(3) BERT Encoding

Finally, the embedded sequence, augmented with the categorization token [CLS] and type embeddings,
is fed into a multi-layer BERT for encoding to obtain the final output, as shown in Eq. (11):

[êo ; ês ; êc tx_1; ⋅ ⋅ ⋅; êc tx_n] = BERT (Ic tx) (11)

where êo is the prediction vector for the target tail entity, and ês is the prediction vector for the head entity
to be recovered in the masked entity prediction task.

3.5 Masked Head Entity Prediction
TSMixerE adopts a parsimonious approach to integrating contextual information from graph structures

for entity prediction. First, the semantic features of the query unit and its contextual units are extracted
using the USE module, and these features are subsequently fused through the CIF module. However, directly
injecting contextual information into the model presents two potential challenges: first, query units typically
already contain more accurate predictive information, making it difficult to extract valuable signals from
complex contexts, which may cause the model to overlook additional contextual content. Second, overly
abundant contextual information can dilute the importance of the query units and introduce irrelevant noise,
potentially leading to overfitting.

To address the aforementioned issues, this paper introduces a Masked Head Entity Prediction (MHEP),
inspired by the MLM task in BERT, to balance the utilization of query unit information and graph contextual
information. During training, the head entities of some samples in the USE phase are perturbed using a
randomization strategy: they are replaced with special mask tokens [MASK], randomly selected entities with
a predefined probability, or left unchanged. Specifically, the query units (s, r) are correspondingly replaced
by ([MASK] , r), (sother , r), or remain unchanged as (s, r). Subsequently, in the CIF phase, the model
reconstructs the replaced head entities using additional contextual information and predicts the masked
head entities based on the output embeddings. By introducing such perturbations, the method encourages
the model to fully leverage contextual information, thereby improving the accuracy of entity prediction.

3.6 Loss Function
In the entity prediction task, the plausibility score for the true triple is calculated as the dot product

between the output embedding corresponding to the classification token [CLS] and the embedding of the
correct tail entity. Likewise, the plausibility scores for all other candidate entities are computed and normal-
ized using the softmax function. The cross-entropy classification loss function for the entity prediction task
is defined as follows:

LEP = −∑(s ,r ,o)∈G log (p (eo ∣êo)) (12)

where (s, r, o) ∈ G denotes the true triple, eo represents the embedding of the target tail entity, and êo
denotes the predicted embedding of the tail entity. MHEP is a self-supervised task designed to enhance the
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ability of TSMixerE to utilize contextual information. By introducing additional context, the model is able
to recover perturbed head entities and predict the replaced head entities based on the corresponding output
embeddings. This task is analogous to the entity prediction task and is also optimized with a cross-entropy
classification loss function, as defined in Eq. (13):

LMHEP = −∑(s ,r ,o)∈G log (p (es ∣ês)) (13)

where (s, r, o) ∈ G denotes the true triple, es denotes the original head entity embedding that is replaced by
the mask, and ês denotes the predicted head entity embedding.

Finally, the cross-entropy classification loss of MHEP is used as an auxiliary loss and is combined with
the loss function of the entity prediction task to obtain the final loss function, as shown in Eq. (14) below:

L = LEP + λLMHEP (14)

where LEP is the loss for the entity prediction task, LMHEP is the auxiliary loss for the MHEP, and λ is the
loss weight for MHEP.

4 Experiments

4.1 Experimental Setup
The experiments are conducted on four public benchmark datasets: FB15k-237 [20], WN18RR [21],

YAGO3-10 [22], and Kinship [23], and their statistical details are summarized in Table 1. FB15k-237 is
derived from the Freebase knowledge base, with inverse relations removed to avoid redundancy. WN18RR
is constructed from the WordNet lexical hierarchy and focuses on understanding semantic relationships.
YAGO3-10 comprises a large number of entities and complex relations, providing a challenging environment
for KGC. Kinship is a small-scale dataset centered on kinship relations, making it suitable for evaluating the
model’s capability to capture logical rules.

Table 1: Static knowledge graph dataset details

Dataset Entity Relation Train set Validation set Test set
FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3034 3134

YAGO3-10 123,182 37 1,079,040 5000 5000
Kinship 104 25 8544 1068 1074

The evaluation metrics for the KGC task include the standardized hit rate (Hits@1/3/10) and mean
reciprocal rank (MRR), with a filtered setting applied to exclude valid triples that also appear in the test set.
All experiments are conducted on an NVIDIA GeForce RTX 3090 GPU using the PyTorch 1.12.0 framework.
For model hyperparameters, the embedding dimension is set to 320, the maximum number of training
epochs is 300, the batch size is 256, and the learning rate is 0.01. The number of feature permutations,
iperm, is set to 1, and the number of output channels for the circular convolution module, inum_filt, is
200. The number of context units per entity in each training batch, n, is set to 50. The number of BERT
layers in the CIF module, N, is selected from the set {1, 2, 3, 4}. The loss weight coefficient for the MHEP,
weight_coef, is chosen from the set {0.2, 0.4, 0.6, 0.8}, and the masking rate for the MHEP, masking_rate,
is tuned over the range {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The total number of context units per
entity, k, is set according to each specific dataset, and in this work, the values of k, N, weight_coef, and
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masking_rate are explored through hyperparameter optimization. To evaluate the effectiveness of TSMixerE,
this paper selects several existing SKGC methods as baselines, including TransE, DistMult, ComplEx, ConvE,
RotatE, InteractE, HittER, OMult [24], JointE [25], DeepER [26], RMCNN [27], IntME [28], LKER [29],
gMLP-KGE [30], MFSSN [31], and SelectE [32]. Among these, TransE, DistMult, ComplEx, ConvE, RotatE,
InteractE, and HittER have been introduced previously; the remaining methods are described as follows.

OMult [24] embeds entities and relations in the octonion vector space, utilizing the non-commutative
property of octonion multiplication to model asymmetric and compositional relations. A parameter-
sharing mechanism ensures a model size comparable to that of quaternion-based models. By constraining
the octonion subspace, OMult can degenerate to complex (ComplEx) or real (DistMult) embeddings,
thus accommodating relations of varying complexity. JointE [25] improves link prediction by jointly
leveraging 1D and 2D convolutional neural networks while maintaining parameter efficiency. 1D con-
volution extracts explicit knowledge and preserves surface semantics, while 2D convolutional kernels,
generated internally from embeddings, capture deep implicit knowledge and reduce redundant parameters.
DeepER [26] generates expressive entity and relation feature maps using group convolutional rotations
and reflection transformations, and introduces relation-specific transformations via a hyper-network. It
also fuses structured and visual embeddings to enhance multimodal entity representations. RMCNN [27]
combines a relational memory network with a convolutional neural network. The relational memory
network, incorporating positional encoding and self-attention, models dependencies between entities
and relations. Encoded vectors are concatenated and reshaped for convolution, enhancing entity-relation
interactions across dimensions. IntME [28] extracts initial interaction features using deep convolution and
feature reshaping, then expands features through rearrangement, matrix multiplication, channel scaling,
and pointwise convolution to enhance explicit knowledge and compensate for initial interaction limitations.
LKER [29] extends the Large Kernel Embedding (LKE) model by introducing a parallel relationship-specific
feature extraction branch, enabling the capture of long-range dependencies and comprehensive relationship-
specific features via a large kernel attention mechanism. gMLP-KGE [30] is a lightweight, efficient link
prediction model that extends convolutional neural networks with a gated multilayer perceptron (gMLP).
MFSSN [31] adaptively constructs filters from entity and relation embeddings, introduces a soft contraction
sub-network to suppress noise, and incorporates an attention mechanism to enhance important features and
overall model performance. SelectE [32] is a multi-scale adaptive selection network that learns rich multi-
scale interactive features and automatically filters important features. It redesigns the input feature matrix
for multi-scale convolution, introduces a multi-branch learning module, and dynamically assigns feature
weights to optimize feature utilization.

4.2 Entity Prediction Results
Table 2 presents the entity prediction results on the FB15k-237 WN18RR, YAGO3-10, and Kinship

datasets. The best results are highlighted in bold, the sub-optimal results are underlined, “-” indicates that
the method does not report results for the corresponding dataset, and all values are given as percentages.
TSMixerE achieves the best performance on most metrics across four datasets, except Hits@10 on Kinship.

(1) Methods that leverage entity context information demonstrate significant advantages in entity pre-
diction tasks. For instance, models such as HittER and TSMixerE, which are based on contextual
information, generally outperform those relying solely on local triple information. This advan-
tage primarily arises because entity context provides more comprehensive semantic dependencies,
enabling the models to capture complex entity-neighbor relationships more accurately. Rich con-
textual descriptions enhance the expressive power of entity embeddings and improve overall entity
prediction performance.
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(2) TSMixerE outperforms HittER. Specifically, compared to HittER, TSMixerE achieves improvements
in MRR of 1.61% and 1.59% on the FB15k-237 and WN18RR datasets, respectively, over HittER. HittER
employs a hierarchical Transformer architecture that requires multi-layer self-attention computations,
while InteractE relies on local feature interactions within individual triplets. In comparison, the USE
module in TSMixerE is capable of both local feature interaction and feature filtering. Furthermore,
compared to Transformer, its CIF module—based on BERT—enables structured global context aggre-
gation. The main reason is that TSMixerE enables more accurate feature interactions through the use
of MSCC and a channel attention mechanism, which effectively extracts deep semantic associations
between entities and relations. Multi-scale convolution captures local information at different levels,
while the channel attention mechanism highlights key semantic features and strengthens associa-
tions between entities and relations. Additionally, compared to the Transformer architecture, the
BERT-based CIF module demonstrates stronger capabilities in structured global context aggregation.
TSMixerE employs multi-layer BERT for deep fusion of contextual information, fully integrates global
dependencies, addresses the limitations of long-distance information transfer, and further improves
the accuracy of entity prediction.

(3) The experimental results of TSMixerE on the four datasets—YAGO3-10, FB15k-237, WN18RR, and
Kinship—show a progressive decrease in performance improvement, with gains of 2.48%, 1.61%,
1.59%, and 1.36%, respectively. This trend highlights the model’s advantages in handling complex
entity relationships and rich contextual information. On the YAGO3-10 dataset, which features higher
structural complexity and more diverse entity relationships, the model’s optimization strategy is fully
leveraged, resulting in the most significant improvement. The FB15k-237 dataset, characterized by
moderate noise in entity relationships, demonstrates a steady performance gain as well. In contrast,
the WN18RR and Kinship datasets, with their relatively simple structures, offer less room for further
optimization. Overall, the improved design of TSMixerE demonstrates strong adaptability to different
dataset characteristics.

Table 2: Comparison of entity prediction results on FB15K-237, WN18RR, YAGO3-10, and Kinship

Model FB15K-237 WN18RR YAGO3-10 Kinship

H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR
TransE (2013) 17.4 28.4 42.0 25.7 2.7 29.5 44.4 18.2 21.2 36.1 44.7 23.8 43.6 75.5 95.3 61.4

DistMult (2015) 15.5 26.3 41.9 24.1 39.0 44.0 49.0 43.0 24.0 38.0 54.0 34.0 55.3 76.6 94.3 68.5
ComplEx (2016) 15.8 27.5 42.8 24.7 41.0 46.0 51.0 44.0 24.0 38.0 54.0 34.0 78.0 93.5 97.7 86.4

ConvE (2018) 23.9 35.0 49.1 31.6 40.0 44.0 52.0 43.0 35.0 49.0 62.0 44.0 74.0 92.0 98.0 83.0
RotatE (2019) 24.1 37.5 53.3 33.8 45.5 51.0 57.1 49.4 40.2 – 67.0 49.5 61.7 82.7 95.4 73.8

InteractE (2020) 26.3 39.0 53.5 35.4 43.0 – 52.8 46.3 46.2 59.3 68.7 54.1 66.4 87.0 95.9 77.7
OMult (2021) 25.3 38.3 53.4 34.7 40.6 46.7 53.9 44.9 46.1 59.2 69.2 54.3 80.0 94.0 99.0 87.0
HittER (2021) 27.9 40.9 55.8 37.3 46.2 51.6 58.4 50.3 – – – – – – – –
JointE (2022) 26.2 39.3 54.3 35.6 43.8 48.3 53.7 47.1 48.1 60.5 69.5 55.6 80.6 94.1 98.5 87.7

DeepER (2022) 25.5 37.9 52.5 34.5 44.6 49.0 53.5 47.6 49.3 61.1 69.3 56.5 78.9 93.3 98.2 86.5
RMCNN (2023) 25.5 39.4 53.5 35.8 44.0 47.9 54.0 47.3 48.3 60.7 69.8 55.7 80.3 94.2 98.4 87.2

IntME (2023) 26.7 39.5 54.3 36.0 43.6 49.5 54.5 47.5 48.3 60.0 69.0 55.6 78.9 93.9 98.4 87.2
LKER (2024) 26.7 39.4 54.3 35.9 43.8 48.0 53.0 46.9 48.8 60.6 69.4 56.1 81.5 94.4 98.7 88.3

gMLP-KGE (2024) 27.3 40.2 55.6 36.5 44.7 50.5 56.2 48.7 48.4 60.9 69.9 56.1 81.6 94.7 98.6 88.4
MFSSN (2024) 26.4 – 54.6 35.8 44.8 – 57.1 49.0 48.3 – 69.0 55.8 81.8 – 98.4 88.3
SelectE (2024) 26.6 39.8 55.4 36.2 45.2 50.9 57.4 49.3 49.0 60.9 69.7 56.3 81.6 94.3 98.5 88.2

TSMixerE (Ours) 28.6 41.5 56.0 37.9 46.8 52.3 60.2 51.1 50.5 62.3 70.8 57.9 84.1 95.1 98.7 89.6

Note: The best results are in bold, and the second-best are underlined.
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In summary, TSMixerE fully utilizes MSCC and the channel attention mechanism to effectively extract
deep semantic associations between entities and relations within triples. Simultaneously, it demonstrates
robust integration of global information in the context information fusion stage, further enhancing the accu-
racy of entity prediction. The experimental results indicate that TSMixerE achieves superior performance
across various evaluation metrics, thereby fully validating the critical role of feature interaction mechanisms
and entity context information in KGC.

4.3 Ablation Study
TSMixerE incorporates several key components, including MSCC, channel attention (CA), entity

contextual information (CTX), MHEP, classification token (CLS), and type embedding (TE). To evaluate
the contribution of each module to the overall completion performance, we conducted ablation studies on
each component of the TSMixerE model using the WN18RR dataset. The experimental results are presented
in Table 3, where a check mark (

√
) indicates the inclusion of a component in the experiment, and a

cross (×) indicates its removal. The ablation experiments were organized into two categories: those without
entity context information (w/o-ctx) and those with entity context information (ctx). The details of the
experimental setup and results are as follows:

(1) w/o-all: The encoder is implemented solely with InteractE, with all other components removed.
(2) w/o-ctx-mscc: Contextual information about entities is excluded, and the MSCC module is removed.
(3) w/o-ctx-ca: Contextual information about entities is excluded, and the channel attention module

is removed.
(4) w/o-ctx: Contextual information about entities is excluded, but both MSCC and channel attention

are retained.
(5) w/o-mscc: Contextual information about entities is included, but the MSCC module is removed.
(6) w/o-ca: Contextual information about entities is included, but the channel attention module is removed.
(7) w/o-mhep: Contextual information about entities is included, but the MHEP is removed.
(8) w/o-cls: Contextual information about entities is included, but the classification token [CLS] is removed.
(9) w/o-te: Contextual information about entities is included, but the type embedding is removed.

Table 3: Results of ablation experiments on WN18RR

MSCC CA CTX MHEP CLS TE Hit@1 Hit@3 Hit@10 MRR
w/o-all × × × × × × 41.6 48.9 56.0 46.7

w/o-ctx-mscc × √ × × × × 44.6 49.7 56.0 48.3
w/o-ctx-ca

√ × × × × × 43.8 50.2 57.7 48.5
w/o-ctx

√ √ × × × × 45.8 50.9 56.4 49.2

w/o-mscc × √ √ √ √ √
45.7 52.3 58.4 50.2

w/o-ca
√ × √ √ √ √

46.5 52.3 58.7 50.6
w/o-mhep

√ √ √ × √ √
45.2 51.2 58.1 49.6

w/o-cls
√ √ √ √ × √

46.2 52.6 58.4 50.8
w/o-te

√ √ √ √ √ × 46.2 52.7 59.4 50.9

TSMixerE (Ours)
√ √ √ √ √ √

46.8 52.3 60.2 51.1

Based on the experimental results in Table 3, the contribution of each component to the TSMixerE
model for the SKGC task is fully validated. The experimental data demonstrate the following:
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(1) The model without entity context information exhibits the poorest performance, indicating that relying
solely on the local information from individual triples fails to capture the rich semantic dependencies
present in the neighboring nodes of entities within the graph structure. This results in incomplete
embeddings and, consequently, a decline in overall performance. This finding underscores the critical
importance of incorporating contextual information in KGC.

(2) When the model utilizes entity context information but does not employ the MHEP, its performance
still decreases. This suggests that perturbing some head entities during training compels the model
to leverage additional contextual information, thereby uncovering more useful semantic cues and
improving the accuracy of entity prediction. The MHEP thus provides an effective mechanism for the
model to exploit contextual information fully.

(3) The introduction of the classification token [CLS] in the CIF module enhances the model’s per-
formance. As a special categorical marker, [CLS] interacts with all elements in the input sequence
and, through multi-layer BERT, gradually aggregates long-range dependencies and global semantic
information, thereby producing a more comprehensive and accurate global representation.

(4) The incorporation of type embedding also has a positive impact on the model’s performance. By
assigning distinct type embeddings to the classification token [CLS], query units, and context units, the
model can clearly distinguish information from different sources during context fusion. This approach
not only preserves the original semantic features of each component but also effectively reduces the
risk of noise caused by positional confusion, thereby improving the model’s sensitivity and its ability
to recognize diverse semantic information.

The results of the ablation experiments demonstrate that each component plays a vital role in enhancing
the capacity of the TSMixerE model to capture the semantics of entities and relations. TSMixerE addresses
a range of challenges in SKGC, including local feature interactions, feature selection, global semantic
integration, and training signal optimization. Specifically, the model leverages contextual entity information
to capture semantic dependencies, employs MSCC to improve the flexibility and robustness of feature
interactions, incorporates channel attention mechanisms to enhance the discriminative quality of feature
representations, and introduces an MHEP module to promote a more effective utilization of contextual
information. The synergistic effect among the various modules effectively strengthens both local feature
extraction and global semantic fusion. The results in Tables 3 and 4 confirm the individual contributions
of each component and reveal synergistic effects among them. The performance degradation caused by
removing any module demonstrates interdependencies within the architecture. In the case of MHEP, the
performance drop observed in the w/o-mhep configuration relative to the full TSMixerE model underscores
its role in providing effective supervisory signals under current data sparsity conditions, thereby providing
a more robust solution to the SKGC task. For instance, given a query like (Einstein, research_field,
?), the model assigns higher attention weights to relevant contexts such as (Einstein, award_received,
Nobel_Prize_in_Physics) and lower weights to less relevant ones like (Einstein, birthplace, Germany). This
validates that the semantic quality from the USE module directly influences the attention efficiency of the
CIF module, demonstrating a well-coordinated interplay between the two stages.

Table 4: Results of ablation experiments on FB15k-237

MSCC CA CTX MHEP CLS TE Hit@1 Hit@3 Hit@10 MRR
w/o-all × × × × × × 17.4 28.4 42.0 25.7

w/o-ctx-mscc × √ × × × × 26.8 39.5 54.1 35.9
w/o-ctx-ca

√ × × × × × 26.2 38.9 53.6 35.4

(Continued)
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Table 4 (continued)

MSCC CA CTX MHEP CLS TE Hit@1 Hit@3 Hit@10 MRR
w/o-ctx

√ √ × × × × 26.5 39.4 53.8 36.0

w/o-mscc × √ √ √ √ √
27.1 40.1 54.5 36.2

w/o-ca
√ × √ √ √ √

27.8 40.8 55.2 36.9
w/o-mhep

√ √ √ × √ √
27.5 40.5 54.9 36.6

w/o-cls
√ √ √ √ × √

28.1 41.0 55.4 37.3
w/o-te

√ √ √ √ √ × 27.9 40.7 55.3 37.3

TSMixerE (Ours)
√ √ √ √ √ √

28.6 41.5 56.0 37.9

4.4 Hyperparameter Analysis
Hyperparameter tuning experiments are conducted to optimize the performance of the TSMixerE

model, focusing on the effects of four key parameters: the total number of entity contexts (k), the number of
BERT layers (N), the loss weight coefficient (weight_coef) for MHEP, and the masking rate (masking_rate)
for MHEP.

(1) Total Number of Entity Contexts

When constructing the sequence of entity context units, some entities may possess a large number of
neighboring nodes. To balance memory usage and ensure adequate coverage of the entity distribution, it is
necessary to standardize the number of neighboring nodes by manually setting the total number of contexts
(k). As shown in Fig. 8, for the FB15k-237 and YAGO3-10 datasets, setting k to 1000 is most appropriate; as
illustrated in Fig. 9, k is optimal at 300 for the WN18RR dataset, while for the Kinship dataset, a value of 175 is
optimal. This configuration provides reasonable context coverage for different datasets, taking into account
both memory efficiency and the model’s semantic representation capabilities.

Figure 8: Distribution of the number of neighboring nodes for entities on FB15K-237 (left) and WN18RR (right)
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Figure 9: Distribution of the number of neighboring nodes of entities on YAGO3-10 (left) and Kinship (right)

(2) Number of BERT Layers

For the number of BERT layers, experiments were conducted with four configurations, N = {1, 2, 3,
4}, and the corresponding model performance was recorded. As shown in Fig. 10, the results indicate that
the number of layers has a significant impact on the model’s performance. When N = 3, the model is able
to capture contextual information more effectively, achieve robust modeling of global dependencies, and
deliver optimal performance. In contrast, too few layers result in insufficient parameters and a reduced
model capacity, while too many layers may introduce redundant information and increase training difficulty,
ultimately leading to diminished effectiveness. Therefore, the number of BERT layers, N, is set to 3.

Figure 10: Effect of TSMixerE with different BERT layers on FB15K-237 and WN18RR

(3) Loss Weighting Coefficient for MHEP

For the loss weighting coefficient of MHEP, experimental values of {0.2, 0.4, 0.6, 0.8, 1.0} were tested.
As shown in Fig. 11, the results reveal a nonlinear relationship between the weighting coefficient and the
model’s performance: as the coefficient increases, the model’s performance initially improves, but when
the coefficient exceeds a certain threshold, the MHEP begins to negatively impact the entity prediction
task, resulting in a decline in overall performance. Based on the evaluation metrics, the optimal weighting
coefficient is set to approximately 0.6. When the coefficient is too high (e.g., >0.8), the MHEP loss dominates
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optimization, potentially causing the model to over-rely on context for reconstructing masked entities
and weaken its modeling of the query unit itself. Since queries are complete during testing, this train-test
mismatch degrades primary task performance. Thus, a moderate coefficient (0.6) balances the auxiliary task’s
regularization benefits with the primary task’s objective, avoiding negative transfer.

Figure 11: Effect of different weight coefficients for TSMixerE on FB15K-237 and WN18RR

(4) Mask Rate of MHEP

To investigate the impact of the MHEP mask rate, experiments were conducted with values ranging
from 0.1 to 1.0 in increments of 0.1. As shown in Fig. 12, the results indicate that when the masking rate
is between 0.1 and 0.5, the model’s performance gradually improves as the masking rate increases. The
best performance is observed when the masking rate is in the range of 0.5 to 0.8; beyond this range,
further increases in the masking rate lead to a decline in performance. This suggests that higher mask rates
introduce more perturbations during training, compelling the model to rely more heavily on contextual
information for recovery and prediction tasks. Conversely, a low mask rate does not fully exploit the model’s
potential, whereas an excessively high mask rate imposes greater demands on model capacity. Overall, a
mask rate between 0.5 and 0.8 is most suitable, and a value of 0.5 is adopted in the experiments presented
in this paper. A higher masking rate introduces more perturbations, compelling the model to depend on
richer contextual information for recovery and prediction. Conversely, an excessively low masking rate
underutilizes the model’s potential, whereas an excessively high masking rate imposes greater demands on
the model’s performance.

Overall, the hyperparameter optimization experiments confirm the critical roles of each parameter in
the TSMixerE model. The number of BERT layers, the loss weighting coefficient, and the masking rate all
have a significant impact on the model’s ability to capture global semantic information and compensate for
the insufficiency of local information.
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Figure 12: Effect of TSMixerE on Mask Rate on FB15K-237 and WN18RR

4.5 Noise Robustness Analysis
We evaluated the robustness of TSMixerE when the quality of input contexts is compromised, which is

crucial for real-world applications. A controlled noise injection experiment was conducted on the Kinship
dataset. When constructing the entity context sequence, each true contextual entity was randomly replaced
with another entity from the KG with a probability p_noise, simulating varying degrees of noisy environ-
ments. As shown in Table 5, all performance metrics decline as the noise increases, but the degradation
trend is gradual. Even under an extreme scenario where 50% of contextual entities are replaced, the model
retained 94.5% of its original MRR performance. This demonstrates that TSMixerE exhibits good robustness
to sampling noise.

Table 5: Performance under different context noise levels on the Kinship dataset

Noise ratio (p_noise) Hits@1 (%) Hits@10 (%) MRR (%) Relative MRR retention
0% 84.1 98.7 89.6 100.0%
10% 83.5 98.5 89.0 99.3%
20% 82.7 98.2 88.2 98.4%
30% 81.8 97.8 87.3 97.4%
40% 80.5 97.2 86.1 96.1%
50% 79.1 96.5 84.7 94.5%

4.6 Model Parameter Count Analysis
To evaluate the efficiency of TSMixerE, we theoretically compare its complexity differences with major

baseline models. As shown in Table 6, this table summarizes the parameter counts and key complexity
characteristics of the compared models, where “~” indicates estimated parameter counts and “–” denotes
a value range. It can be observed that the parameter counts of the baseline models range from 0.18M
(TransE) to approximately 16M (HittER), spanning a spectrum from simple translation-based models to
complex structural models. TSMixerE remains competitive in terms of parameter count, positioned between
lightweight convolutional models (ConvE, InteractE) and larger-scale Transformer models (HittER).
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Table 6: Comparison of model parameter counts and key complexity characteristics on FB15k-237

Model #Params Key complexity characteristics
TransE [4] 0.18M Relationship as translation, L1 or L2 dissimilarity norm

DistMult [8] 4.00M Simple bilinear formulation, relation matrix restricted to
diagonal

ComplEx [9] 4.00M Complex valued embeddings, Hermitian dot product,
models symmetric and antisymmetric relations

ConvE [13] 0.23–5.05M Multi-layer convolutional network, 2D convolution over
embeddings, 1-N scoring

RotatE [6] 15.00M Complex space relational rotation modeling, adversarial
negative sampling

InteractE [14] 10.70M Feature permutation, checkered reshaping, circular
convolution

OMult [24] 6.01M Hypercomplex multiplication interactions, batch
normalization for hypercomplex scaling suppression

HittER [17] 16.00M Hierarchical transformers, masked entity prediction,
relational contextualization from neighborhood

JointE [25] 4.54M Mitigation of over-parameterization & overfitting, moderate
computational complexity, dual-path architecture

DeepER [26] ~15.87M Geometric equivariance complexity, dual-path relational
modeling, dynamic convolution via hypernetwork

RMCNN [27] ~3.74M Hybrid architectural complexity, high-dimensional
interaction modeling, position-aware relational memory

IntME [28] ~15.81M Reasonable interactions, dual-path hybrid fusion, low
training cost

LKER [29] 7.83M Fair large kernel attention, relation-specific features
extraction branch

gMLP-KGE [30] 7.60M Single-layer gMLP block, input and output dimensions are
consistent

MFSSN [31] ~3.00–5.00M Relation-specific features extraction branch, soft shrinkage
sub-network

SelectE [32] ~3.00–6.00M Multi-scale adaptive selection mechanism, channel adaptive
selection, receptive field adaptive selection

TSMixerE (Ours) 14.56M MSCC, shared USE module, efficient channel attention

To further evaluate practical efficiency, we compare the per-batch inference time of TSMixerE with two
strong baselines, MFSSN [31] and SelectE [32]. TSMixerE requires 12.53 s per batch, which is higher than
MFSSN (9.36 s/batch) and SelectE (6.41 s/batch). This increased overhead stems from the introduction of
multi-scale circular convolution, channel attention, and BERT-based context fusion modules, which enhance
feature interaction and semantic integration. The additional computational cost represents a reasonable
trade-off for the achieved performance gains.
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5 Conclusion and Perspective
In this paper, we propose TSMixerE, a SKGC method based on entity context. The method first employs

MSCC to capture local features at different granularities and utilizes channel attention to enhance the
response of important channels, thereby improving the flexibility and robustness of feature fusion. Further-
more, TSMixerE achieves deep interactions of contextual information through multi-layer self-attention and
clarifies the semantic identity and role of each component via type embedding, thus effectively integrating
local details with global context. Experimental results on multiple benchmark datasets demonstrate the
effectiveness of TSMixerE for the task of SKGC.

In this paper, TSMixerE focuses on leveraging the contextual information of entities to enhance entity
prediction performance. However, in KGs, relations themselves also contain rich contextual information,
such as potential associations and semantic patterns with their neighboring relations. Future research could
investigate effective modeling of relation context, for example, by introducing relation embedding sequences
and extracting interaction features among relations using self-attention mechanisms or graph neural net-
works. Additionally, the current selection of entity context nodes in TSMixerE primarily relies on random
sampling, which may not fully capture the importance or semantic associations of neighboring nodes. In
the future, methods based on importance assessment could be adopted to rank and filter neighbor nodes
according to criteria such as popularity and influence. This will be conducted along with further validation of
the type embedding strategy on larger-scale datasets with more diverse relation types. Concurrently, we will
explore the introduction of a more flexible multi-scale feature retention mechanism within the USE module,
injecting feature maps of different scales into the fusion stage in a more refined manner. We will augment
the attention mechanism in the TSMixerE model by incorporating a contrastive learning module, thereby
improving the model’s generalization ability. Future work will also involve a more in-depth analysis of the
complexity of TSMixerE compared to baseline models.

Acknowledgement: Not applicable.

Funding Statement: This study was supported by the National Natural Science Foundation of China (No. 62267005);
the Chinese Guangxi Natural Science Foundation (No. 2023GXNSFAA026493); Guangxi Collaborative Innovation
Center of Multi-Source Information Integration and Intelligent Processing; Guangxi Academy of Artificial Intelligence.

Author Contributions: The authors confirm their contribution to the paper as follows: study conception and design:
Jianzhong Chen, Yunsheng Xu and Ying Pan; data collection: Yunsheng Xu; analysis and interpretation of results:
Jianzhong Chen and Yunsheng Xu; draft manuscript preparation: Jianzhong Chen and Yunsheng Xu; draft review and
editing: Jianzhong Chen, Zirui Guo and Tianmin Liu; funding acquisition: Ying Pan. All authors reviewed the results
and approved the final version of the manuscript.

Availability of Data and Materials: The authors confirm that the data supporting the findings of this study are available
within the article.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Peng C, Xia F, Naseriparsa M, Osborne F. Knowledge graphs: opportunities and challenges. Artif Intell Rev.

2023;56(11):13071–102. doi:10.1007/s10462-023-10454-y.
2. Jetti SR, Krishna Prasad MHM. Knowledge graphs and neural networks in recommendation systems: a com-

prehensive survey and future directions. In: Proceedings of the 3rd International Conference on Intelligent Data

https://doi.org/10.1007/s10462-023-10454-y


Comput Mater Contin. 2026;87(1):92 23

Communication Technologies and Internet of Things (IDCIoT); 2025 Jan 15–17; Bengaluru, India. Piscataway, NJ,
USA: IEEE; 2025. p. 1163–70.

3. Liang K, Meng L, Liu M, Liu Y, Tu W, Wang S. A survey of knowledge graph reasoning on graph types: static,
dynamic, and multi-modal. IEEE Trans Pattern Anal Mach Intell. 2024;46(12):9456–78. doi:10.1109/TPAMI.2024.
3234567.

4. Bordes A, Usunier N, Garcia-Durán A, Weston J, Yakhnenko O. Translating embeddings for modeling multi-
relational data. In: Proceedings of the 27th International Conference on Neural Information Processing Systems
(NIPS); 2013 Dec 5–8; Lake Tahoe, NV, USA. Red Hook, NY, USA: Curran Associates; 2013. p. 2787–95. doi:10.
5555/2999792.2999923.

5. Wang Z, Zhang J, Feng J, Chen Z. Knowledge graph embedding by translating on hyperplanes. In: Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI); 2014 Jul 27–31; Québec City, QC, Canada. Palo Alto, CA,
USA: AAAI Press; 2014. p. 1112–9. doi:10.5555/2893873.2894046.

6. Sun Z, Deng Z, Nie J, Tang J. RotatE: knowledge graph embedding by relational rotation in complex space. In: 7th
International Conference on Learning Representations (ICLR); 2019 May 6–9; New Orleans, LA, USA. La Jolla,
CA, USA: ICLR; 2019. doi:10.48550/arXiv.1902.10197.

7. Nickel M, Tresp V, Kriegel H. A three-way model for collective learning on multi-relational data. In: Proceedings of
the 28th International Conference on Machine Learning (ICML); 2011 Jun 28–Jul 2; Bellevue, WA, USA. Madison,
WI, USA: Omnipress; 2011. p. 809–16. doi:10.5555/3104482.3104584.

8. Yang B, Yih W, He X, Gao J, Deng L. Embedding entities and relations for learning and inference in knowledge
bases. In: 3rd International Conference on Learning Representations (ICLR); 2015 May 7–9; San Diego, CA, USA.
La Jolla, CA, USA: ICLR; 2015. doi:10.48550/arXiv.1412.6575.

9. Trouillon T, Welbl J, Riedel S, Gaussier É, Bouchard G. Complex embeddings for simple link prediction. In:
Proceedings of the 33rd International Conference on Machine Learning (ICML); 2016 Jun 19–24; New York, NY,
USA. Cambridge, MA, USA: JMLR.org; 2016. p. 2071–80. doi:10.5555/3045390.3045603.

10. Balazevic I, Allen C, Hospedales T. TuckER: tensor factorization for knowledge graph completion. In: Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP); 2019 Nov 3–7; Hong Kong, China. Stroudsburg,
PA, USA: ACL; 2019. p. 5185–94. doi:10.18653/v1/D19-1522.

11. Schlichtkrull M, Kipf T, Bloem P, van den Berg R, Titov I, Welling M. Modeling relational data with graph
convolutional networks. In: The Semantic Web: 15th International Conference (ESWC); 2018 Jun 3–7; Heraklion,
Greece. Cham, Switzerland: Springer; 2018. p. 593–607. doi:10.1007/978-3-319-93417-4_38.

12. Vashishth S, Sanyal S, Nitin V, Talukdar P. Composition-based multi-relational graph convolutional networks. In:
8th International Conference on Learning Representations (ICLR); 2020 Apr 26–30; Addis Ababa, Ethiopia. La
Jolla, CA, USA: ICLR; 2020. doi:10.48550/arXiv.1911.03082.

13. Dettmers T, Minervini P, Stenetorp P, Riedel S. Convolutional 2D knowledge graph embeddings. In: Proceedings
of the 32nd AAAI Conference on Artificial Intelligence (AAAI); 2018 Feb 2–7; New Orleans, LA, USA. Palo Alto,
CA, USA: AAAI Press; 2018. p. 1811–8. doi:10.1609/aaai.v32i1.11805.

14. Vashishth S, Sanyal S, Nitin V, Agrawal N, Talukdar P. Interacte: improving convolution-based knowledge graph
embeddings by increasing feature interactions. In: Proceedings of the 34th AAAI Conference on Artificial
Intelligence (AAAI); 2020 Feb 7–12; New York, NY, USA. Palo Alto, CA, USA: AAAI Press; 2020. p. 3009–16. doi:10.
1609/aaai.v34i03.5692.

15. Li S, Liu R, Wen Y, Sun T. Flow-modulated scoring for semantic-aware knowledge graph completion.
arXiv:2506.23137. 2025. doi:10.48550/arXiv.2506.23137.

16. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. In: Proceedings
of the 31st International Conference on Neural Information Processing Systems (NIPS); 2017 Dec 4–9; Long Beach,
CA, USA. Red Hook, NY, USA: Curran Associates; 2017. p. 6000–10. doi:10.5555/3295222.3295349.

17. Chen S, Liu X, Gao J, Jiao J, Zhang R, Ji Y. HittER: hierarchical transformers for knowledge graph embeddings.
In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP); 2021

https://doi.org/10.1109/TPAMI.2024.3234567
https://doi.org/10.1109/TPAMI.2024.3234567
https://doi.org/10.5555/2999792.2999923
https://doi.org/10.5555/2999792.2999923
https://doi.org/10.5555/2893873.2894046
https://doi.org/10.48550/arXiv.1902.10197
https://doi.org/10.5555/3104482.3104584
https://doi.org/10.48550/arXiv.1412.6575
https://doi.org/10.5555/3045390.3045603
https://doi.org/10.18653/v1/D19-1522
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.48550/arXiv.1911.03082
https://doi.org/10.1609/aaai.v32i1.11805
https://doi.org/10.1609/aaai.v34i03.5692
https://doi.org/10.1609/aaai.v34i03.5692
https://doi.org/10.48550/arXiv.2506.23137
https://doi.org/10.5555/3295222.3295349


24 Comput Mater Contin. 2026;87(1):92

Nov 7–11; Punta Cana, Dominican Republic. Stroudsburg, PA, USA: ACL; 2021. p. 10395–407. doi:10.18653/v1/2021.
emnlp-main.813.

18. He W, Xiao Y, Huang M, Mou X, Wang R, Li Q. A pattern-driven information diffusion prediction model based on
multisource resonance and cognitive adaptation. In: Proceedings of the 48th International ACM SIGIR Conference
on Research and Development in Information Retrieval; 2025 Jul 14–18; Padua, Italy. New York, NY, USA: ACM;
2025. p. 592–601. doi:10.1145/3726302.3729883.

19. Zheng Q, Saponara S, Tian X, Yu Z, Elhanashi A, Yu R. A real-time constellation image classification
method of wireless communication signals based on the lightweight network mobileViT. Cogn Neurodynamics.
2024;18(4):659–71. doi:10.1007/s11571-023-10036-2.

20. Toutanova K, Chen D, Pantel P, Poon H, Choudhury P, Gamon M. Representing text for joint embedding of text and
knowledge bases. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing
(EMNLP); 2015 Sep 17–21; Lisbon, Portugal. Stroudsburg, PA, USA: ACL; 2015. p. 1499–509. doi:10.18653/v1/D15-
1174.

21. Toutanova K, Chen D. Observed versus latent features for knowledge base and text inference. In: Proceedings of the
3rd Workshop on Continuous Vector Space Models and their Compositionality (CVSC); 2015 Jul 26–31; Beijing,
China. Stroudsburg, PA, USA: ACL; 2015. p. 57–66. doi:10.18653/v1/W15-4007.

22. Mahdisoltani F, Biega J, Suchanek F. YAGO3: a knowledge base from multilingual wikipedias. In: 7th Biennial
Conference on Innovative Data Systems Research (CIDR); 2015 Jan 4–7; Asilomar, CA, USA. doi:10.5281/zenodo.
837628.

23. Lin XV, Socher R, Xiong C. Multi-hop knowledge graph reasoning with reward shaping. In: Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing (EMNLP); 2018 Oct 31–Nov 4; Brussels,
Belgium. Stroudsburg, PA, USA: ACL; 2018. p. 3243–53. doi:10.18653/v1/D18-1362.

24. Demir C, Moussallem D, Heindorf S, Ngomo AN. Convolutional hypercomplex embeddings for link prediction.
In: Proceedings of the 13th Asian Conference on Machine Learning (ACML); 2021 Nov 17–19; Virtual. Brookline,
MA, USA: PMLR; 2021. p. 656–71. doi:10.48550/arXiv.2110.07855.

25. Zhou Z, Wang C, Feng Y, Chen D. JointE: jointly utilizing 1D and 2D convolution for knowledge graph embedding.
Knowl Based Syst. 2022;240:108100. doi:10.1016/j.knosys.2022.108100.

26. Zeb A, Saif S, Chen J, Zhang D. Learning knowledge graph embeddings by deep relational roto-reflection. Knowl
Based Syst. 2022;252(3):109451. doi:10.1016/j.knosys.2022.109451.

27. Shi M, Zhao J, Wu D. Convolutional neural network knowledge graph link prediction model based on relational
memory. Comput Intell Neurosci. 2023;2023(1):1–9. doi:10.1155/2023/8850113.

28. Zhang H, Liu X, Li H. IntME: combined improving feature interactions and matrix multiplication for convolution-
based knowledge graph embedding. Electronics. 2023;12(15):3333. doi:10.3390/electronics12153333.

29. Zhang Q, Huang S, Xie Q, Zhao F, Wang G. Fair large kernel embedding with relation-specific features extraction
for link prediction. Inf Sci. 2024;668:120533. doi:10.1016/j.ins.2024.120533.

30. Zhang F, Qiu P, Shen T, Cheng J, Li W. gMLP-KGE: a simple but efficient MLPs with gating architecture for link
prediction. Appl Intell. 2024;54(20):9594–606. doi:10.1007/s10489-024-05456-8.

31. Liu J, Zu L, Yan Y, Zuo J, Sang B. Multi-filter soft shrinkage network for knowledge graph embedding. Expert Syst
Appl. 2024;250(3):123875. doi:10.1016/j.eswa.2024.123875.

32. Zu L, Lin L, Fu S, Guo F, Wu J. SelectE: multi-scale adaptive selection network for knowledge graph representation
learning. Knowl Based Syst. 2024;291(1):111554. doi:10.1016/j.knosys.2024.111554.

https://doi.org/10.18653/v1/2021.emnlp-main.813
https://doi.org/10.18653/v1/2021.emnlp-main.813
https://doi.org/10.1145/3726302.3729883
https://doi.org/10.1007/s11571-023-10036-2
https://doi.org/10.18653/v1/D15-1174
https://doi.org/10.18653/v1/D15-1174
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.5281/zenodo.837628
https://doi.org/10.5281/zenodo.837628
https://doi.org/10.18653/v1/D18-1362
https://doi.org/10.48550/arXiv.2110.07855
https://doi.org/10.1016/j.knosys.2022.108100
https://doi.org/10.1016/j.knosys.2022.109451
https://doi.org/10.1155/2023/8850113
https://doi.org/10.3390/electronics12153333
https://doi.org/10.1016/j.ins.2024.120533
https://doi.org/10.1007/s10489-024-05456-8
https://doi.org/10.1016/j.eswa.2024.123875
https://doi.org/10.1016/j.knosys.2024.111554

	TSMixerE: Entity Context-Aware Method for Static Knowledge Graph Completion
	1 Introduction
	2 Related Work
	3 Entity Context-Based Static Knowledge Graph Completion Method
	4 Experiments
	5 Conclusion and Perspective
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [612.000 792.000]
>> setpagedevice


