
echT PressScience

Doi:10.32604/cmc.2025.074871

ARTICLE

Hybrid Runtime Detection of Malicious Containers Using eBPF

Jeongeun Ryu1, Riyeong Kim2, Soomin Lee1, Sumin Kim1, Hyunwoo Choi1,2 and Seongmin Kim1,2,*

1Department of Convergence Security Engineering, Sungshin Women’s University, 2, Bomun-Ro 34da-Gil, Seongbuk-Gu, Seoul,
02844, Republic of Korea
2Department of Future Convergence Technology Engineering, Sungshin Women’s University, 2, Bomun-Ro 34da-Gil, Seongbuk-Gu,
Seoul, 02844, Republic of Korea
*Corresponding Author: Seongmin Kim. Email: sm.kim@sungshin.ac.kr
Received: 20 October 2025; Accepted: 28 November 2025; Published: 12 January 2026

ABSTRACT: As containerized environments become increasingly prevalent in cloud-native infrastructures, the need
for effective monitoring and detection of malicious behaviors has become critical. Malicious containers pose significant
risks by exploiting shared host resources, enabling privilege escalation, or launching large-scale attacks such as
cryptomining and botnet activities. Therefore, developing accurate and efficient detection mechanisms is essential for
ensuring the security and stability of containerized systems. To this end, we propose a hybrid detection framework that
leverages the extended Berkeley Packet Filter (eBPF) to monitor container activities directly within the Linux kernel. The
framework simultaneously collects flow-based network metadata and host-based system-call traces, transforms them
into machine-learning features, and applies multi-class classification models to distinguish malicious containers from
benign ones. Using six malicious and four benign container scenarios, our evaluation shows that runtime detection
is feasible with high accuracy: flow-based detection achieved 87.49%, while host-based detection using system-call
sequences reached 98.39%. The performance difference is largely due to similar communication patterns exhibited
by certain malware families which limit the discriminative power of flow-level features. Host-level monitoring, by
contrast, exposes fine-grained behavioral characteristics, such as file-system access patterns, persistence mechanisms,
and resource-management calls that do not appear in network metadata. Our results further demonstrate that both
monitoring modality and preprocessing strategy directly influence model performance. More importantly, combining
flow-based and host-based telemetry in a complementary hybrid approach resolves classification ambiguities that
arise when relying on a single data source. These findings underscore the potential of eBPF-based hybrid analysis
for achieving accurate, low-overhead, and behavior-aware runtime security in containerized environments, and they
establish a practical foundation for developing adaptive and scalable detection mechanisms in modern cloud systems.

KEYWORDS: Container security; container anomaly detection; eBPF; system calls; network flow; machine learning

1 Introduction
The adoption of microservice architecture (MSA) to ensure stable IT operations in cloud environ-

ments enables enterprises to achieve rapid development and adapt to diverse requirements by improving
development productivity and operational automation [1]. Unlike the traditional monolithic approach,
where applications are developed as a single unified service, MSA divides applications into multiple smaller,
manageable services that can be developed, deployed, and scaled independently. Through collaboration
among these autonomous services, MSA-based applications form structured and modular systems. Inspired

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.074871
https://www.techscience.com/doi/10.32604/cmc.2025.074871
mailto:sm.kim@sungshin.ac.kr

2 Comput Mater Contin. 2026;86(3):13

by successful implementations from companies, such as Amazon’s AWS Lambda [2] and Netflix’s open-
source services (OSS) [3], many enterprises are increasingly adopting MSA to achieve independent scalability
and accelerate service innovation [4].

Containers serve as a fundamental building block that enables the scalable and efficient implementation
of MSA [5]. Fundamentally, containers share the host kernel, providing weaker OS-level isolation (e.g., based
on namespaces and cgroups) compared to traditional virtual machines relying on hypervisors. However,
the deployment of even a single malicious container can compromise the entire host environment, granting
attackers opportunities to exfiltrate sensitive data, escape container environments, or intercept internal
communications. Moreover, due to the ephemeral nature and short lifespan of containerized applications,
precise runtime monitoring and threat detection of a single container remain challenging tasks. Worse yet,
the open nature of public container ecosystems (e.g., Docker Hub [6]) substantially lowers the barrier for
attackers to distribute malicious containers at scale, thereby exacerbating security risks. Indeed, a recent
technical report [7] revealed that container- and Kubernetes-related security incidents affect the entire
application life cycle. In particular, runtime incidents were the most prevalent, with 45% of respondents
reporting such experiences, while 44% encountered issues during the build and deployment phases. These
findings suggest that the overall response to the growing threat of container security remains insufficient.

However, there are several challenges to monitoring and detecting malicious containers at runtime.
First, relying solely on existing static analysis tools (e.g., image scanning [8,9]) falls short in accurately
detecting malicious actions executed during runtime. Modern adversaries increasingly employ sophisticated
techniques to evade traditional detection approaches, with each type of malicious container exhibiting
distinct behaviors based on its intended goals. For example, bot containers typically manifest as network-
intensive workloads, while cryptominers often display prolonged and intensive CPU usage on the host.
Second, anomaly detection in cloud-native environments must account for the transient nature of containers
and the rapidly evolving characteristics of workloads. This complexity necessitates comprehensive monitor-
ing not only to identify anomalous traffic patterns or suspicious connections at the network level but also
to detect unusual host-level events. Finally, the scarcity of publicly available datasets specifically focused
on malicious containers poses additional challenges. Generating meaningful datasets involves complicated
procedures—from converting malware samples into container images to executing them within controlled
container environments [10]. Consequently, traditional signature-based detection methods, which rely on
predefined rules common in legacy intrusion detection systems (IDSs), are limited in detecting novel or
sophisticated container-based attacks.

Historically, the decision between host-level and network-level detection approaches mirrors a long-
standing cybersecurity debate over the relative merits of host-based intrusion detection systems (HIDS) and
network-based intrusion detection systems (NIDS). It is known that neither HIDS nor NIDS has proven
universally superior; their effectiveness largely depends on the nature of the threat. Typically, network-level
detection excels against external threats such as denial-of-service attacks, whereas host-level detection is
more effective at identifying local intrusions, including rootkits and privilege escalation attempts [11].

This long-standing discussion naturally extends to containerized environments and leads to the
following core problems addressed in this study:

• Limitation of single-source monitoring: Existing studies typically rely on only one data source
(either network flows or system calls) making it difficult to capture the full behavioral characteristics
of containers.

• Limited behavioral granularity: Most machine learning–based approaches focus solely on binary
classification (benign vs. malicious), without distinguishing between diverse types of malicious behavior.

Comput Mater Contin. 2026;86(3):13 3

• Lack of systematic cross-modality comparison: There is no systematic comparative analysis between
host-level and network-level monitoring, leaving uncertainty about which modality is more effective
under different threat scenarios.

Motivated by this implication, our study addresses the ambiguity surrounding the proper monitoring
level (host-level vs. network-level) for detecting various malicious container behaviors. Specifically, we aim
to answer the following questions: 1) How can we effectively collect comprehensive runtime information from
containers to enable rich feature extraction?, and 2) Which detection approach (host-level or network-level)
provides more accurate machine learning (ML)-based identification of malicious behaviors across different
container variants?

To achieve these goals, we employ eBPF-based runtime monitoring to simultaneously capture network-
level and host-level information at container granularity. By monitoring data directly at the kernel level using
eBPF, we can observe container runtime behavior with minimal overhead. The resulting network-flow and
system-call data capture both external communication patterns and internal execution activities, providing
a rich foundation for feature extraction and behavioral analysis. This enables us to examine whether the
context-dependent effectiveness observed in traditional intrusion detection also applies to containerized
threats such as bots, cryptominers, and trojans. Specifically, network flows are analyzed to capture communi-
cation between containers and external servers, while system-call traces are used to observe internal process
behaviors and detect abnormal system states. Using both flow-based and host-based datasets, we perform
multi-class classification with ML algorithms to distinguish between malicious and benign containers. Across
six malicious and four benign scenarios, host-based detection achieved up to 98.39% accuracy, whereas flow-
based detection reached 87.49%. While host-based data offer higher overall accuracy, flow-based analysis
provides complementary insights for certain scenario-specific threats. These results highlight that each
modality captures distinct behavioral aspects, and integrating both perspectives lays the foundation for a
hybrid detection framework capable of more comprehensive and reliable runtime security.

2 Background and Related Work

2.1 Container Threat Detection
Containers share the host OS kernel and are characterized by short life cycles that allow them to be

created and deleted quickly. They operate in environments where multiple services coexist on a single host,
making it challenging for traditional security solutions (e.g., intrusion detection systems) to closely monitor
each container’s internal activities. Although containers run independently, they share the same kernel,
which remains outside the scope of container-level isolation. As a result, bypassing isolation boundaries
poses potential risks, and existing host-level tools struggle to accurately attribute system events or traffic
to individual containers [12]. Thus, using a single monitoring point at the host level does not fully capture
detailed container information, making real-time observation important. Each container is isolated using
namespaces and assigned a virtual Ethernet (veth) interface, which serves as a virtual network interface.
The veth interface is created as a pair, enabling communication with the external network. For this reason,
the monitoring point should be the interface of each container in order to track the behavior of individual
containers at runtime.

Conventional network monitoring tools running in on-premises environments struggle to directly
observe intra-container traffic due to container isolation. Previous studies [13,14] used monitoring tools such
as perf, strace, and ptrace to monitor system calls. However, these approaches require frequent user-level to
kernel-level context transitions whenever a system call is invoked, resulting in performance overhead.

4 Comput Mater Contin. 2026;86(3):13

As shown in Table 1, recent studies have applied various detection techniques to container and
Kubernetes environments [15–20]. However, most existing approaches rely on a single data modality
(e.g., either network flows [16,20] or system calls [15,17–19]) which limits their ability to capture the full
behavioral spectrum of container activities. Furthermore, many systems focus on binary anomaly detection
[15,18–20], restricting their applicability to diverse and increasingly specialized malicious behaviors.
Although several tools demonstrate high performance, they differ significantly in their collection overhead:
sysdig requires event transfers to user space despite supporting eBPF, tcpdump incurs high overhead due
to packet-level processing, and Elastic’s Beats [21] relies on user-space agents. Only a few studies provide
systematic comparisons across different malicious container types [16,17], leaving uncertainty regarding the
most effective monitoring strategy. These limitations highlight the need for a kernel-level, low-overhead
monitoring mechanism capable of capturing both host and network behaviors.

Table 1: Comparison of threat detection techniques in container and Kubernetes environments

Study Data source Collector Detection method Class Performance Overhead

[15] System call Sysdig
ML-based
(Multilayer
Perceptron)

Binary At least 193%
increase in TPR Medium

[16] Network
traffic Tcpdump ML-based (Naive

Bayes) Multi Accuracy up to
91% High

[17] System call Tetragon ML-based Multi Up to 99.75%
accuracy Low

[18] System call Sysdig
Hybrid unsuper-
vised/supervised

ML-based
Binary

Up to 93%
reduction in false

alarms
Medium

[19] System call
Public dataset
collected by

sysdig

ML-based
(Auto-encoder) Binary Average accuracy

of 99.29% Medium

[20] NetFlow Beats

Probabilistic
Deterministic

Finite Automaton
(PDFA)

Binary Balanced
accuracy 99.2% Medium

Ours
System call
+ network

flow

Tetragon +
bpfFlowMon ML-based Multi

Up to 98.39%
accuracy

(syscall), 87.49%
(flow)

Low

Extended Berkeley Packet Filter (eBPF) [22] is a technology that enables the execution of sandbox
programs in the Linux kernel, allowing for the expansion of existing kernel functionality without mod-
ifying the kernel source code or loading kernel modules. As such, it is widely used for packet filtering,
performance monitoring, and security enforcement, providing detailed real-time insights into system
operations [23]. Notably, the use of eBPF in cloud-native environments provides detailed observability of
containerized applications.

Existing studies [17,24,25] demonstrate the potential for efficient data collection and security monitoring
by using eBPF for low-overhead runtime tracing of system calls and network traffic, and detection based

Comput Mater Contin. 2026;86(3):13 5

on security policies. In [17], eBPF is used to efficiently collect data for machine learning–based detection
of cryptojacking containers and in [24], the authors build a detection and observation mechanism that
mitigates Distributed Denial of Service attacks on Kubernetes through packet filtering using eBPF. Similarly,
Her et al. [25] demonstrates that eBPF-based tools can monitor kernel-level process and network activities
to enforce security policies and provide comprehensive behavioral analysis. In this study, we used two eBPF-
based tools, bpfFlowMon and Tetragon, to monitor network traffic and system calls at runtime, respectively.

2.2 Malware in Cloud-Native Environments
Cloud-native environments are primarily Linux-based, which has led to an increase in attacks that

exploit open-source tools by embedding or exploiting Linux malware. According to Sysdig’s research [26],
open source malware code is the most frequently used, with Mirai being the most common malware in 2024.
XMRig, used for cryptocurrency mining, was also found to be among the most prevalent malware families.
Furthermore, Orca Security’s 2024 State of Cloud Security Report found that 87% of cloud malware attacks
are carried out by known Trojans [27]. These malware spread in cloud-native environments by exploiting
vulnerabilities in cloud infrastructure and applications. Therefore, we focus on their motivations for using
containers and their behavioral differences in containerized environments.

Botnet. Basically, a botnet is a group of devices that are infected and controlled to carry out the attacker’s
commands, and each device becomes a bot and performs malicious tasks. Distributed denial-of-service
(DDoS) botnets, in which an attacker uses infected bots to generate massive amounts of traffic to disrupt
services, are particularly well-suited to container environments. In cloud environments, malicious containers
can easily spread as new instances are added through auto scaling. Thus, when a container is deployed
to act as a DDoS agent, it can cause more damage and spread more rapidly than traditional host-based
botnets. Moreover, the dynamic nature of the container makes tracking difficult, providing a highly favorable
environment for attackers. In addition, because all containers share kernel resources, access to resources
can be exploited to disrupt standard processing or operations [28]. By exploiting these characteristics,
attackers can add DDoS agents to their botnets and rent them out to others to perform DDoS-as-a-Service
operations [29] or monetize them by deploying cryptojacking botnets [30].

Cryptojacking (Mining bot). Cryptojacking, a malicious form of cryptomining, is the unauthorized
use of one’s computing resources to mine cryptocurrency stealthily. Attackers use filtering and obfuscation
techniques to make detection more difficult, as they need to stay on the system for a long period of time for
high returns [31]. Previously, host- and browser-based cryptojacking attacks were the main forms of attack,
but in a cloud environment, cryptojacking attacks are much more efficient because they can utilize vast
amounts of computing resources. In particular, cryptojacking is the most common form of attack against
container-based systems because it is a fast, high-reward attack with minimal effort. Furthermore, since
anyone can publicly upload images to Docker Hub, it is easy to deploy container images and create an
attack environment, which is why cryptomining accounts for the largest percentage of malicious container
images [29].

Trojan. If the container image contains a trojan, malicious code disguised as legitimate software to
conceal its true purpose. Also, there is a risk of spreading the infected image due to the portability of the
container. Since downloaded images are verified based on the presence of a signed manifest, and Docker does
not verify the image checksum downloaded from the manifest, an attacker can send any image with a signed
manifest, leaving the verification process vulnerable [28]. In addition, container infections can be spread by
injecting malicious payloads to bypass offline scanning. Similarly, we can recognize vulnerabilities through a
study [32] that shows that it is possible to inject malicious payloads into the build process of a Docker-based

6 Comput Mater Contin. 2026;86(3):13

Continuous Integration (CI) system without leaving traces in the source code and continuously update the
malware through hidden channels.

In summary, the injection of malicious payloads and the proliferation of malicious containers through
public registries can broaden the scope of damage across cloud-based infrastructures. However, container
security monitoring tools provided by traditional cloud service providers (CSPs) are typically optimized for
their own platforms and have limitations in fully capturing detailed runtime behaviors inside containers.
Containers are characterized by volatile lifecycles, automated deployment, and rapid scalability, which make
security monitoring more complex even as they enable flexible operations. As a result, detailed process
analysis at the container level requires a runtime monitoring approach that is specifically tailored to the
container environment.

3 eBPF-Based Hybrid Container Monitoring Framework
This section describes our hybrid monitoring framework that leverages eBPF to collect host-level and

network-level behavioral data from containers, enabling comprehensive and efficient runtime detection of
malicious activities.

3.1 Motivation and Design Challenges
Modern cloud-native infrastructures demand security solutions that are both lightweight and effective

at runtime. Containers, with their rapid instantiation, require observability tools that minimize overhead
while maintaining behavioral visibility. Moreover, containers operating within pods in Kubernetes environ-
ments share the host’s kernel for executing applications, incurring resource contention [33]. To meet these
constraints, we employ eBPF-based telemetry that operates within the kernel, enabling fine-grained tracing
of both system-level and network-level activities, without requiring context switches to user space.

Our framework adopts a hybrid approach: one based on system-call traces (host-level), and the other
on network flow metadata (flow-level). This design supports the detection of diverse malicious behaviors,
ranging from CPU-bound cryptominers to I/O-driven trojans. However, this design also introduces several
challenges:

• Feature abstraction gap: eBPF offers rich raw telemetry, but transforming it into ML-usable features
requires careful feature engineering and consistent preprocessing [34].

• Scalability and dynamics in Kubernetes environments: Monitoring containers in multi-node clusters
requires dynamic interface binding and data aggregation strategies.

• Limitations in utilizing existing tools: eBPF-based security monitoring tools, such as Tetragon [35]
and bpfFlowMon [36], require explicit configuration for tracing targets, and provide limited built-in
feature abstraction.

This study presents a concrete architecture to address these challenges. We overcome these challenges by
adopting monitoring methods tailored to each data type (detailed in Sections 3.2 and 3.3) and implementing
a systematic data processing pipeline that transforms raw data into features optimized for machine learning
(detailed in Section 4.2). However, scalability across multiple nodes remains a future task, despite being a
critical challenge reflecting real operational environments. Our present focus is on establishing a foundation
for a hybrid detection methodology through an in-depth analysis of the characteristics of data extracted by
both monitoring approaches.

In particular, the challenge of selecting and abstracting relevant features for machine learning remains
largely unaddressed despite the growing adoption of eBPF-based monitoring. Existing studies [17,37] have
examined host-based and network-based telemetry as separate or complementary data sources. However,

Comput Mater Contin. 2026;86(3):13 7

these efforts lack a systematic comparison of how features from each context contribute to the detection of
diverse container threats. In addition, their analyses are often tailored to specific malware families or focus
solely on improving classification performance by aggregating both modalities, rather than evaluating their
individual effectiveness in isolation. Our framework is designed to address this gap by providing a controlled,
side-by-side comparison of host-level and flow-level monitoring strategies across multiple container attack
scenarios. Fig. 1 illustrates the data-processing flow of the proposed architecture, showing how collected
system call and network flow data are preprocessed and subsequently passed to a machine learning–based
detection module.

Figure 1: Overview of the proposed framework

3.2 Flow-Based Monitoring
In dynamic cloud-native environments, where IP addresses and routing paths frequently change due

to autoscaling and network automation, monitoring network behavior requires adaptive strategies. As the
scale and complexity of network traffic increase, traditional packet-level tools (e.g., tcpdump) face challenges
in real-time processing, particularly when handling encrypted traffic. This highlights the impracticality of
capturing and inspecting every packet in modern containerized environments [38]. To address this, we adopt
a flow-based monitoring approach that provides a scalable and lightweight alternative by analyzing traffic
metadata rather than full packet contents.

Our implementation leverages bpfFlowMon [36], an eBPF-based monitoring tool that operates entirely
within the kernel, enabling efficient metadata collection without incurring userspace overhead. Instead of
capturing packets, bpfFlowMon summarizes traffic using flow records based on 5-tuples (source/destination
IPs and ports, protocol), which are less affected by encryption and offer a consistent representation of
communication patterns.

Fig. 2 illustrates the process of monitoring network traffic from a container veth interface using
bpfFlowMon. We deploy bpfFlowMon as a DaemonSet in a Kubernetes cluster to ensure monitoring
coverage across nodes. To minimize unnecessary overhead, we explicitly specify each container’s veth
interface using the -i argument at runtime, allowing the tool to attach BPF programs only to the relevant
interfaces. The monitoring results are exported in JSON format using the tc_flowmon_user binary and
stored periodically. These results include byte and packet counts, retransmission statistics, and TCP window
properties, which are later processed for ML-based detection. All configurations, including target interfaces,
log paths, and execution parameters, are managed through Kubernetes YAML files to ensure reproducibility
and scalability. By capturing unidirectional flow data from each container interface before encapsulation,
our system enables independent analysis of inbound and outbound behaviors.

8 Comput Mater Contin. 2026;86(3):13

Figure 2: eBPF-based network monitoring using bpfFlowMon

3.3 Host-Based Monitoring
While network telemetry captures communication behaviors, many attacks (e.g., trojans or privilege-

escalation attempts) manifest through abnormal system-level activity. For host-level observability, we
leverage Tetragon [35], an eBPF-based monitoring framework capable of real-time tracing within the Linux
kernel. Host-level monitoring is particularly effective for detecting malicious processes by observing low-
level operations, such as file access, process creation, and I/O interactions. Unlike Falco [39], which performs
rule-based filtering in user space after collecting events from the kernel, incurring additional context-switch
overhead, Tetragon applies its filtering logic directly within the kernel, significantly reducing monitoring
overhead. Moreover, Tetragon integrates seamlessly with Kubernetes environments and scales across clusters,
making it suitable for large-scale containerized deployments with consistent security policies.

Tetragon’s monitoring logic is governed by a Tracing Policy, a user-defined specification that designates
which events, arguments, and hook points should be traced. In our framework, we utilize tracepoints, which
are statically defined in the kernel and known for their portability across versions, as the primary hook
mechanism. Specifically, we instrument the sys_enter hook to capture system-call invocation events
before execution. This enables early detection of suspicious behaviors, such as unauthorized file operations
or unusual process activity, which may not be observable through exit-based tracing like sys_exit.

To enhance interpretability and preserve temporal context, we convert raw system-call sequences into n-
gram tokens (with n = 5), fixed-length overlapping sequences of five system-call IDs. This n-gram modeling
preserves call ordering and highlights recurring behavioral patterns that can be leveraged by machine-
learning classifiers. Events are collected through a sidecar container, where Tetragon’s agent pod captures
kernel-level traces and emits them to standard output, from which they are aggregated and prepared for
downstream analysis. This host-based pipeline complements the flow-based approach by exposing internal
behaviors invisible at the network layer, which is especially useful for identifying stealthy or obfuscated
malware payloads. Fig. 3 illustrates the process of monitoring system calls using Tetragon.

Comput Mater Contin. 2026;86(3):13 9

Figure 3: System call monitoring process based on eBPF using Tetragon

4 Dataset and ML Model Description

4.1 Data Collection
To demonstrate the practical effectiveness of our framework on detecting a diverse range of threat

behaviors, we construct a dataset that includes both malicious and benign container scenarios. Table 2 is
a description of the label and workload for each data. The malicious containers were run in a container
environment based on malware binaries of Mirai, Agent, and Coinminer obtained from public Linux-
malware repositories [40] and miner images from Docker Hub [6], and are grouped into three representative
categories: Botnet, Trojan, and Miner. First, we use the Mirai malware to emulate bot-like behavior,
particularly targeting DDoS functionality. Second, we include Agent and Coinminer samples [40], both of
which mimic trojan-like characteristics through deceptive file execution and unauthorized resource use. For
mining-based attacks, we use open-source CPU-based miners such as XMRig [41] and xmr-stak-cpu [42],
both targeting the privacy coin Monero (XMR), known for its preference in stealth cryptojacking. Note that
Trojan is a broad concept that can include a variety of attack behaviors, so we labeled each of them separately.

Table 2: Labels and descriptions for multi-class classification of binaries

Binary Label Description

Botnet Mirai 0

Mirai is a well-known bot malware that infects
vulnerable devices to form a botnet, and various

variants continue to appear. It performs large-scale
DDoS attacks and causes network overload by

remotely controlling the devices.

Miner XMRig,
xmr-stak-cpu 1

These are the most popular legal open source miners
that mine Monero using CPUs. They over-consume the

victim’s computing resources, causing performance
degradation.

(Continued)

10 Comput Mater Contin. 2026;86(3):13

Table 2 (continued)

Binary Label Description

Trojan Agent 2

It communicates with the control server and tricks the
user into executing a file disguised as a normal

program. When the file containing the hidden Trojan
is executed, the system is infected and additional

malicious activities are possible.

Coinminer 3
It is secretly installed on the victim’s system, forcing

cryptocurrency mining operations. This process takes
place without consent and illegally uses resources.

Benign Data-Caching 4
To simulate the behavior of a Memcached-based

twitter data caching server, the client requests cached
data from the Memcached server.

MariaDB 5
Using sysbench, it processes transactions, including

table generation, updating and organizing unindexed
data.

Media-
Streaming 6

It runs an Nginx web server as a streaming server to
host videos. To load the server, clients are responsible

for requesting various videos.

Web-Serving 7

It is connected to the Memcached and database servers
and runs Elgg. The client performs various tasks

related to the social network, such as sending and
receiving messages and interacting with posts.

For benign workloads, we select four representative container types commonly found in cloud service
environments: caching, database, media-streaming, and web-serving. We utilize data-caching, media-
streaming web-serving from CloudSuite 4.0 [43], which offers containerized benchmarks modeled on
real-world service and analytics applications. CloudSuite’s benchmarks are built on real software stacks and
is widely used for performance analysis of cloud-native systems. To represent the database workload, we
deploy MariaDB [44] using its official Docker image. We simulated realistic usage by applying sysbench [45],
a widely used database benchmarking tool, to generate intensive read/write operations on the MariaDB pod
running within the Kubernetes cluster.

4.2 Data Preprocessing
The collected raw data was preprocessed independently for the two monitoring modalities in our

framework. For the flow-based dataset, our framework initially collects 99 metadata fields per network
connection using bpfFlowMon. To prevent label leakage and ensure generalizability, we derived an 87-
dimensional filtered feature set by removing non-informative or identifiable attributes, such as IP addresses
and port numbers. TCP_FLAGS-related fields, originally stored as categorical objects, were converted into
numerical representations through one-hot encoding, and missing values were replaced with zeros to
produce a format suitable for machine learning models. Feature selection was then applied using SelectKBest
combined with the chi-squared test to evaluate the statistical relationship between each feature and the target
labels and to identify the most discriminative attributes. To determine an appropriate number of features,
we compared average classification accuracies across different k-values (k = 5, 10, 20, 30, 40, and 50). For

Comput Mater Contin. 2026;86(3):13 11

k = 20–50, the average accuracies ranged from approximately 85.4% to 85.7%, a difference of less than 1%,
indicating that adding more features produced negligible improvement. Considering the trade-off between
accuracy and model complexity, we selected k = 20 as the final configuration. Based on this analysis, we retain
the top 20 features, which include byte- and packet-level traffic statistics (e.g., total input/output bytes, packet
counts), TCP retransmission rates, and window scaling parameters. These selected features demonstrate the
strongest correlation with the class labels, as shown in Fig. 4. Note that the feature-importance values are
derived from chi-squared statistics and were log-scaled to reduce magnitude differences for visualization.
Notably, input and output byte counts exhibit the highest influence on label prediction, with chi-squared
scores of 28.41 and 29.05 after log transformation.

Figure 4: Importance of the top 20 features. The x-axis represents the log-transformed chi-square scores obtained from
the feature selection process

For system call analysis, we extracted raw traces and converted syscall names to their corresponding
x86_64 system call numbers, representing each event as an integer. The sequence of system calls was then
tokenized into overlapping 5-g segments, where each instance corresponds to a contiguous window of five
system call identifiers. This n-gram modeling technique retains temporal ordering and preserves behavioral
context, while producing a fixed-length representation compatible with both traditional and neural network
models. The resulting dataset captures subtle behavioral patterns at the system-call level, allowing for the
identification of process anomalies and deviations from expected execution sequences.

4.3 Model Training
To evaluate the classification effectiveness of both monitoring modalities, we train a range of machine

learning models on the preprocessed datasets. For each modality, the labeled data is randomly partitioned
into training and testing sets using a 70:30 split. We explore both conventional and neural classifiers to assess
how different algorithms respond to the extracted features. The baseline models include K-Nearest Neighbors
(KNN), Decision Tree (DT), Naive Bayes (NB), and Multi-Layer Perceptron (MLP), all implemented using
the Scikit-Learn library. In addition, we employ two recurrent models, Recurrent Neural Networks (RNNs)

12 Comput Mater Contin. 2026;86(3):13

and Long Short-Term Memory (LSTM) networks, well-suited for processing time-dependent data such
as system-call sequences. Both deep learning models are implemented using TensorFlow and Keras, and
configured with two recurrent layers, Dropout for regularization, and a final softmax activation layer to
support multi-class classification. This training setup allows us to evaluate the learning capacity of each
model across both flow-based and host-based contexts, and to identify which combinations of modality and
classifier achieve the most accurate detection of malicious container behaviors.

5 Evaluation

5.1 Experimental Setting
We evaluate our framework in a single-node Kubernetes environment deployed using Minikube [46] on

Ubuntu 20.04. Specifically, we use Minikube v1.33.1 with Kubernetes v1.30.2, running within a KVM-based
virtual machine. To assess the performance of each classification model, we employ standard evaluation
metrics, including accuracy, precision, recall, and F1-Score. The following metrics are defined based on the
four indicators of the confusion matrix: true positives (TP), false positives (FP), false negatives (FN), and
true negatives (TN). TP denotes the case where the classifier correctly classifies an instance into the class to
which it actually belongs.

• Accuracy represents the proportion of accurate predictions among all predictions.

Accuracy = TP + TN
TP + TN + FP + FN

• Precision shows the proportion of positive predictions that are actually correct.

Precision = TP
TP + FP

• Recall is the proportion of actual positive observations that are correctly identified as positive.

Recall = TP
TP + FN

• F1-Score is defined as the harmonic mean of Precision and Recall.

F1-Score = 2 × Precision × Recall
Precision + Recall

These metrics provide a consistent basis for comparative analysis across both monitoring modalities and
all ML models under evaluation. In this context, TP refers to a container correctly identified as belonging to
a specific class (e.g., botnet, web-serving) by the classifier.

As illustrated in Fig. 5, both Tetragon and bpfFlowMon are deployed as DaemonSets to ensure contin-
uous monitoring across all active pods within the cluster. Note that Tetragon supports runtime system call
tracing by allowing users to explicitly specify the target pod name during execution. In contrast, bpfFlowMon
requires monitoring at the interface level, where each YAML configuration file includes a specific veth
interface to be traced. Consequently, bpfFlowMon instances are deployed separately to track each container’s
network interface independently.

Comput Mater Contin. 2026;86(3):13 13

Figure 5: Overview of Tetragon and bpfFlowMon deployment for monitoring pods in Kubernetes

5.2 Flow-Based Detection Performance
Table 3 presents the classification performance of each model on the network flow dataset. Except for

NB, all models achieved accuracies above 85%, with DT showing the highest accuracy at 87.49%. Because
network flow records were randomly sampled during preprocessing, temporal dependencies between
consecutive flows were largely disrupted, limiting the advantage of sequence-aware models such as RNN
and LSTM, which therefore exhibited similar performance. In addition, the flow dataset contains highly
correlated features, including IN/OUT bytes and IN/OUT packet counts. Since NB assumes conditional
independence among features, it cannot effectively capture these correlations, resulting in inferior learning of
flow patterns and consequently lower performance. Apart from NB, most models demonstrated comparable
results, with DT maintaining the best overall accuracy among the evaluated classifiers.

Table 3: Flow-based detection performance by model

ML Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)
KNN 87.43 81.25 87.43 83.30
DT 87.49 81.33 87.49 83.36
NB 77.28 73.63 77.28 72.81

MLP 85.76 80.04 85.76 81.79
RNN 87.38 81.12 87.38 83.20
LSTM 87.11 80.86 87.11 82.95

Note: The bold values indicate the model with the best flow-based detection
performance.

5.3 Host-Based Detection Performance
Table 4 presents the performance of each model on the system-call dataset. All models achieved

accuracies above 90%, with KNN and DT exceeding 98%. These results suggest that the behavioral patterns
associated with each class are sufficiently regular to be effectively captured by the 5-g representation.
Moreover, LSTM, which can learn longer-term dependencies, outperformed RNN by approximately 2%,
indicating that sequential dependencies within system-call data are meaningfully reflected in the learn-
ing process. In contrast, NB assumes conditional independence among input features and assigns equal

14 Comput Mater Contin. 2026;86(3):13

importance to them, making it unsuitable for modeling order-dependent information in n-gram-based data.
Consequently, NB achieved less than half the accuracy of the other models.

Table 4: Host-based detection performance by model

ML Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)
KNN 98.00 98.03 98.00 97.98
DT 98.39 98.42 98.39 98.37
NB 45.58 40.18 45.58 41.50

MLP 92.58 92.44 92.58 92.30
RNN 95.67 95.76 95.67 95.56
LSTM 97.52 97.57 97.52 97.50

Note: The bold values indicate the model with the best host-based detection
performance.

5.4 Confusion Matrix Analysis of the Best Model
Fig. 6 presents the confusion matrices for the DT model, which achieved the highest performance in

both system-call and network-flow classifications. The system-call model performed well overall, although
some Coinminer samples were misclassified as Agent data. This confusion likely stems from similarities in
resource-intensive operations such as file I/O and memory usage that occur during the process of Agent
infection through file execution. Additionally, certain Agent samples were misclassified as Web-serving
due to overlapping behaviors related to file access. Agents serve static and dynamic files, whereas Web-
serving containers also perform frequent file I/O operations as processes access required libraries and
configuration files.

Figure 6: Confusion matrices for best performing models by monitoring method: (a) Confusion matrix for the decision
tree in flow-based monitoring; (b) Confusion matrix for the decision tree in host-based monitoring. Note that the
numeric labels correspond to the following classes: 0 (Botnet), 1 (Miner), 2 (Trojan-Agent), 3 (Trojan-Coinminer), 4
(Data-Caching), 5 (MariaDB), 6 (Media-Streaming), and 7 (Web-Serving)

The DT model based on network flows also demonstrated strong per-class classification performance
but occasionally misclassified Coinminer as Agent. This is likely due to similarities in communication

Comput Mater Contin. 2026;86(3):13 15

patterns with the attacker’s command-and-control (C&C) server, suggesting the need for additional dis-
criminative network features. In contrast, the host-based system-call approach avoided this confusion
and maintained a stable per-class accuracy of approximately 84% in correctly identifying Coinminer.
This robustness can be attributed to differences in system-call sequence characteristics: Agents exhibit a
wide variety of calls focused on signal processing and file access, whereas Coinminers display continuous
communication, task logging, and memory-mapping–related operations.

6 Discussion
This section discusses the qualitative characteristics of the data that underlie the model’s detection

rationale, building upon the quantitative performance results presented in Section 5. By analyzing the
distinct behavioral patterns exhibited by each malware type at both the host and network levels, we
highlight the significance of these characteristics and emphasize the necessity of the proposed hybrid
detection approach.

Figs. 7 and 8 visualize the distributional differences in IN/OUT bytes and packets (PKTS) between
malicious and benign traffic types. Because the magnitudes of traffic values vary substantially—from very
small C&C communications with low byte and packet counts to the much larger volumes observed in Miner
and benign traffic—a log scale was applied to better reveal overall distribution patterns. To further minimize
visual distortion caused by extreme outliers, theOUT_BYTES andOUT_PKTS values were capped at 106 and
104, respectively, for visualization purposes; however, all data were retained in the analysis phase. As a result
of applying the log scale, benign traffic exhibits a near-linear pattern in which incoming and outgoing bytes
and packets increase proportionally. This reflects typical network behavior observed in normal bidirectional
communications such as web services and database queries. In contrast, botnet traffic shows relatively larger
incoming traffic compared with outgoing traffic for both bytes and packets, distributed across numerous
small communication flows with low transmission volumes and packet counts. This pattern is associated
with maintaining short-lived sessions for C&C communication.

Figure 7: Comparison of In/Out Bytes distributions between malicious and benign traffic (log scale)

Miner traffic, on the other hand, involves continuous and dynamic exchanges, where containers receive
tasks from mining pools and report computed results. As a result, incoming traffic exceeds outgoing traffic
and exhibits a broader distribution, reflecting the process of continuously receiving new jobs or data such as
block headers from mining pool servers. Trojan (Agent) and Trojan (Coinminer) traffic typically originates
from small-scale communications during the initial infection stage, when connections with control servers

16 Comput Mater Contin. 2026;86(3):13

and command channels are established. Both bytes and packet counts are concentrated in the lower range,
producing very similar distribution patterns between the two. Therefore, distinguishing between Agent and
Coinminer traffic based solely on network-level features remains challenging.

Figure 8: Comparison of In/Out Packets distributions between malicious and benign traffic (log scale)

The system-call sequences of malware reveal each threat’s core operational methods and objec-
tives. Fig. 9 reports the top-five sequence statistics for the collected system calls. First, Botnet sequences are
dominated by sendto (44), which clearly reflects the botnet’s representative behavior of continuous com-
munication with C&C servers. By contrast, the samples labeled as Trojan (Coinminer) show frequentwrite
calls (1), indicating a focus on recording mining progress and results; this pattern is consistent with a simple,
single-task mining operation.

The Miner class exhibits a more sophisticated runtime strategy. Its main execution flow contains
repeated calls, such as epoll_pwait (281), sched_yield (24), and nanosleep (35). The use
of epoll_pwait supports efficient I/O with the mining pool, while sched_yield and nanosleep
reduce CPU monopolization, thereby minimizing anomalous system behavior and facilitating evasion of
detection. Finally, the Agent-type trojans display a more diverse distribution of system-call sequences,
consistent with advanced agent behavior. These samples show frequent file-system operations, such
as newfstatat (262) and access (21), memory mapping via mmap (9), and process-persistence related
calls, such as rt_sigaction (13). Such patterns indicate that agents perform preliminary infiltration,
maintain persistence, and prepare for subsequent malicious activities beyond mere resource theft.

Each type of malicious activity exhibits distinct characteristics at both the network-flow and system-
call levels, indicating that detection methods relying solely on a single data source have inherent limitations.
Analyzing these perspectives together enables a more comprehensive and accurate understanding of con-
tainer behaviors. At the network-flow level, botnets may appear as simple periodic communications with
C&C servers, whereas at the system-call level they reveal continuous, repetitive sendto calls characteristic
of DDoS activity. Miner traffic may resemble Web-serving behavior, appearing as high-volume data transfers,
yet the prominent epoll_pwait and sched_yield call patterns indicate mining processes optimized
to minimize performance degradation through efficient resource utilization.

Trojan (Agent) and Trojan (Coinminer) most clearly demonstrate the necessity of comprehensive anal-
ysis. Both show short and small-scale traffic flows at the network level. This is largely attributable to the short,
periodic packet exchanges and similar session durations that occur during the initial infection phase when

Comput Mater Contin. 2026;86(3):13 17

both variants establish a communication channel with the control server. Because such interactions produce
nearly indistinguishable statistical flow patterns, the aggregated features were insufficient to capture their
behavioral differences. To improve discrimination, flow-based analysis would benefit from incorporating
richer temporal and structural information, such as session-to-session relationships, sequence-level trends,
or multidimensional communication profiles.

Figure 9: Frequency distributions of dominant system-call sequences by malware type. Here, the x-axis represents
5-gram sequences, each consisting of five consecutive system call numbers

Conversely, system-call analysis exposes divergent internal behaviors: Trojan (Agent) performs
file-system reconnaissance and persistence operations, whereas Trojan (Coinminer) repeatedly invokes
the write call to record ongoing mining activity. These distinctions clarify the different behavioral
objectives of the two trojan variants. However, occasional misclassifications still arise due to behaviors that
involve common file-access patterns or CPU-related operations, which are shared by both variants. These
similarities reduce the discriminative power of short n-gram sequences. Refining system-call features with
additional contextual information, such as inter-call timing or duration of activity bursts, may help further
differentiate the two classes.

These analyses are derived from a limited dataset, making it difficult to assume universal applicability
to real-world environments. To mitigate this limitation, this dataset comprises multiple execution types
exhibiting distinct behavioral characteristics, aiming to reflect diverse scenarios that may occur in real-
world environments centered around network I/O-intensive, CPU-intensive, and file I/O-intensive activities.
Despite the constraint that the dataset used in this study is based solely on specific types of malicious samples
and benign workloads, it has demonstrated that behavior-based detection of malicious containers using two
modalities operates meaningfully. In real-world environments, the behavior of normal workloads is more
diverse, potentially leading to some false positives. However, by leveraging the diverse features extracted from

18 Comput Mater Contin. 2026;86(3):13

behavioral analysis, this approach is expected to be superior to traditional signature-based detection methods
in reducing false negatives (FN), where unknown malicious behavior is missed. Ultimately, these findings
underscore the value of a hybrid detection approach that integrates network- and host-level telemetry,
enabling robust and precise detection of diverse malicious container behaviors.

In this study, our goal was to examine how different malicious behaviors appear across host- and
network-level perspectives, rather than to maximize performance through naive and immediate hybrid
integration. Because network-flow data and system-call data differ fundamentally in modality—statistical
traffic summaries vs. sequential event traces—constructing a unified feature representation is non-trivial. For
this reason, we evaluated each modality independently to clarify their respective strengths and limitations
for various threat types. Based on these findings, decision-level fusion (e.g., ensemble or voting) represents
a practical direction for future work, as it can combine the outputs of both modalities to resolve ambiguities
inherent in single-source detection and improve the overall robustness of runtime container analysis.

7 Conclusion
In this study, we monitored both system calls and network flows using eBPF-based tools to observe

container behavior at runtime. The collected data were subjected to ML-based multi-class classification,
demonstrating that detailed and behavior-specific detection of containers is feasible. Experimental results
showed that host-based monitoring achieved a maximum accuracy of 98.39%, while network flow-based
monitoring reached 87.49%. A comparison of confusion matrices for the best-performing DT model further
revealed that, although Coinminer samples were misclassified under flow-based analysis whereas system-
call analysis distinguished them correctly, overall per-class classification patterns remained consistent across
both modalities. However, when different malware families communicate with attacker servers in highly
similar ways, flow-based information alone was insufficient to discriminate between agent-type trojans and
Coinminer behavior. In such cases, incorporating host-level information can enhance detection precision.

Flow-based detection relies on packet metadata and therefore cannot identify attacks embedded within
packet payloads. While this limits its ability to detect post-intrusion activities, it can still reveal anomalies
through inter-container communication patterns or interactions with external endpoints. Conversely, host-
based detection effectively identifies malware activities by monitoring internal container operations in real
time, but it provides limited insight into network-specific behaviors. Furthermore, detailed analysis of real-
world network flows remains constrained because packet payloads are not captured. Hence, flow-based
and host-based information should be used complementarily: depending on container behavior, the data
source that offers the most discriminative features may differ, and discrepancies between the two can serve
as additional cues for verification.

Accurate runtime detection of malicious containers can reduce Mean Time to Repair (MTTR) and
enable proactive responses before malicious behaviors escalate, contributing to the stability of containerized
environments. The eBPF-based monitoring approach proposed in this work can be extended to detect various
types of malware containers. Furthermore, because the framework deploys eBPF-based monitoring tools
(bpfFlowMon and Tetragon) as DaemonSets, it is naturally applicable to multi-node Kubernetes clusters.
However, in such distributed environments, pods may be dynamically rescheduled across nodes, requiring
continuous tracking to maintain temporal consistency of container behavior. This necessitates a monitoring
pipeline capable of aggregating and correlating large volumes of flow and system-call data across nodes
without introducing latency. Future work will focus on expanding the spectrum of threats detectable at
runtime and developing efficient, multi-source monitoring mechanisms suitable for large-scale, complex
containerized infrastructures.

Comput Mater Contin. 2026;86(3):13 19

Acknowledgement: Not applicable.

Funding Statement: This work is partly supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. RS-2024-00351898 and No. RS-2025-02263915), the MOTIE under
Training Industrial Security Specialist for High-Tech Industry (RS-2024-00415520) supervised by the Korea Institute for
Advancement of Technology (KIAT), and the MSIT under the ICAN (ICT Challenge and Advanced Network of HRD)
program (No. IITP-2022-RS-2022-00156310) supervised by the Institute of Information & Communication Technology
Planning & Evaluation (IITP).

Author Contributions: The authors confirm contribution to the paper as follows: Conceptualization, Jeongeun Ryu,
Riyeong Kim, Hyunwoo Choi, and Seongmin Kim; methodology, Jeongeun Ryu, Riyeong Kim, and Seongmin Kim;
software, Jeongeun Ryu, Riyeong Kim, and Soomin Lee; validation, Jeongeun Ryu, Hyunwoo Choi, and Seongmin
Kim; investigation, Soomin Lee and Sumin Kim; data curation, Jeongeun Ryu and Soomin Lee; writing—original
draft preparation, Jeongeun Ryu and Seongmin Kim; writing—review and editing, Jeongeun Ryu, Hyunwoo Choi, and
Seongmin Kim; project administration, Seongmin Kim. All authors reviewed the results and approved the final version
of the manuscript.

Availability of Data and Materials: Data available on request from the authors.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Haugeland SG, Nguyen PH, Song H, Chauvel F. Migrating monoliths to microservices-based customizable

multi-tenant cloud-native apps. In: 2021 47th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA). Piscataway, NJ, USA: IEEE; 2021. p. 170–7. doi:10.1109/SEAA53835.2021.00030.

2. Amazon Web Services. AWS Lambda Documentation [Internet]. [cited 2025 May 12]. Available from: https://docs.
aws.amazon.com/lambda/.

3. Netflix. Netflix OSS [Internet]. [cited 2025 May 12]. Available from: https://netflix.github.io/.
4. Nadareishvili I, Mitra R, McLarty M, Amundsen M. Microservice architecture: aligning principles, practices, and

culture. Sebastopol, CA, USA: O’Reilly Media, Inc.; 2016.
5. Bhardwaj A, Krishna CR. Virtualization in cloud computing: moving from hypervisor to containerization—a

survey. Arab J Sci Eng. 2021;46(9):8585–601. doi:10.1007/s13369-021-05553-3.
6. Docker. Docker Hub [Internet]. [cited 2025 May]. Available from: https://hub.docker.com/.
7. Red Hat. The state of Kubernetes security report: 2024 edition [Internet]. 2024 [cited 2025 May 12]. Available from:

https://www.redhat.com/en/engage/state-kubernetes-security-report-2024.
8. Red Hat. Clair [Internet]. GitHub; 2015 [cited 2025 May 12]. Available from: https://github.com/quay/clair.
9. Aqua Security. Trivy [Internet]. GitHub; 2019 [cited 2025 May 12]. Available from: https://github.com/

aquasecurity/trivy.
10. Nousias A, Katsaros E, Syrmos E, Radoglou-Grammatikis P, Lagkas T, Argyriou V, et al. Malware detection in

docker containers: an image is worth a thousand logs. arXiv:250403238. 2025. doi:10.48550/arXiv.2504.03238.
11. Debar H, Dacier M, Wespi A. Towards a taxonomy of intrusion-detection systems. Comput Netw.

1999;31(8):805–22. doi:10.1016/s1389-1286(98)00017-6.
12. Zehra S, Syed HJ, Samad F, Faseeha U, Ahmed H, Khan MK. Securing the shared kernel: exploring kernel isolation

and emerging challenges in modern cloud computing. IEEE Access. 2024;12:179281–317. doi:10.1109/ACCESS.2024.
3507215.

13. Castanhel GR, Heinrich T, Ceschin F, Maziero C. Taking a peek: an evaluation of anomaly detection using system
calls for containers. In: Proceedngs of the 2021 IEEE Symposium on Computers and Communications (ISCC);
2021 Sep 5–8; Athens, Greece: IEEE. p. 1–6. doi:10.1109/iscc53001.2021.9631251.

https://doi.org/10.1109/SEAA53835.2021.00030
https://docs.aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/
https://netflix.github.io/
https://doi.org/10.1007/s13369-021-05553-3
https://hub.docker.com/
https://www.redhat.com/en/engage/state-kubernetes-security-report-2024
https://github.com/quay/clair
https://github.com/aquasecurity/trivy
https://github.com/aquasecurity/trivy
https://doi.org/10.48550/arXiv.2504.03238
https://doi.org/10.1016/s1389-1286(98)00017-6
https://doi.org/10.1109/ACCESS.2024.3507215
https://doi.org/10.1109/ACCESS.2024.3507215
https://doi.org/10.1109/iscc53001.2021.9631251

20 Comput Mater Contin. 2026;86(3):13

14. Karn RR, Kudva P, Huang H, Suneja S, Elfadel IM. Cryptomining detection in container clouds using system
calls and explainable machine learning. IEEE Trans Parallel Distrib Syst. 2020;32(3):674–91. doi:10.1109/tpds.2020.
3029088.

15. Araujo I, Vieira M. Enhancing intrusion detection in containerized services: assessing machine learning models
and an advanced representation for system call data. Comput Secur. 2025;154:104438. doi:10.1016/j.cose.2025.
104438.

16. Aly A, Hamad AM, Al-Qutt M, Fayez M. Real-time multi-class threat detection and adaptive deception in
Kubernetes environments. Sci Rep. 2025;15(1):8924. doi:10.1038/s41598-025-91606-8.

17. Kim R, Ryu J, Kim S, Lee S, Kim S. Detecting cryptojacking containers using eBPF-based security runtime and
machine learning. Electronics. 2025;14(6):1208. doi:10.3390/electronics14061208.

18. Tunde-Onadele O, Lin Y, Gu X, He J, Latapie H. Self-supervised machine learning framework for online container
security attack detection. ACM Trans Autonom Adapt Syst. 2024;19(3):1–28. doi:10.1145/3665795.

19. El Khairi A, Caselli M, Knierim C, Peter A, Continella A. Contextualizing system calls in containers for anomaly-
based intrusion detection. In: Proceedings of the 2022 on Cloud Computing Security Workshop (CCSW 2022).
Piscataway, NJ, USA: IEEE; 2022. p. 9–21. doi:10.1145/3560810.3564266.

20. Cao C, Blaise A, Verwer S, Rebecchi F. Learning state machines to monitor and detect anomalies on a kubernetes
cluster. In: Proceedings of the 17th International Conference on Availability, Reliability and Security. New York,
NY, USA: ACM; 2022. p. 1–9. doi:10.1145/3538969.3543810.

21. Elastic. Beats [Internet]. [cited 2025 Nov 12]. Available from: https://www.elastic.co/docs/reference/beats.
22. eBPF [Internet]. [cited 2024 Aug 29]. Available from: https://ebpf.io/.
23. Pinnapareddy NR. eBPF for high-performance networking and security in cloud-native environments. Int J Sci

Res Arch. 2025;15(2):207–25. doi:10.30574/ijsra.2025.15.2.1264.
24. Sadiq A, Syed HJ, Ansari AA, Ibrahim AO, Alohaly M, Elsadig M. Detection of denial of service attack in cloud

based kubernetes using eBPF. Appl Sci. 2023;13(8):4700. doi:10.3390/app13084700.
25. Her J, Kim J, Kim J, Lee S. An in-depth analysis of eBPF-based system security tools in cloud-native environments.

IEEE Access. 2025;13:155588–604. doi:10.1109/ACCESS.2025.3605432.
26. Sysdig. 2025 Cloud-native security and usage report [Internet]. 2025 [cited 2025 May 15]. Available from: https://

sysdig.com/2025-cloud-native-security-and-usage-report/.
27. Orca Security. 2024 State of Cloud Security Report [Internet]. 2024 [cited 2025 May 15]. Available from: https://

orca.security/wp-content/uploads/2024/02/2024-State-of-Cloud-Security-Report.pdf.
28. Yasrab R. Mitigating docker security issues. arXiv:180405039. 2018. doi:10.48550/arXiv.1804.05039.
29. Sysdig. 2022 Cloud-Native Security and Usage Report [Internet]. 2022 [cited 2024 Aug 20]. Available from: https://

sysdig.com/2022-cloud-native-security-and-usage-report/.
30. Darktrace. Uncovering the Sysrv-Hello Crypto-Jacking Bonet [Internet]. 2022 [cited 2025 Feb 23]. Available from:

https://www.darktrace.com/blog/worm-like-propagation-of-sysrv-hello-crypto-jacking-botnet.
31. Tekiner E, Acar A, Uluagac AS, Kirda E, Selcuk AA. SoK: cryptojacking malware. In: 2021 IEEE European Sym-

posium on Security and Privacy (EuroS&P). Piscataway, NJ, USA: IEEE; 2021. p. 120–39. doi:10.1109/eurosp51992.
2021.00019.

32. Moriconi F, Neergaard AI, Georget L, Aubertin S, Francillon A. Reflections on trusting docker: invisible malware
in continuous integration systems. In: 2023 IEEE Security and Privacy Workshops (SPW). Piscataway, NJ, USA:
IEEE; 2023. p. 219–27. doi:10.1109/SPW59333.2023.00025.

33. Soldani D, Nahi P, Bour H, Jafarizadeh S, Soliman MF, Di Giovanna L, et al. eBPF: a new approach to cloud-native
observability, networking and security for current (5 g) and future mobile networks (6 g and beyond). IEEE Access.
2023;11:57174–202. doi:10.1109/access.2023.3281480.

34. Bachl M, Fabini J, Zseby T. A flow-based IDS using Machine Learning in eBPF. arXiv:210209980. 2021. doi:10.
48550/arXiv.2102.09980.

35. Tetragon. eBPF-based Security Observability and Runtime Enforcement [Internet]. [cited 2024 Aug 11]. Available
from: https://tetragon.io/.

https://doi.org/10.1109/tpds.2020.3029088
https://doi.org/10.1109/tpds.2020.3029088
https://doi.org/10.1016/j.cose.2025.104438
https://doi.org/10.1016/j.cose.2025.104438
https://doi.org/10.1038/s41598-025-91606-8
https://doi.org/10.3390/electronics14061208
https://doi.org/10.1145/3665795
https://doi.org/10.1145/3560810.3564266
https://doi.org/10.1145/3538969.3543810
https://www.elastic.co/docs/reference/beats
https://ebpf.io/
https://doi.org/10.30574/ijsra.2025.15.2.1264
https://doi.org/10.3390/app13084700
https://doi.org/10.1109/ACCESS.2025.3605432
https://sysdig.com/2025-cloud-native-security-and-usage-report/
https://sysdig.com/2025-cloud-native-security-and-usage-report/
https://orca.security/wp-content/uploads/2024/02/2024-State-of-Cloud-Security-Report.pdf
https://orca.security/wp-content/uploads/2024/02/2024-State-of-Cloud-Security-Report.pdf
https://doi.org/10.48550/arXiv.1804.05039
https://sysdig.com/2022-cloud-native-security-and-usage-report/
https://sysdig.com/2022-cloud-native-security-and-usage-report/
https://www.darktrace.com/blog/worm-like-propagation-of-sysrv-hello-crypto-jacking-botnet
https://doi.org/10.1109/eurosp51992.2021.00019
https://doi.org/10.1109/eurosp51992.2021.00019
https://doi.org/10.1109/SPW59333.2023.00025
https://doi.org/10.1109/access.2023.3281480
https://doi.org/10.48550/arXiv.2102.09980
https://doi.org/10.48550/arXiv.2102.09980
https://tetragon.io/

Comput Mater Contin. 2026;86(3):13 21

36. mattereppe. bpfFlowMon [Internet]. GitHub; 2021 [cited 2024 Aug 6]. Available from: https://github.com/
mattereppe/bpf_flowmon.

37. Liu J, Simsek M, Kantarci B, Bagheri M, Djukic P. Collaborative feature maps of networks and hosts for AI-driven
intrusion detection. In: GLOBECOM 2022-2022 IEEE Global Communications Conference. Piscataway, NJ, USA:
IEEE; 2022. p. 2662–7. doi:10.1109/GLOBECOM48099.2022.10000985.

38. Sharma R, Guleria A, Singla R. An overview of flow-based anomaly detection. Int J Commun Netw Distrib Syst.
2018;21(2):220–40. doi:10.1504/ijcnds.2018.094221.

39. Falco. The Falco Project [Internet]. 2019 [cited 2025 Jul 20]. Available from: https://falco.org/docs/.
40. Brown T. Linux-malware [Internet]. [cited 2024 Oct 30]. Available from: https://github.com/timb-machine/linux-

malware/tree/main/malware/binaries.
41. XMRig [Internet]. [cited 2024 Aug 15]. Available from: https://hub.docker.com/r/miningcontainers/xmrig.
42. xmr-stak-cpu [Internet]. [cited 2024 Aug 15]. Available from: https://hub.docker.com/r/timonmat/xmr-stak-cpu/.
43. CloudSuite [Internet]. [cited 2024 Aug 15]. Available from: https://github.com/parsa-epfl/cloudsuite.
44. MariaDB [Internet]. [cited 2024 Aug 15]. Available from: https://hub.docker.com/_/mariadb.
45. Kopytov A. sysbench [Internet]. [cited 2025 Jan 6]. Available from: https://github.com/akopytov/sysbench.
46. Minikube. Welcome! [Internet]. 2016 [cited 2024 Aug 15]. Available from: https://minikube.sigs.k8s.io/docs/.

https://github.com/mattereppe/bpf_flowmon
https://github.com/mattereppe/bpf_flowmon
https://doi.org/10.1109/GLOBECOM48099.2022.10000985
https://doi.org/10.1504/ijcnds.2018.094221
https://falco.org/docs/
https://github.com/timb-machine/linux-malware/tree/main/malware/binaries
https://github.com/timb-machine/linux-malware/tree/main/malware/binaries
https://hub.docker.com/r/miningcontainers/xmrig
https://hub.docker.com/r/timonmat/xmr-stak-cpu/
https://github.com/parsa-epfl/cloudsuite
https://hub.docker.com/_/mariadb
https://github.com/akopytov/sysbench
https://minikube.sigs.k8s.io/docs/

	Hybrid Runtime Detection of Malicious Containers Using eBPF
	1 Introduction
	2 Background and Related Work
	3 eBPF-Based Hybrid Container Monitoring Framework
	4 Dataset and ML Model Description
	5 Evaluation
	6 Discussion
	7 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

