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ABSTRACT: Predictive maintenance (PdM) is vital for ensuring the reliability, safety, and cost efficiency of heavy-
duty vehicle fleets. However, real-world sensor data are often highly imbalanced, noisy, and temporally irregular,
posing significant challenges to model robustness and deployment. Using multivariate time-series data from Scania
trucks, this study proposes a novel PAM framework that integrates efficient feature summarization with cost-sensitive
hierarchical classification. First, the proposed last_k_summary method transforms recent operational records into
compact statistical and trend-based descriptors while preserving missingness, allowing LightGBM to leverage its
inherent split rules without ad-hoc imputation. Then, a two-stage Light GBM framework is developed for fault detection
and severity classification: Stage A performs safety-prioritized fault screening (normal vs. fault) with a false-negative-
weighted objective, and Stage B refines the detected faults into four severity levels through a cascaded hierarchy of binary
classifiers. Under the official cost matrix of the IDA Industrial Challenge, the framework achieves total misclassification
costs of 36,113 (validation) and 36,314 (test), outperforming XGBoost and Bi-LSTM by 3.8%-13.5% while maintaining
high recall for the safety-critical class (0.83 validation, 0.77 test). These results demonstrate that the proposed approach
not only improves predictive accuracy but also provides a practical and deployable PAM solution that reduces
maintenance cost, enhances fleet safety, and supports data-driven decision-making in industrial environments.

KEYWORDS: Predictive maintenance; two-stage classification; cost-based evaluation; LightGBM; scania component
X dataset

1 Introduction

The fundamental objectives of vehicle maintenance are to ensure operational safety, maintain fleet
availability, and minimize the total cost of ownership (TCO) [I]. Traditional strategies include run-to-
failure (reactive) maintenance, where repairs are performed only after a failure occurs, and time-based
preventive maintenance, where components are replaced at fixed intervals or mileage thresholds. The former
risks unplanned downtime and costly emergency repairs, while the latter ignores the actual degradation
state or remaining useful life (RUL) of components, often resulting in unnecessary replacements and
over-maintenance [2]. For high-value assets such as heavy-duty fleets, downtime further disrupts logistics
operations and regulatory compliance, making it difficult to achieve optimal efficiency through these
conventional strategies [3].

To overcome these limitations, predictive maintenance (PdM) has emerged as a data-driven
paradigm [4]. PAM utilizes sensor data, diagnostic logs, and operational histories to forecast potential
failures in advance, enabling timely and cost-effective interventions [5]. By detecting incipient failures early,
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PdM reduces downtime and prevents unnecessary maintenance actions, thereby improving both resource
allocation and fleet-wide availability.

Despite these advantages, practical PAM implementation remains challenging due to four key issues:

(1) Data imbalance: operational datasets are dominated by normal driving records, while fault samples
are scarce, limiting the performance of supervised learning models [6].

(2) Asymmetric cost structure: false negatives (missed detections) are operationally far more costly
than false positives (unnecessary inspections), making accuracy alone an inadequate evaluation
criterion [7]. This motivates the adoption of application-specific cost matrices, such as those used in
the IDA Challenge [8].

(3) Data quality: industrial datasets often contain missing values, distributional drift, and multivariate
dependencies, requiring models that are robust to incomplete, noisy, and non-stationary inputs.

(4) Research-practice gap: in real-world operations, decision-making typically focuses on whether
intervention is needed rather than identifying the exact root cause. Therefore, distinguishing between
normal and imminent-failure states with high recall is the top operational priority [9].

Moreover, accurate detection of incipient failures depends on recognizing subtle warning patterns
in recent operational observations. However, real-world logs frequently contain cumulative counters and
irregular sampling intervals, which can introduce instability and reduce generalization in end-to-end
sequence models [10].

To address these challenges, this study introduces two core innovations. First, the proposed
last_k_summary representation compresses the most recent k observations into compact descriptors of
statistics, variability, and trend, enabling robust detection of incipient failure signatures under irregular
sampling and noisy conditions. Second, a two-stage hierarchical LightGBM framework is developed: Stage
A broadly screens potential faults, and Stage B refines severity categorization according to asymmetric risk
levels. By integrating last_k_summary with hierarchical decision-making, the proposed framework aligns
model behavior with cost asymmetry and operational priorities, providing an effective and computationally
efficient PAM solution.

The main contributions of this study are summarized as follows:

(1)  We propose the last_k_summary feature engineering method, which condenses the most recent k
observations into statistical descriptors of trend, variability, and volatility, enabling direct detection of
incipient failures without complex sequence modeling.

(2) Based on this representation, we design a two-stage hierarchical LightGBM classifier in which Stage A
broadly identifies fault candidates and Stage B refines severity categorization, achieving high recall for
incipient failures while reducing total operational cost.

(3) Wealign model training, threshold optimization, and evaluation with the official cost-matrix protocol
defined in the IDA Challenge, ensuring fair and operationally meaningful benchmarking under the
competition-standard metric.

The remainder of this paper is organized as follows. Section 2 reviews related work. Section 3 presents
the proposed methodology, including feature construction and hierarchical model design. Section 4 reports
experimental results using the Scania Component X dataset and compares performance against existing
approaches. Section 5 discusses limitations and implications, focusing on cost asymmetry and dataset
imbalance. Finally, Section 6 concludes the study and outlines directions for future research.
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2 Related Works

With the advent of Industry 4.0, industrial assets have become increasingly integrated with IoT and
big data technologies, accelerating digitalization, connectivity, and intelligence. This integration has enabled
the large-scale collection of operational data, including sensor signals, load conditions, event logs, alarms,
and repair histories [11]. When systematically processed and analyzed, such multidimensional data provide
critical insights into equipment health, supporting both accurate diagnostics and reliable prediction of
maintenance timing.

As a result, data-driven maintenance strategies are widely recognized as effective for reducing unnec-
essary interventions, improving operational efficiency, preventing unplanned downtime, enhancing worker
safety, and extending the service life of mission-critical components [12,13]. These advantages have made
data-centric approaches indispensable in modern industrial environments, where operational continuity and
cost efficiency are regarded as primary priorities.

Within this transformation, Condition Monitoring (CM) has attracted significant attention as an essen-
tial precursor to predictive strategies [14]. Qi et al. [15] reviewed time-series signal-based CM approaches
and highlighted that Fourier and Wavelet Transform techniques, combined with feature extraction and
selection methods, are effective tools for assessing the condition of diverse industrial machinery. Marti-
Puig et al. [16] further demonstrated the feasibility of Al-driven CM in manufacturing systems through
a case study on wooden-piece production, which showcased real-time anomaly detection and improved
maintenance efficiency.

These CM studies demonstrated the potential of monitoring techniques to support maintenance
decisions and provided a solid foundation for the evolution of Predictive Maintenance (PdM), particularly
with the emergence of Machine Learning (ML) and Deep Learning (DL) methods that enable automated
and adaptive modeling of complex data sources.

2.1 Machine Learning-Based PdM Research

In the early stages of data-driven maintenance, ML techniques were widely adopted due to their
interpretability, modest data requirements, and proven success in fault classification. Kusumaningrum
et al. [17] developed a PAM framework using real-time multisensory streams in a smart manufacturing
environment, comparing Support Vector Machines (SVM) and Random Forest (RF). Their findings revealed
that RF consistently outperformed SVM in both diagnostics and fault prediction accuracy, illustrating the
strength of ensemble learning for heterogeneous sensor data.

Arena et al. [18] conducted a systematic review of PAM research in the automotive sector, identifying
how statistical inference, probabilistic reasoning, and classical ML techniques (e.g., logistic regression, SVM,
and k-Nearest Neighbors) have been applied in engine and electrical system fault detection. Vollert et al. [19]
broadened this perspective through a cross-industry survey, outlining persistent challenges such as the
scarcity of labeled datasets, the reliance on supervised learning, the limited interpretability of complex
models, and the need for multi-source data fusion.

Building on this foundation, Ansari et al. [20] introduced PriMa, a knowledge-based ML framework
that integrates text-based fault histories with predictive analytics, recommender systems, and visualization
dashboards. Their architecture addressed challenges such as feature engineering, cost sensitivity, and class
imbalance, aligning more closely with industrial deployment requirements.

Collectively, these studies illustrate the versatility of ML approaches for PAM but also highlight key
limitations, including shallow feature representation, dependence on handcrafted feature engineering, and
limited robustness under irregular and noisy industrial conditions.
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2.2 Deep Learning-Based PdM Research

With the rapid advancement of Industry 4.0, DL approaches have emerged as transformative tools
for PdM, offering powerful representation-learning capabilities and the ability to model high-dimensional,
complex, and nonlinear time-series data. Li et al. [21] comprehensively reviewed over 249 PdM studies,
categorizing representative DL architectures such as DNNs, CNNs, SAEs, DBNs, and DRNNS, and outlining
their strengths, domains of application, and trade-offs to guide model selection.

Deng and Zhou [22] advanced this line of research by combining CNN-based feature extraction,
LSTM-based temporal dependency learning, and an attention mechanism into a CNN-LSTM-Attention
model for aircraft engine RUL prediction. Their results demonstrated superior performance in capturing
both long-term and short-term dependencies, highlighting the value of hybrid architectures for dynamic
temporal signals.

Serradilla et al. [23] further analyzed recent DL models for PAM, comparing architectures, benchmark-
ing performance, and evaluating their applicability across different PAM stages. Cummins et al. [24] focused
on Explainable Predictive Maintenance (XPM) and reviewed how SHAP, LIME, and Grad-CAM can be
integrated into PAM workflows. They emphasized that explainability is essential for fostering operator trust,
ensuring transparency, and enabling informed decision-making in safety-critical industrial systems.

While DL offers significant promise, persistent challenges remain, such as the scarcity of fault-specific
data, the high computational cost of training and deployment, the black-box nature of deep models, and the
limited transferability of learned representations across heterogeneous fleets and operational contexts.

2.3 Research on Scania Component X and the IDA 2024 Industrial Challenge

In recent years, research has increasingly focused on domain-specific datasets that closely mirror indus-
trial conditions. Among them, the Scania Component X dataset, derived from large-scale fleet operations,
has been widely utilized in the IDA 2024 Industrial Challenge, which defined impending-failure classification
and cost-sensitive evaluation as benchmark tasks.

Parton et al. [25] leveraged path-signature and visibility-graph transformations of time-series data,
applying Graph Neural Networks (GNNSs) to capture inter-sensor dependencies. Yang and Igbal [26]
extracted sliding-window features using the tsfresh library and benchmarked ML models such as XGBoost
and Random Forest. By adopting survival regression (XGBoost-AFT) and contextual clustering based on
vehicle specifications, they improved predictive accuracy under cost-sensitive protocols.

Dimidov et al. [27] assumed monotonic degradation patterns in Component X and developed a
simplified PdAM framework using tabular ML models. Their AutoML-based pipeline reduced develop-
ment complexity and achieved lower operational cost than baseline methods. More recently, Zhong
and Wang [28] evaluated multiple DL architectures—including MLP, CNN, ResNet18, Bi-LSTM, and Bi-
LSTM-Attention—on Component X data. Their workflow combined correlation-based feature reduction,
imputation, normalization, padding, and data augmentation, while mitigating class imbalance with weighted
sampling. Their results showed that CNN achieved the highest statistical accuracy but incurred high
operational costs, whereas RNN-based models achieved lower accuracy but better cost efficiency. They
concluded that PAM solutions must explicitly account for asymmetric cost structures rather than focusing
solely on statistical accuracy to ensure operational viability.

Although both ML-based and DL-based approaches have made substantial progress, significant chal-
lenges remain in deploying PAM systems in complex industrial environments. A major difficulty lies in
minimizing operational cost while ensuring reliable detection of severe failures. Furthermore, industrial
constraints such as cost asymmetry, class imbalance, irregular sampling, and noisy sensor data are not
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consistently addressed in algorithmic design. These limitations restrict the practical adoption of PAM in fleet
operations, where decision-making must balance cost efficiency, operational reliability, and user trust.

To address these challenges, the present study develops a compact, trend-oriented feature representa-
tion, termed last_k_summary, which efficiently captures degradation patterns from recent operational cycles
without relying on complex sequential architectures. Based on this representation, a two-stage LightGBM
framework is designed to separate fault detection (Stage A) from severity classification (Stage B), ensuring
cost-sensitive decision-making across heterogeneous operating conditions.

By combining lightweight feature summarization with hierarchical classification, the proposed
framework achieves a strong balance between accuracy, interpretability, and deployability. This design
simultaneously enhances cost efficiency and fault detection reliability, providing a practical and data-driven
solution for real-world predictive maintenance of heavy-duty fleets.

3 Method

This section presents the methodology adopted in this study. First, we introduce the dataset employed
in the IDA 2024 Industrial Challenge, including the formal definition of the problem, dataset composi-
tion, and the cost-matrix-based evaluation criterion. We then describe the preprocessing procedures that
transform multivariate time-series signals into vehicle-level tabular representations. Finally, we detail the
proposed hierarchical LightGBM framework, which is specifically designed to address the requirements of
cost-sensitive impending-failures prediction. An overview of the framework is depicted in Fig. 1.

e — Stage A Stage B
Dataset
Stratified k-fold LightGBM(4 VS
i cv 1,2,3
preprocessing Class 1,2,34 (1,2.3)) _ —
R S . OOF Train(Binary > LightGBM(3 VS Final level classification
i inputdata ! LightGBM) (1,2) {0 (Normal),
| - ' Threshold 1-4 (Severity levels)}
| O] ! reshol LightGBM(2 VS 1)
] features 1 optimization
i | Full training with Final severity
: features : fixed 1 classification
' Last_k_summary !
1 1 (. (. J

features

_____________________

Output : Class 0
Figure 1: Overview of the proposed two-stage LightGBM framework

3.1 IDA 2024 Challenge Dataset
3.1.1 Problem Definition

We consider a fleet of vehicles V = {V,, V4, ..., Vy_;} monitored through onboard sensors. For each
vehicle V;, the sensor signals are represented as a multivariate time-series X; € RT>M wwhere T; denotes the
number of time steps and M the number of features.

Each observation at time step ¢ is denoted as x; ; € RM. These signals are designed to be monotonically
non-decreasing since they primarily consist of cumulative counters and histogram-type features. However,
in practice, telemetry irregularities and sensor noise may introduce temporary glitches and non-monotonic
artifacts. Each time step ¢ is associated with a degradation label y; ; € {0,1,2, 3,4}, representing the severity
level of the monitored component at that time. The complete sequence of labels for vehicle V; is denoted
as Y, = [y1.1, ¥1,2>- - -» 1,1, |- The predictive task is formally defined as inferring the final severity level of
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each vehicle based on its historical sensor time-series. Specifically, given a sequence X;, the objective is to
predict the degradation level of the last observation y; r,, which reflects the ultimate health state of the
monitored component.

3.1.2 Dataset Overview

Based on this formulation, we utilize the Scania Component X dataset, released in the IDA Industrial
Challenge 2024 [29]. This dataset contains real-world multivariate time-series collected from 33,641 heavy-
duty trucks, split into training (70%, 23,550 vehicles), validation (15%, 5046 vehicles), and test (15%, 5045
vehicles) sets. It is composed of three parts:

(1)  Vehicle specifications: eight categorical variables (Spec_0-Spec_7), including engine type, wheel
configuration, and other static attributes.

(2) Time-to-event information: labels on whether Component X failed during the study period
(in_study_repair) and the time index of repair (length_of_study_time_step). These are provided only
for training; validation and test sets contain only the final class label.

(3) Operational readouts: 107 time-series variables, divided into two categories. Single-counter features
are cumulative and typically monotonically increasing. Histogram-based features represent frequency
distributions of operational ranges. Although post-processed to be monotonic non-decreasing, the raw
signals still contain transient glitches and occasional cumulative downward steps due to sensor and
telemetry artifacts.

In addition, the dataset is characterized by a pronounced class imbalance, as shown in Fig. 2. While
the majority of vehicles belong to class 0 (normal), classes 1-3 are extremely sparse, and class 4 remains
underrepresented relative to class 0. This imbalance presents a significant challenge for supervised learning.

Vehicle Class Distribution
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Figure 2: Class imbalance in the training dataset

3.1.3 Cost-Matrix Evaluation

Unlike conventional classification tasks, the challenge employs a cost-sensitive evaluation metric in
which each misclassification is assigned a penalty depending on the actual and predicted severity classes.
In particular, false negatives, which correspond to predicting class 0 (normal) when the true class is 4
(impending failure), incur the heaviest penalty. The overall cost is then defined as:
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Cost(CM) = > > Cli, j1 M[i, j] 4y)

i=0 j=0

When C i, j] is the penalty for predicting class j when the actual class is i, and M [i, j] denotes the
corresponding entry of the confusion matrix. The penalty matrix is summarized in Table 1.

Table 1: Costs matrix

Predicted
Actual O 1 2 3 4
0 0 7 8 9 10
200 0 7 8
300 200 0 7

9
8
400 300 200 O 7
500 400 300 200 O

= W N =

3.2 Data Preprocessing

To construct vehicle-level training data, we integrated three major sources: class labels, operational
readouts, and vehicle specifications. The operational readouts are time-series with multiple observations per
vehicle. To align these, all signals were merged with vehicle specifications, using the final class label as the
reference. Categorical variables were normalized to maintain consistency across training and validation sets.

Missing values accounted for less than 1% of the entire dataset, indicating that their occurrence was rela-
tively limited. rather than applying external imputation or aggregation techniques, we leveraged Light GBM’s
inherent capability to handle missing values through dedicated split rules. This design choice preserved the
authenticity of the raw telemetry while avoiding potential distortions or artificial discontinuities that may
arise from manual preprocessing.

To convert sequences into fixed-length vectors, we employed the last_k_summary method. For each
vehicle, the most recent k = 20 observations were extracted, and a variety of statistical and trend-based
descriptors were computed. These included basic statistics (mean, standard deviation, minimum, maxi-
mum), trend measures (ordinary least-squares slope, robust slope via Theil-Sen estimator, exponentially
weighted slope, slope differences between first and second halves), as well as change indicators (deltas
and ratios between the first and last observations). The resulting single-row representation per vehicle was
concatenated with encoded specifications, yielding the final tabular input for model training. The detailed
procedure for constructing these features is presented in Algorithm 1.

Algorithm 1: Last_k_summary

Input: time-sorted dataset DF, window length k, specification columns SPEC_COLS
Output: summarized table OUT and feature list AGG_COLS

1: procedure last_k_summary

2: Identify numeric features (NUM_COLS) excluding vehicle_id, time_step, class

3: Initialize empty list OUT_ROWS

4: for each vehicle v in DF do

5:  Extract last k records of vehiclev — GK

6: Create ROW = {vehicle_id: v}

(Continued)
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Algorithm 1 (continued)

7: for each feature c in NUM_COLS do
8:  Ifno data, assign NaN to all descriptors and continue
9:  Compute mean, std, min, max from GK|[c]

10: Calculate slopes (linear, robust, EWLS, half-window) and normalized trend
11: Compute change (delta = last — first) and ratio (last/first)
12: end for

13:  Copy latest specification values from GK to ROW

14:  Append ROW to OUT_ROWS

15: end for

16: Form OUT = DataFrame(OUT_ROWS) sorted by vehicle_id
17: Define AGG_COLS = all columns excluding vehicle_id

18: return OUT, AGG_COLS

19: end procedure

This procedure summarizes the most recent k readings of each numeric signal into a single vehicle-level
record, providing a compact yet information-rich representation for subsequent LightGBM modeling. The
rationale for adopting the last_k_summary representation is twofold. First, impending-failure signatures are
more likely to emerge toward the end of a vehicle’s operational trajectory, and emphasizing the most recent k
observations therefore enhances sensitivity to degradation signals. Second, decision tree-based models such
as LightGBM are inherently more effective with fixed-dimensional tabular inputs than with raw temporal
sequences. In particular, tree ensembles partition the feature space by recursively selecting split points that
yield the greatest reduction in loss. Providing multiple aggregated features through last_k_summary enables
the model to explore diverse partitioning paths, thereby improving predictive accuracy and interpretability
under cost-sensitive conditions. This transformation not only aligns with the inductive bias of LightGBM
but also reinforces its ability to capture degradation-relevant structures in high dimensional feature space.

The choice of k = 20 reflects both the empirical distribution of sequence lengths and operational con-
siderations. As shown in Fig. 3, sequence lengths are concentrated in the shorter range (0-40 observations),
and very long histories are relatively rare. To avoid excluding vehicles with shorter histories, we summarize
the last min (T;, 20) observations for each vehicle; when T; < 20, all available records are used without
artificial padding.

To further validate the choice of k, we compared performance under three settings (k = 10, 20, 30)
using the total operational cost (Costs) as the primary evaluation metric. As summarized in Table 2, the
configuration k = 20 achieved the lowest validation and test costs, indicating the best trade-off between
responsiveness to degradation trends and robustness against noise. Smaller windows (k = 10) tended to
miss gradual degradation cues, while larger windows (k = 30) diluted recent fault-relevant information with
redundant history. Therefore, k = 20 was adopted as the default configuration for all subsequent experiments.

Table 2: Comparison of cost performance for different k values in the last_k_summary representation

Window size (K) Validation cost Test cost Remarks
10 40,111 39,897  Too short (misses slow degradation)
20 36,113 36,114 Best trade-off

30 38,460 38,118 Long history adds noise
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Distribution of Sequence Lengths per Vehicle
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Figure 3: Distribution of sequence lengths in Scania dataset

Formally, let N denote the number of vehicles and K the number of features derived from
last_k_summary and specifications. The dataset can be expressed as:

X e RNK (2)
x;eRXi=1,2,...,N (3)
y€{0,1,2,3,4} 4)

where each row vector x; corresponds to one vehicle and each column corresponds to a statistical descriptor,
trend measure, change indicator, or categorical specification. The severity label y; denotes the degradation
class, with higher values reflecting more advanced deterioration and closer proximity to impending failure.

Equivalently, the dataset can be represented in expanded form as:

T
X, Xn X2 o XK
e
X X X e X

Xx=|72|={7 T TR (5)
T
XN XN1 XN2 ' XNK

3.3 Proposed Methodology

Considering the inherent class imbalance and the cost-sensitive evaluation protocol of the Scania
Component X dataset, this study proposes a hierarchical Two-stage LightGBM framework tailored for
impending-failure prediction. The framework is designed to satisfy two competing requirements by ensuring
that impending failures are not overlooked and by simultaneously reducing the overall operational cost.

In Stage A, a binary LightGBM classifier distinguishes normal vehicles (class 0) from faulty vehicles
(classes 1-4). The primary objective of this stage is to maximize recall for faulty samples, thereby minimizing
false negatives that would otherwise incur prohibitive penalties under the cost-matrix protocol. In Stage B,
only vehicles flagged as faulty are further categorized into severity levels (classes 1-4) through a cascaded
binary structure. This decomposition alleviates the difficulties of direct multi-class classification under severe
class imbalance while refining predictions in a cost-aware manner. In this design, Stage A prioritizes the
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detection of risky vehicles, whereas Stage B provides fine-grained severity classification to support adaptive
maintenance decisions.

The overall procedure is summarized in Algorithm 2. Preprocessing aligns operational and specification
data and constructs last_k_summary features. Stage A performs binary fault detection with calibrated
probabilities and an optimized threshold selected under a cost-sensitive objective. Stage B then applies a
series of binary heads (4 vs.123, 3 vs. 12, 2 vs. 1), each trained with stratified folds and class weights, followed by
threshold selection via grid search. The cascaded decoding process assigns the final severity level according
to the hierarchical sequence.

Algorithm 2: Two-stage vehicle failure prediction (Stage A-B)

Input: Vehicle-level dataset X € RV*X constructed from operational and specification data using
last_k_summary, Cost Matrix

Output: Final predicted severity class y for each vehicle

Preprocessing

1. Preprocess D,p, Dsyec — align categorical features

2:  Sort observations by time and construct last_k_summary features

3:  Merge with categorical specifications to obtain vehicle-level dataset

Stage A: Fault Detection (0 vs. Fault)

4: Define binary labels (0 = normal, 1= fault)

5: Train LightGBM (binary) with stratified 5-fold cross-validation

6: Generate OOF probabilities and apply isotonic calibration

7: Select optimal threshold 74 based on minimizing cost function Cost,

8: Assign gatelabel: y, =1 if py > 74

Stage B: Fault Severity Classification (class 1-4)

9:  Filter to fault-only samples: use records with y, =1

10: Train three binary heads (Stratified 5-Fold, scale_pos_weight): 4 vs. 123, 3 vs. 12, 2 vs.1 — get OOF
pas p3 pn

11: Stepwise threshold selection on OOF

12 Hard cascade decoding

13 Fix (t4, t3, t;)and apply consistently to Train/Valid/Test; report confusion matrix and costs

3.3.1 LightGBM

LightGBM [30] is an advanced implementation of gradient boosted decision trees (GBDT), specifically
designed for efficiency and scalability on high-dimensional and large-scale datasets. Similar to other boosting
frameworks, LightGBM builds an ensemble of weak learners (CART tress), and the prediction for sample x;
is expressed as:

fk(x ) (6)

||MZ

where fi denotes the prediction of the k-th tree. The objective function combines the empirical loss with a
regularization term that penalizes model complexity:

r&
Q (fx) =YT+5;% 7)
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where T is the number of leaves, w; is the weight of leaf j, and y, A are tunable regularization parameters.

LightGBM introduces three key innovations to enhance performance compared to other GBDT
implementations.

« Histogram-Based Learning: Instead of sorting raw data to find split points, feature values are discretized
into histogram bins, significantly reducing computation and memory usage.

o Gradient-Based One-Side Sampling (GOSS): Samples with large gradients (high prediction errors) are
retained, while a subset of small-gradient samples are randomly discarded, accelerating training with
minimal information loss.

o Exclusive Feature Bundling (EFB): Sparse and mutually exclusive features are bundled together, reducing
dimensionality and improving cache efficiency.

These optimizations allow LightGBM to achieve faster training and better memory efficiency while
maintaining competitive predictive accuracy compared to other GBDT-based algorithms.

3.3.2 Stage A: Fault Detection (0 vs. Fault)

Stage A is formulated as a binary classification task that separates normal vehicles (class 0) from
faulty vehicles (classes 1-4). The design objective is to maximize recall, thereby reducing the likelihood of
overlooking faulty cases.

Training data were partitioned using stratified 5-fold cross-validation to preserve class distribution
across folds. Out-of-fold (OOF) probabilities were generated and used for threshold selection to prevent
data leakage. Final evaluation on the validation set was conducted only once after threshold decision had
been completed.

The classifier is implemented using LightGBM and trained with weighted binary cross-entropy loss:

N

L=-3 wilyilog(p:) + (1-yi)log (1- pi)] (8)
i=1

where y; € {0,1} denotes the true label for vehicle i (0 for normal, 1 for faulty), and p; € [0,1] represents the

predicted probability of being faulty. The weight w; controls class imbalance during training and is defined

as:

I 1 sev(c)
l freq(c) sev(0)

where freq(c) indicates the number of samples in class ¢, sev(c) denotes the severity coefficient derived
from the official cost matrix ([1200,300, 400,500] for classes 0-4, respectively), and « = 0.85 is a scaling
factor applied to slightly down-weight the normal class. All severity coefficients and probabilities are
normalized within the range [0, 1]. This weighting scheme emphasizes rare but operationally critical failure
events by assigning proportionally larger weights to higher severity levels.

(9)

The binary decision rule is defined as:

_{1 lff?,’ZT

i = ] (10)
0 otherwise
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where 7 € [0,1] denotes the operating threshold, which is not selected to maximize accuracy but to minimize
the cost-sensitive loss Costs:

Cost, = > Cli,jlM[i, ] (11)
i,je{0,1}

where C[i, j] denotes the penalty for predicting class j when the true class is i, and M[i, j] denotes the
corresponding confusion matrix entry. The Stage A cost matrix is given in Table 3. In this design, false
negatives, where faulty vehicles are incorrectly classified as normal, incur the highest penalty of 500. This
configuration was derived with reference to the IDA Challenge cost structure, where misclassifying an
impending failure (class 4) as normal (class 0) imposes the most severe cost. Consequently, the matrix
ensures that recall for fault detection remains above 0.95, thereby prioritizing the identification of high-risk
vehicles. In Stage A, all fault classes were assigned a uniform penalty of 500 in the binary cost matrix. This
simplification reflects the design intent of Stage A, which is to distinguish normal and fault conditions rather
than to classify specific fault types. Since the primary objective was to detect impending failures with the
highest operational risk, the cost corresponding to the most severe class (500) was uniformly applied to all
fault cases.

Table 3: Cost matrix for stage A

Predicted

Actual 0 1

0 (normal) 0 10
1(fault) 500 0O

3.3.3 Stage B: Fault Severity Classification (Class 1-4)

Stage B assigns each vehicle identified as faulty in Stage A to one of four severity levels using a cascaded
binary classification framework. The architecture consists of three sequential heads: the first head separates
class 4 from {1, 2, 3}, the second head separate class 3 from {1, 2}, and the final head distinguishes class 2
from class 1. Through this hierarchical sequence, each faulty vehicle is ultimately assigned to one of the four
severity classes. By prioritizing the separation of the most severe failures, the framework ensures that high-
risk cases are identified at an early stage, thereby aligning the classification process with the asymmetric cost
structure. This design effectively reduces the overall operational cost while maintaining granularity in fault
severity classification.

Each head is independently trained with binary cross-entropy loss:

N,
L = =S (yilog (i) + (1- yi)log(1 - p;)), h € {4vs.1,2,3,3vs.1,2,2 vs. 1} (12)
i=1

where Nj, denotes the number of training samples for head h, y; € {0,1} indicates the binary class label
(1 for the positive class, 0 for the negative), and p; € [0, 1] represents the predicted probability for the positive
class of head h. All probabilities are normalized within [0, 1].

To mitigate class imbalance, Light GBM’s weighting parameter is applied as:

neg

scale_pos_weight = (13)

pos
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where N, and N,,., denote the number of positive and negative samples in each head, respectively.

This scaling ensures that minority (positive) classes are adequately represented during training by
up-weighting their loss contribution. After training, out-of-fold (OOF) predictions are used to determine
head-specific thresholds (4, t3, t2) through grid search. Thresholds are optimized sequentially to reflect the
asymmetric cost structure, prioritizing the most critical class (4) first:

ty = argmaxF1(class4|ty)
t; = argmaxF1(class3|t;)
t5 = argmaxF1(class2|t;) (14)
where Fl(classc | t) denotes the F1 score of class ¢ evaluated under threshold t. Here, t4, t3,t, € [0,1] are

class-specific decision thresholds determined independently for each binary head. Final predictions are
generated through a stepwise cascade decoding with a probabilistic fallback rule:

4 if pai2t]
y; = 3 if p3i>t3 15)
2 Z'fp21,i > t;

argmax {sa,;,$3,i,$2,i»S1,i} otherwise
With chain-consistent scores defined as:

Sa,i = Payis$3,i = (1= pai) P3,i»s2,i = (1= pai) (1= pa.i) pavis
s1i = (1= pai)(1=p3,) (1= pari) (16)

where p4 i, p3,i, p21,i denote the predicted probabilities from the three binary heads (4 vs. 1,2, 3,3 vs. 1,2, 2
vs. 1). All probabilities and thresholds are normalized within [0, 1]. This formulation ensures that ambiguous
cases are resolved through a fallback mechanism, while the cascaded architecture prioritizes severe failures
(class 4) first, achieving a balanced trade-off between cost sensitivity, interpretability, and robustness.

3.3.4 Hyperparameter Optimization

Separate hyperparameter optimization strategies were employed for Stage A and Stage B. For Stage
A, the threshold 7 was selected via grid search (0.01-0.99) using OOF probabilities from stratified five-
fold cross-validation. The objective was to minimize Cost, subject to a constraint that fault recall remains
above 0.95. All model hyperparameters (learning rate, num_leaves) were fixed a priori, and only the decision
threshold was optimized. For stage B, the decision thresholds (4, t3,t,) were optimized in a stepwise
procedure using out-of-fold (OOF) probabilities from the cascaded heads (4 vs. 1, 2, 3, 3 vs. 1, 2, 2 vs. 1).
Specifically:

1. t4 was chosen to maximize the F1 score of class 4.

2. Given the selected t4, t; was optimized to maximize the F1 score of class 3.

3. With t4 t; fixed, t, was determined using the full cascade decoding rule, maximizing the F1 score of
class 2.

This hierarchical optimization reflects the asymmetric importance of classes, prioritizing severe failures
(classes 4 and 3) before milder ones. The detailed search ranges and selected threshold values for both stages
are summarized in Table 4. The thresholds derived from OOF training folds were then fixed and applied
consistently across training, validation, and test sets, ensuring fair comparison and robustness.
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Table 4: Hyperparameter optimization setting for stage A and stage B

Stage  Search Parameters Search Space Selected
Stage A Threshold Grid (0.01, 0.02, ...,0.99) 7=0.06
T4 0.20~0.80 0.2
Stage B T3 0.20~0.80 0.3
T2 0.20~0.80 0.2

Based on the findings of related literature on tree-based models, most LightGBM hyperparameters were
kept at their default settings. A small pilot search was conducted only for a few parameters considered to
have significant influence on model performance, such aslearning rate, min_data_in_leaf, and regularization
terms. The final hyperparameter configurations for Stage A and Stage B are summarized in Table 5.

Table 5: Hyperparameters of Light GBM

Stage Hyperparameter Value
Objective Binary
Metric AUC
learning_rate 0.03
Stage A Num_leaves 31
Max_depth Default (-1)
Min_data_in_leaf 500
Lambda_L1 1.0
Objective Binary
Metric binary_logloss
learning_rate 0.035
Stage B Num_leaves 31
Max_depth Default (-1)
Min_data_in_leaf 400
Lambda_L1 1.5

4 Results

The performance of the proposed Two-stage LightGBM framework was evaluated on the Scania
Component X dataset using the official costs-based metric of the 2024 IDA Challenge. To prevent data
leakage, dataset partitioning was conducted strictly at the vehicle level, ensuring that all records from the
same vehicle were assigned to a single split.

Beyond cost minimization, evaluation also emphasized model robustness across data partitions, as high
variability between validation and test results would undermine real-world applicability. In addition, class-
specific recall, particularly for the most critical class (class 4), was prioritized to verify that the model did not
sacrifice safety for cost reduction. These considerations ensured that the evaluation design was consistent
with operational priorities in predictive maintenance.
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4.1 Validation and Test Data Evaluation

The framework exhibited consistent performance across both validation and test datasets. As shown
in Tables 6 and 7, the confusion matrices indicate that the model preserved high recall for class 4 (impending
failure), achieving 0.83 on validation and 0.77 on test, while simultaneously reducing overall cost. The
total misclassification costs are summarized in Table 8, where the proposed model achieved 36,113 on
validation and 36,314 on test. These results demonstrate that the framework effectively satisfied the dual
objective of predictive maintenance: minimizing missed detections of high-risk vehicles while controlling
maintenance cost.

Table 6: Confusion matrix for the validation dataset

Predicted
Actual 0 1 2 3 4
0 1962 0 16 234 2698
1 1 0 O 0 14
2 1 0 0 0 13
3 4 0 0 3 23
4 6 0 O 7 63

Table 7: Confusion matrix for the test dataset

Predicted
Actual 0 1 2 3 4
0 2592 1 5 51 2254
1 7 0O 0 1 18
2 4 0O o0 O 11
3 9 0 1 1 30
4 12 0O 0 2 46

Table 8: Total misclassification costs on the validation and test datasets

Dataset  Total cost

Validation 36,113
Test 36,314

4.2 Comparison with Other Research

Table 9 compares the proposed framework with representative studies on the same dataset. Among all
methods, the proposed Two-stage LightGBM achieved the lowest cost on both validation and test datasets,
reducing cost by 3.46% on validation and 3.8% on test compared with XGBoost [26] and by 13.46% compared
with Bi-LSTM [27]. Importantly, unlike prior methods that achieved cost reduction at the expense of
class 4 recall, the proposed framework maintained consistently high recall for impending failures across
both datasets. This indicates that the framework achieved both cost reduction and reliable detection of
safety-critical failures simultaneously. Furthermore, the relative improvement over XGBoost and Bi-LSTM
is noteworthy because both methods represent widely adopted baselines in predictive maintenance research.
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XGBoost is known for its strong tabular learning capability, while Bi-LSTM has been favored for its ability to
capture temporal dependencies. The fact that the proposed framework outperforms both demonstrates the
effectiveness of combining structured feature engineering with a hierarchical classification strategy under
cost-sensitive conditions. It is also important to note that the IDA Challenge dataset was officially partitioned
into train, validation, and test splits to ensure comparability across studies. In this study, the model was
trained exclusively on the training split, with out-of-fold (OOF) probabilities used for internal calibration
and subsequently evaluated exactly once on the validation and test splits. This strict evaluation protocol
guarantees that the reported results are directly comparable to prior work on the same dataset without risk
of information leakage.

Table 9: Comparisons with previous studies on the Scania Component X dataset

Model Validation cost Test cost Improvement of proposed (%)
Proposed Two-Stage LightGBM 36,113 36,314 -
Graph Neural Network [25] 40,109 - 9.97%
Conventional Random Forest [26] - 42,684 14.92%
XGBoost [27] 37,406 37,733 3.46% (val) & 3.8% (test)
Bi-LSTM [28] 41,728 - 13.46%

These findings reinforce the practical value of cost-based evaluation protocols in predictive main-
tenance. By jointly achieving lower operational cost and higher reliability in critical-failure detection,
the proposed approach provides a more deployable and industry-relevant solution compared to existing
methods. This suggests that hierarchical models with tailored decision thresholds may offer a promising
direction for future research, especially in scenarios characterized by imbalanced data and asymmetric risks.

5 Discussion

This study is constrained by two structural factors: severe class imbalance and asymmetric misclassifica-
tion costs. Classes 1-3 represent only a small fraction of the dataset, limiting their discriminability compared
with the normal class (0) and the imminent-failure class (4). The official IDA Challenge cost matrix further
amplifies this imbalance. For instance, misclassifying a true instance of classes 1-3 as class 4 incurs only a
minor penalty of about 10 cost units, while misclassifying a true class 4 instance as classes 1-3 leads to a major
penalty exceeding 200 cost units. Under a cost-minimization objective, this strong asymmetry systematically
biases the decision rule toward predicting class 4.

This results in a specific limitation: the near-zero recall of classes 1-3 is not merely a general trade-
off between cost and performance, but a direct consequence of the asymmetric cost structure. The cost
function inherently discourages the model from identifying intermediate severity levels, as the penalty
for underestimating class 4 far outweighs that for overestimating classes 1-3. Consequently, the model
tends to classify uncertain cases as class 4, thereby sacrificing sensitivity to moderate degradations in favor
of minimizing expected cost. This highlights a structural constraint of cost-driven optimization, where
operational risk tolerance dominates balanced accuracy.

Despite these limitations, the proposed Two-stage LightGBM framework demonstrates superior cost
efficiency compared with both deep learning and ensemble baselines. This advantage can be attributed
to several factors. First, LightGBM’s gradient boosting architecture reduces variance through sequential
ensemble learning, leading to stable predictions under class imbalance. Second, its leaf-wise tree growth
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and default histogram-based learning enable the model to capture complex non-linear relationships more
efficiently than Bi-LSTM or other level-wise tree-based methods. Third, LightGBM can automatically
handle missing values by assigning them to the optimal branch during training, without requiring explicit
preprocessing or imputation as in deep learning models such as Bi-LSTM. Finally, the two-stage design
strategically separates the “fault vs. normal” decision (Stage A) from the finer severity classification (Stage
B), reducing label noise propagation and enhancing cost sensitivity.

From a fleet-management perspective, however, classes 2 and 3 still provide valuable diagnostic signals
for preventive maintenance. Future research could thus explore redefining the cost function or employing
multi-objective optimization strategies that jointly minimize cost and improve detection of intermediate
faults. Another promising direction is the development of adaptive, class-specific thresholds, which could
maintain cost sensitivity while improving recall for moderate degradation classes.

6 Conclusion

This study proposed a Two-stage LightGBM framework to address the cost-sensitive predictive main-
tenance problem using the Scania Component X dataset. The method integrates statistical and trend-based
descriptors extracted via the last_k_summary procedure with categorical vehicle specifications, thereby
capturing degradation dynamics beyond terminal snapshots. This preprocessing design allows the model to
represent the temporal progression of failures while remaining computationally efficient.

From a modeling perspective, Stage A performs binary fault detection (normal vs. fault) under a cost
matrix that heavily penalizes false negatives, reflecting the operational priority of avoiding missed failures.
Stage B applies a hierarchical classification strategy, progressively refining fault candidates into severity sub-
classes to align predictions with asymmetric risk profiles.

Experimental results demonstrated that the proposed framework achieved total misclassification costs
of 36,113 on the validation set and 36,314 on the test set, corresponding to 3.46% and 3.8% cost reductions
compared with XGBoost, and 13.46% compared with Bi-LSTM. Importantly, the model maintained high
recall for the safety-critical class (class 4), achieving 0.83 on validation and 0.77 on test, thereby demonstrat-
ing that the framework successfully balances safety and cost efficiency. Performance for the normal class
(class 0) also remained stable, indicating that the commonly reported trade-off between cost minimization
and high-risk fault detection can be mitigated. These results highlight the practical value of cost-based
evaluation in predictive maintenance applications.

In summary, this study demonstrated that a cost-sensitive and operationally aligned PdM framework
can simultaneously enhance safety and reduce maintenance costs in real-world conditions characterized by
class imbalance and asymmetric risks. Future work will aim to improve detection of intermediate severity
classes (1-3) through advanced data augmentation, refined class-specific cost structures, and hybrid deep
learning approaches capable of modeling temporal dependencies more effectively. Additionally, extending
the framework to heterogeneous fleets and larger-scale deployments is expected to further validate its
robustness and industrial applicability.
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