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ABSTRACT: The increasing interconnection of modern industrial control systems (ICSs) with the Internet has
enhanced operational efficiency, but also made these systems more vulnerable to cyberattacks. This heightened exposure
has driven a growing need for robust ICS security measures. Among the key defences, intrusion detection technology
is critical in identifying threats to ICS networks. This paper provides an overview of the distinctive characteristics of
ICS network security, highlighting standard attack methods. It then examines various intrusion detection methods,
including those based on misuse detection, anomaly detection, machine learning, and specialised requirements. This
paper concludes by exploring future directions for developing intrusion detection systems to advance research and
ensure the continued security and reliability of ICS operations.

KEYWORDS: Industrial control system; industrial control system network security; intrusion detection; cyberspace
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1 Introduction

Industrial control systems (ICSs) manage critical processes across sectors such as power generation,
water supply, oil and gas, manufacturing, and transportation. Initially, these systems were not designed
with security considerations in mind [1]. However, as the Internet has grown in use, remote management
capabilities have expanded, enabling ICSs to be linked to information technology (IT) systems. In the
context of Industry 4.0, the convergence of operational technology (OT) and IT has introduced security
vulnerabilities from IT environments, such as insecure protocols and remote access points, into OT systems.
This shift has led to a rise in cyberattacks that were once limited to IT networks and now target ICS
environments. The consequences of these attacks have been significant, affecting the environment, security,
and public safety, while also impacting ICS asset owners, governments, and society as a whole [2].

The scale of ICS network devices is rapidly expanding, with a growing number of protocols and
increasingly complex processors, such as CPUs, which has led to a larger attack surface. Several major
cybersecurity attack incidents targeting ICS are shown in Fig. 1. One of the earliest significant ICS network
attacks was the Stuxnet malware incident at Iran’s nuclear facilities [3], where specific programmable logic
controllers (PLCs) were compromised, resulting in the damage of approximately 1000 centrifuges used in
Iran’s nuclear program. In 2015, a cyberattack using BlackEnergy3 malware targeted Ukraine’s power grid,
resulting in widespread blackouts that affected nearly 250,000 individuals [4]. In May 2021, a cyberattack on
the Colonial Pipeline, which supplies 45% of the fuel along the U.S. East Coast, forced a temporary shutdown,
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resulting in fuel shortages, price increases, and panic buying nationwide [5]. In April 2022, Russia attempted
a destructive cyberattack on Ukraine’s power grid using Pipedream malware [6].
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Figure 1: Major ICS cybersecurity incidents [3-6]

ICSs play a pivotal role in critical security environments, handling essential functions, such as
authentication, encryption, and data transmission, and have become integral to everyday operations and
production. The interactions between various hardware components, as well as between hardware and
software, make ICSs more complex than traditional IT systems, exposing them to even greater cybersecurity
risks. Consequently, there is an urgent need to strengthen intrusion detection mechanisms within ICS
networks, with a focus on improving detection accuracy and real-time performance. This study focuses on
cybersecurity for ICS, with a core focus on industrial cyberattacks exploiting network vulnerabilities, and
proposes intrusion detection systems suitable for industrial scenarios. It should be specifically noted that this
study does not involve cross-domain research on cyber-physical systems (CPS), nor does it include analysis
of cyberattacks on non-industrial infrastructure.

The primary contributions of this paper are as follows:
« An in-depth analysis of the distinctive characteristics and attack vectors in ICS network security.

o A classification and evaluation of the intrusion detection techniques utilised in ICSs, providing an
overview of current advancements and limitations in research at both national and international levels.

« An exploration of emerging trends in key technologies and the evolving industrial landscape within
this field.

2 Systematic Literature Review Methodology

To systematically summarize the research status, core challenges, and development trends of ICS
intrusion detection technology, this study adopts the Systematic Literature Review (SLR) methodology.
By defining research questions, formulating standardized search strategies, conducting rigorous literature
screening, extracting key data, and performing comprehensive analysis, this methodology effectively avoids
the subjectivity and one-sidedness of traditional literature reviews, ensuring the reproducibility, reliability,
and objectivity of the review results. This section details the specific implementation process of the SLR,
laying a methodological foundation for subsequent technical analysis and trend assessment.
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2.1 Research Questions (RQs)

Centering on the core theme of “current status, challenges, and opportunities of ICS intrusion detection
technology;” this study designs the following 4 progressive research questions to guide the literature retrieval
and analysis process in a targeted manner, ensuring coverage of key dimensions of technical research:

RQI: What are the unique characteristics of ICS cybersecurity? Specifically, what typical vulnerabilities
and attack vectors are derived from the characteristics of industrial scenarios?

RQ2: What core categories can current ICS intrusion detection systems be divided into? What are the
core principles, applicable industrial application scenarios, and technical advantages/disadvantages of each
category?

RQ3: What are the main challenges faced by existing ICS intrusion detection systems in their imple-
mentation in real industrial scenarios? What are the technical roots of these challenges and their potential
impacts on industrial operations?

RQ4: What are the research hotspots and future evolutionary directions of ICS intrusion detection
technology in recent years? To address current technical bottlenecks, what innovative paths (e.g., lightweight
models, physically network-integrated detection) can promote the practical application of the technology?

2.2 Search Strategy

To ensure the comprehensiveness, timeliness, and domain relevance of the literature, the retrieval
process adheres to the following specifications, covering core research achievements in the field of ICS
intrusion detection:

2.2.1 Selection of Retrieval Databases

Focusing on authoritative academic databases in the fields of industrial control and cybersecurity, while
balancing technical depth and research breadth, the selected databases include:

IEEE Xplore: Focuses on collecting journal papers and conference literature in the fields of industrial
information technology, control engineering, and ICS security, covering research on detection technologies
related to PLCs and SCADA systems.

ACM Digital Library: Emphasizes computer security and network protocol analysis, including cutting-
edge research on the exploitation and defense of protocol vulnerabilities in ICS intrusion detection.

SpringerLink: Centers on review literature in industrial automation and system security, providing
insights into the development context and trends of ICS security technology.

ScienceDirect: Focuses on the empirical analysis of ICS vulnerabilities, reviews of attack cases, and
performance verification of detection technologies.

2.2.2 Search Terms and Combination Logic

Based on the core dimensions of the RQs, Chinese and English search term combinations are designed
to capture the target literature accurately. Core search terms include “Industrial Control System (ICS)”,
“Intrusion Detection Technology (IDS)” “Network Security”, “Industrial Protocol Security”, “Machine
Learning’, and “Anomaly Detection”. The search logic uses Boolean operators for combination: (“Industrial
Control System” OR “ICS” OR “SCADA” OR “Programmable Logic Controller” OR “PLC”) AND (“Intrusion
Detection” OR “IDS” OR “Anomaly Detection”) AND (“Network Security” OR “Cyber Security” OR

“Machine Learning” OR “Industrial Protocol”).
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Based on the aforementioned keyword combinations, the specific results of the search conducted in the
4 target databases are as follows:

IEEE Xplore: 180 matched papers, with core coverage in the fields of industrial control and network
security;

ACM Digital Library: 120 matched papers, focusing on computer security and protocol analysis;

SpringerLink: 95 matched papers, mainly concentrating on reviews of industrial automation and
research on system security;

ScienceDirect: 110 matched papers, focusing on empirical studies of Industrial Control System (ICS)
vulnerabilities and verification of detection technologies;

The total number of initial search results was 505 papers. Before language or type filtering, duplicate
papers accounted for 16.8% (85 papers), which provides a basis for the subsequent deduplication stage.

2.2.3 Retrieval Time Range

Considering the rapid iteration of ICS security technology—especially the large-scale application of
technologies such as machine learning and edge computing in the ICS field since 2017—this study sets the
retrieval time range from January 2017 to August 2025 (as of the completion date of literature retrieval) to
cover the latest research achievements. Meanwhile, retrospective supplementation is conducted for classic
foundational literature in the field (e.g., analysis of Stuxnet attacks, early research on ICS protocol security)
to ensure the integrity of the technical development context.

2.3 Inclusion and Exclusion Criteria

To ensure the relevance and academic quality of the included literature, this study formulates strict
inclusion and exclusion criteria and determines the final analysis samples through two rounds of screening:

2.3.1 Inclusion Criteria

1. Relevance of Research Object: The core research content of the literature is ICS intrusion detec-
tion technology, or basic research involving ICS security characteristics, vulnerability analysis, and attack
methods.

2. Requirement for Content Depth: The literature must clearly elaborate on the principles of detection
technologies, experimental design, and performance indicators, or provide technical details of ICS attack
cases and insights for defense.

3. Standardization of Publication Form: The literature is peer-reviewed journal papers, international
conference papers, or chapters in academic monographs. Conference abstracts, technical reports, and non-
reviewed industry white papers are excluded.

2.3.2 Exclusion Criteria

1. Topic Deviation: Literature focusing on intrusion detection for traditional IT systems or security
technologies in non-ICS fields (e.g., smart homes, general Internet of Things).

2. Content Duplication: For duplicate literature published by the same research team based on the same
dataset and experimental scheme, only the latest or most comprehensive version is retained.

3. Substandard Quality: Literature without a clear experimental design, a lack of data support, or
illogical conclusions.
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4. Language Restriction: Only Chinese and English literature is retained, and literature in other
languages is excluded to ensure the research team’s accurate understanding of the content.

2.3.3 Screening Process and Results

This study strictly adheres to the PRISMA 2020 Guidelines. The quantity flow at each stage and its
association with the manuscript’s references are shown in Table 1 below:

Table 1: PRISMA full-stage screening process

i
Screening stage Operation description Quantity
change
1. Identification Keyword search in 4 databases 505 papers
2. Duplicate EfldN(.)te automat.ic deduplication + mam.lal 5052420
verification (excluding cross-database duplicate
Removal papers
records)
3. Title/ Abstract Exclude topic deviation, non-peer-reviewed, and 420328
Screening. non-Chinese/English literature papers
4. Eligibility Verity clar.ity of techn‘ical principles, Fompleteness of 328125
experimental design, and scenario relevance papers
5 Inclusion Cross-verify the literature quality and the matching 115 papers

degree with the manuscript’s research topic

« Title/Abstract Screening Stage (92 articles excluded):

Topic deviation (68 articles): Research objects involve traditional IT networks (e.g., general Internet
DoS detection) or non-ICS fields (e.g., smart grid non-control layer security), irrelevant to “ICS-IDS”;

Non-peer-reviewed (16 articles): Including industrial vendor technical reports (e.g., “PLC Security
Configuration Guide”) and conference abstracts (without complete experimental data);

Language restriction (8 articles): Non-Chinese/English literature (4 in German, 4 in Japanese), making
accurate content interpretation impossible.

o Full-Text Screening Stage (203 articles excluded):

Insufficient content depth (102 articles): Fail to clarify ICS-IDS technical details (e.g., only mention
“machine learning can be used for detection” but without explaining models or verification datasets);

Content duplication (45 articles): Duplicate publications by the same research team based on identical
experimental protocols;

Scope mismatch (56 articles): Focus on cross-domain cyber-physical system research or non-industrial
infrastructure, beyond the scope of this study.

2.4 Data Extraction

For the final 115 literature pieces, a structured data extraction form is designed to systematically
collect the following key information, providing a quantitative basis for technical classification, performance
comparison, and challenge analysis:

Basic Literature Information: Authors, publication year, name of journal/conference, research
institution.
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Core Technical Information: Category of intrusion detection technology, core principles, and depen-
dent datasets.

Experimental and Performance Indicators: Detection accuracy, false positive rate, recall rate, detection
latency, and deployed hardware platform.

Key Conclusions and Limitations: Technical innovations proposed in the literature, verified adaptability
to industrial scenarios, and clearly identified technical bottlenecks.

Two researchers independently complete the data extraction process. For literature with discrepancies
in extraction results, cross-validation and team discussions are conducted to reach consensus and ensure
data accuracy.

2.5 Synthesis and Analysis

Based on the extracted structured data, this study adopts a three-level analysis framework of “Classifi-
cation and Comparison—Bottleneck Identification—Trend Assessment” to systematically deconstruct ICS
intrusion detection technology:

1. Technical Classification and Comparison: The classic framework for the technical classification of
IDS has provided an essential reference for the technical review in this SLR. Liao et al. [7] first proposed a
multidimensional IDS classification system in their review, systematically integrating existing achievements
across detection methods, technical types, and evaluation metrics. They highlighted the core issue that a
single technology cannot cover multiple scenarios and emphasised that hybrid detection is key to improving
generalisation. The classification of ICS-IDS into rule-based, anomaly-based, machine learning-based, and
specific requirement-based categories in this study is precisely an extension of this framework in industrial
scenarios. In particular, it inherits the core logic of classification based on detection strategies and scenario
adaptability, thereby ensuring coherence with the technical context [7]. According to detection principles
and application scenarios, the technical solutions in the 115 literature pieces are divided into four categories:
“Rule-Based Detection”, “Anomaly-Based Detection’, “Machine Learning-Based Detection”, and “Detection
for Specific Needs”. By comparing indicators such as accuracy, real-time performance, and deployment cost
across technologies, the applicable boundaries of each are clarified.

2. Core Bottleneck Identification: Statistical analysis is conducted on the technical challenges mentioned
in the literature, and core issues such as “conflict between real-time performance and edge computing
power’, “dataset imbalance and sample scarcity”, and “contradiction between high false positive rate and
low industrial fault tolerance” are summarised. The root causes of these issues are analysed by linking them
to specific technical scenarios (e.g., millisecond-level response requirements in power systems, insufficient
sample data for zero-day attacks).

3. Future Trend Assessment: Combining the innovative directions proposed in the literature (e.g.,
lightweight models, digital twin verification, federated learning) and industrial scenario requirements,
potential research hotspots such as “physical-network integrated detection”, “application of interpretable
AT’, and “construction of systematic defense systems” are identified, providing a basis for the subsequent

evolutionary path of the technology.

2.6 Comparison with Related Work

This section takes 6 core surveys in the field of ICS intrusion detection as comparison objects. It
systematically distinguishes this study from existing surveys along 4 key dimensions, as shown in Table 2. It
clarifies that this study does not repeat existing achievements but makes incremental contributions through
full-spectrum technology integration, an empirical closed loop, and scenario-based implementation.
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Table 2: Comparative analysis of core surveys in ICS IDS and this paper

Comparison
This stud 2 8 9 10 11
PR y ] [5] [9] [10] [i1]
Covers the Takes classical Focuses on ICS
. . Only covers . Only covers
entire technical ML as the core, . cloud security,
Core T Only covers cutting-edge . transfer
. spectrum of with limited . A basic threats .
technologies . . . . ML techniques  deep learning . learning
ICS intrusion  involvement in . and encryption .
. technologies . technologies
detection DL technologies
Integrates Mentions ML Mentions . Only mentions
. . . Slightly
. simulation Mentions ML model Trans- . transfer
Empirical mentions cloud .
data, real cases, model performance, former/LLM . learning
support & . . e environment L
Dataset and industrial- performance but datasets empiricism, but encrvption applications in
grade indicators only cover IT datasets focus P SWaT/WADI
. tests
datasets scenarios on IT/IIoT datasets
Adapts to 5
Industrial P Generalizes Adapts to
. types of " Cloud-based
scenario Not segmented critical IT/TIoT Not segmented
. segmented . . ICS
adaptation ) infrastructure scenarios
scenarios
1. First
1. A three-level svstematic
classification 1. Summarizes 1. Combs the yoter
system for 4 opportunities application L combing of
Y PP PP . Systematically 1. Early transfer
types of and challenges  status of ML in . .
. . o surveys Trans-  combing of ICS learning
technologies; of ML in ICS critical . o
. . former/LLM cloud security  applications in
2. security infrastructure o .
T applications in risks; ICS IDS;
Core Multi-dimens networks; IDS;
. . . .. IDS; 2. Proposes 2. Proposes
innovations ional empirical 2. Analyzes 2. Compares
. . L 2. Analyzes cloud-based paths for
integration; optimization the . .
- technical ICS encryption transfer
3. Three types directions of =~ performance of . . .
. . details of protection learning to
of actionable ML models different ML .
. . . models like schemes solve sample
implem under resource  algorithms in ) .
. . ViT/GPT scarcity under
entation constraints IT datasets
resource
frameworks .
constraints

In summary, the core differences between this study and the 6 core surveys lie in: at the technical
dimension, upgrading from single technology/partial technologies to full-spectrum integration; at the
empirical dimension, upgrading from scattered empiricism to a systematic closed-loop of simulation data
and real cases; at the scenario dimension, upgrading from generalized scenarios to precise adaptation
for ICS segmented industries. Through systematic integration and extension, this paper provides a more
comprehensive, industry-practice-aligned reference for the ICS intrusion detection field, facilitating the

technology’s transition from theory to practice.

3 Particularities of Cyberspace Security in ICS

3.1 Uniqueness of Cybersecurity in ICS

In recent years, malicious cyberattacks against ICSs have surged significantly. Incidents such as Stuxnet
and BlackEnergy attacks illustrate how a single spear-phishing email or compromised USB drive can provide
attackers with access to remote networks [12]. Traditional security measures are no longer sufficient to protect
ICS from these threats, underscoring the need for an in-depth analysis of ICS security vulnerabilities arising
from their distinct network characteristics. This analysis is crucial for developing effective detection and
defense strategies and for enhancing system design.
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Initially, OT networks were designed to remain isolated from I'T networks, with devices and applications
in OT environments prioritizing reliability and availability over cybersecurity. For instance, in an ICS
infrastructure, equipment that allows multi-user access often operates numerous processes with elevated
privileges in an “always on” mode [2]. The primary goal of the ICS infrastructure is to ensure continuous,
stable operations for as long as possible. Consequently, ICS systems emphasize availability and integrity
over confidentiality. This prioritization begins with maximizing system availability to prevent disruptions,
followed by ensuring data integrity to guarantee the system accurately represents ongoing operations. Finally,
confidentiality is addressed through the encryption of real-time data within ICS environments.

Unlike traditional IT networks, OT networks in ICS environments handle both standard network
traffic using TCP/IP protocols and data generated by physical processes and low-level components [13].
This integration between different layers creates opportunities for novel cyberattacks that exploit previously
unseen vulnerabilities. Table 3 compares OT networks in ICS with traditional IT networks.

Table 3: Comparison of OT networks and IT networks

Property OT networks IT networks
Target Data management and processing Control and monitoring
Focus Reliability and availability Confidentiality and privacy
Delay sensitivity High Low
Fault tolerance High Low

The security requirements of ICS can be summarized as follows [14]:

« High real-time demands: In ICS, each physical device has a strictly limited operational time, and even
minor deviations can lead to serious accidents.

« Limited computational resources: The sensors and actuators within ICS possess restricted processing
and storage resources, which hinder the implementation of security programs.

« Fixed business logic: Any compromise of this logic can lead to catastrophic failures.

« Continuous operation requirement: It is essential to maintain the uninterrupted functioning of
physical devices, as performing hard updates or restarts on industrial equipment is often challenging.

o Weakness in ICS protocols: The inadequate security features of ICS protocols increase the risk of
attacks, particularly when these systems are connected to the Internet.

With the emergence of Industry 4.0, the convergence of IT and OT is accelerating. As the fundamental
component of OT networks, ICS networks are increasingly exposed within IT environments, heightening
security risks. Therefore, employing novel technologies for the detection and protection of ICS is crucial for
ensuring their stable and reliable operation.

3.2 Method of ICS Network Attack

Network attacks targeting ICSs [15] typically follow a sequence that includes monitoring, system
mapping, initial infection and data exfiltration, information preparation, final attack testing, event detection
and response, and ultimately executing the attack. Specific manifestations of these network attacks against
ICS [15] include loss of visibility, manipulation of views, denial of control, control manipulation, and
loss of power. The various types of attacks can generally be categorized based on their methods, such as
reconnaissance attacks [16], man-in-the-middle (MitM) attacks [17], injection attacks [18], replay attacks [19],
and DoS attacks [20], as illustrated in Table 4.
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Table 4: ICS attack types (classified according to attack methods)

Attack category Methods of attack

« Understand the topology of the ICS
o Identify vulnerable devices and the associated physical processes

Reconnaissance attacks [16]

« Read or modify communications

o Inject or drop data packets

« Inject data or commands through compromised nodes

« Drive the system into an unsafe state

Replay attacks [19]  Replay previously valid messages

« Overload system resources, render devices unavailable

« Disrupt communication between machines in the system

Man-in-the-middle attacks [17]

Injection attacks [18]

DoS attacks [20]

In the practical design and development of industrial systems, key concerns typically include real-time
response performance, operational efficiency, and business continuity, while network security considerations
often take a backseat. Once an ICS is tested and deployed, it must maintain a stable operational state
for extended periods, which can limit future maintenance and upgrade flexibility. This inflexibility may
inadvertently create opportunities for malicious attackers to introduce viruses and Trojans. Furthermore,
due to the high availability requirements of ICS, redundant architecture designs are frequently implemented
to ensure stable operations. However, this redundancy can also compromise the effective execution and
comprehensive enforcement of various security policies.

At the same time, network security considerations are often marginalized. Once ICS is tested and
deployed, it must maintain a stable operating state for an extended period, which often limits the flexi-
bility of subsequent maintenance and upgrade activities for users, inadvertently creating opportunities for
malicious attackers to introduce viruses and Trojans. Furthermore, given the stringent requirements for
high availability in ICS, redundant architecture designs are commonly adopted to ensure stable operation.
However, this also somewhat weakens the effective implementation and comprehensive coverage of various
security policies. With the rapid development of Internet technologies, the integration of industrial control
equipment and networks has significantly increased. Although several security measures have been deployed,
the defense system remains vulnerable to complex security challenges posed by vulnerabilities, malware, and
wireless technologies. Once attackers successfully exploit these security vulnerabilities, the consequences will
likely be highly destructive. Given this, implementing uninterrupted real-time monitoring of information
flow within industrial control networks to identify and respond to abnormal attack behaviors rapidly is a
critical and indispensable link in ensuring system security and maintaining the security and stability of the
industrial environment.

With its ability to instantly monitor and deeply analyse network communication activities, network
intrusion detection technology effectively identifies and alerts to potential malicious attack attempts, laying
a solid foundation for the subsequent deployment of defence strategies and rapid system recovery processes.
This technology stands out for its high real-time responsiveness and proactive defence characteristics, which
are increasingly becoming a focal point of research in ICS network security. It demonstrates significant
practical significance in safeguarding industrial environment security and fully showcases its broad and
far-reaching application prospects and value.
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4 Landscape of ICS-IDS Technologies

As a core component of the security protection system for ICS, the IDS primarily identifies malicious
attack behaviours or abnormal operational patterns within the ICS by collecting and analysing multidimen-
sional data. It can effectively detect malware intrusions and various types of network attacks (e.g., Denial of
Service (DoS) attacks, Man-in-the-Middle (MitM) attacks) [17].

From the perspective of technical principles, the working mechanism of ICS-IDS centers on “data-
driven analysis™: First, massive amounts of raw data are collected from the entire ICS link, covering both the
network communication layer (e.g., features such as the time sequence of data packets in network traffic and
the number of transmitted bytes) and the physical control layer (e.g., parameters such as real-time sensor
measurements and actuator operating status) [21]. Subsequently, through methods such as feature extraction,
pattern matching, or model inference, a baseline for the normal operating state of ICS is established and
compared with real-time monitoring data. Finally, the determination of abnormal or attack behaviours is
achieved. The technical classification and feature engineering of IDS can be traced back to classical data
mining frameworks. The MADAM ID framework proposed by [22] extracts key features from audit data
using association rule mining and frequent itemset mining. It combines them with the RIPPER classifier to
classify attacks. This work was the first to systematically verify the IDS development workflow that integrates
data mining, feature construction, and model training. The successful application of this framework to the
1998 DARPA dataset not only provided an early theoretical basis for the technical classification of rule-based,
anomaly-based, and machine learning-based methods in this SLR but also offered a reference paradigm for
the feature engineering of ICS-IDS [22].

Combining the current research achievements of ICS intrusion detection technology with the actual
needs of industrial scenarios, this study classifies existing ICS intrusion detection technology systems
into four core categories based on two dimensions: “differences in detection strategies” and “technical
adaptation characteristics.” These categories include rule-based, anomaly-based, machine learning-based,
and specialised detection technologies. The core principles, typical methods, and application scenarios
for each technology type will be elaborated in detail in subsequent sections. The technical classification
framework is illustrated in Fig. 2.

With the “detection technology category” under the “data extraction dimension” in Section 2 of the SLR
as the core, and combined with the typical characteristics of the literature, we classify the ICS-IDS using a
three-level classification system consisting of general categories, technical principles, and specific methods.
The details are presented in Fig. 2, which shows a three-level classification system for ICS-IDS, organised
hierarchically into major categories, technical principles, and specific methods. By combining differences in
detection strategies and adaptability to industrial scenarios, this classification system provides a framework
for subsequent principal component analysis and performance comparisons of various technologies.

4.1 Rule-Based Detection

The Misuse-based Intrusion Detection System (MIDS) is a classic technical solution in ICS intrusion
detection. Its core detection logic relies on pre-defined rules to match known attack features and vulnerability
characteristics, thereby accurately identifying explicitly defined malicious behaviours within the system. A
key advantage of this technology lies in its ability to build a standardised attack signature database using
mature detection tools (e.g., Snort [23], Suricata [24]). For attack types included in the signature database, it
can achieve a high detection rate without requiring complex model training processes.



Comput Mater Contin. 2026;86(3):4 1

{@ Feature matching

{g Deception and Honeypot
Anomaly-based

ﬁGﬁﬁl Statistical Modeling
Detection

{Ug Pattern Prediction
ICS-IDS

zy technology
{&E Supervised Learning

Rule-based
Detection

Machine
Learning-based

J ) L L

Detection U ised/
L | [, Unsupervisec
Semi-supervised Type
J
. ~
Data Constraint
0=> Adaptation
Specific P )
-requirement-oriented
Detection . )
@ Scenario Performance
Adaptation

Figure 2: Classification of ICS-IDS

Unlike traditional Information Technology (IT) systems, ICS exhibits distinct industrial-scenario
characteristics: its control loops operate according to fixed polling cycles (e.g., periodic collection of sensor
data by PLCs and periodic issuance of actuator commands), resulting in highly stable communication and
operational patterns. This characteristic is highly compatible with MIDS’s detection logic: MIDS can optimise
rule design based on ICS’s fixed operating rules (e.g., by formulating matching rules for the periodic data
frame structure of the Modbus protocol), thereby further improving detection accuracy. Meanwhile, MIDS
only responds to “known threats” that match pre-defined rules, eliminating the need for complex anomaly
modelling and analysis. As a result, it has low resource requirements, making it suitable for edge devices with
limited computing power in ICS (e.g., embedded PLCs and Remote Terminal Units (RTUs)). Additionally,
it can effectively control the false-positive rate, preventing unnecessary shutdowns of industrial processes
triggered by false alarms.

However, MIDS also has significant technical limitations: its detection capability depends entirely
on the coverage of the attack signature database, and it cannot identify zero-day attacks or new attack
types not included in the database. This flaw is particularly prominent against the backdrop of continuous
evolution in ICS attack methods. Within the rule-based detection technology system, the current mainstream
implementation methods can be divided into the following two categories, as shown in Fig. 3. This figure
illustrates the two core architectures and workflows of rule-based detection. For feature matching, a real-time
comparison is conducted between the attack feature database and Snort/Suricata rule-matching engines,
which output alerts for known attacks or labels for expected behaviours, and iteratively update the rule
database. For deception and honeypot-based detection: Honeypot devices simulating PLCs (Programmable
Logic Controllers)/RTUs (Remote Terminal Units) are deployed at the honeypot interaction layer to attract
malicious attack behaviours and collect threat data. After extracting attack features, they are added to the
attack feature database, enabling continuous detection of multi-stage attacks.



12 Comput Mater Contin. 2026;86(3):4

@ Feature Matching Type @ Deception and Honeypot Type
4
£ Multi-source Data Input ] ﬁ%ﬁ Industrial Control Network Topology
v v
Eé Attack Signature Library % Honeypot Interaction Layer
v v
Rule Matching Engine 6‘7& Attack Signature Extraction
v v
Generate Security Alert/Mark as Normal Behavior @ Update Rule Library

Figure 3: Architecture and workflow of rule-based detection

o Feature Matching Type: This method abstracts potential attack behaviors or known intrusion
patterns into rule sets. Intrusion is flagged when system behavior or network traffic matches predefined
rules—for instance, as described by Myers et al. [25] proposed an ICS anomaly detection technique based
on process mining, constructing expected behavior models by collecting and preprocessing ICS device logs,
and performing consistency checks for analysis. Bhardwaj et al. [26] introduced a behavior-based attack
identification method tailored to IoT-oriented ICSs, utilizing process and task execution flow mining to
detect deviations in the task and log events, verified through consistency checks.

This technique monitors the transitions between different system states to detect intrusions. An
example is XSense [27], developed by CyberX, which detects attacks by classifying ICS state transitions
as usual or malicious based on signals and indicators. Researchers are exploring additional parameters,
such as industrial remote control systems [28] and response times, to detect abnormalities. For example, by
analyzing these parameters directly or indirectly, researchers can detect alterations in current attack traffic
patterns [29], identify fraudulent control devices [30], reveal subtle manipulations of the controller device
code [31] roller device code o [31], and even deduce PLC CPU loads [32]. Additionally, some studies have
explored innovative parameters in intrusion detection, such as control device radio frequency emissions
and power consumption [33]. Sheng et al. [34] proposed a cyber-physical model for SCADA systems. This
model detects cyber intrusions by extracting and correlating the communication patterns and states of ICS
devices, and then evaluating the risk level of these intrusions to industrial processes. Experimental results
demonstrate that the model achieves high accuracy in detecting various attack types, and its risk assessment
method effectively distinguishes between different attack scenarios. Yang et al. [35] developed the iFinger
method, which generates a deterministic finite automaton (DFA) as the device fingerprint from the register-
state sequence of industrial equipment. Attack detection is realized through multiple approaches: analyzing
visible registers in network traffic and sending crafted packets to obtain information from invisible registers.
Validated on 10 types of industrial equipment, the method achieves a device identification Fl-score of 97.1%, a
recall rate of 98.0% for detecting attacks such as register replacement and code modification, and a detection
latency of less than 2 s. This method addresses the challenge in industrial environments where equipment
communication protocols are fixed. Still, attacks are highly concealed, thereby enhancing the ability to
identify device identity forgery and logical tampering. Acharya et al. [36] proposed the ISERA architecture,
which integrates network micro-segmentation, access control, industrial IDS, and the FTAS algorithm to
achieve real-time threat detection and response. In tests involving DoS attacks and malware intrusions, the
architecture exhibits response times of 1.5 s at the IT layer and 2 s at the OT layer, while maintaining system
availability over 95% and successfully isolating affected areas. This solution addresses the vulnerabilities
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in traditional ICS architectures, including single points of failure and excessive reliance on the integration
between IT and OT layers.

» Deception and Honeypot Type: This approach involves deploying honeypots—decoy systems
designed to attract and analyze malicious activities. These systems collect information on threats and attacks,
enabling the detection of compromised devices. For instance, Dutta et al. [37] developed an enhanced
honeypot using SNAP7 and IMUNES to generate signatures and identify multi-stage attacks. Mesbah
et al. [38] focused on low-interaction honeypots for analyzing unsolicited traffic and identifying tampering
in SCADA networks. Yang et al. [39] designed a highly interactive honeypot for threat management,
enabling sustained attack detection and proactive defense. Kempinski et al. [40] proposed a goal-oriented
honeypot design to address the lack of structured reasoning for ICS honeypots. Pashaei et al. [41] designed
a dual-agent honeypot system based on SARSA reinforcement learning. This system enhances detection
capabilities through adversarial training and deploys Conpot and HoneyPLC to simulate Siemens S7 series
Programmable Logic Controllers (PLCs). In detecting MitM and Distributed Denial of Service (DDoS)
attacks, the system achieves an accuracy and F-measure of 0.98, with a false positive rate reduced by 99.9%
compared to traditional IDSs. This solution addresses the issues of low interactivity and high vulnerability
to attacker identification in traditional honeypots. Liang et al. [42] constructed a high-interactivity ICS
simulation system that supports protocols such as Modbus and S7comm and actively diverts attack traffic
through a P4-programmable switch. In Nmap fingerprint scanning and attack tests, the system demonstrates
100% consistency in responses with real industrial devices and can simulate the behavior of PLCs such as
Schneider M580 and Siemens S7-1500.

Although the rule-driven type offers irreplaceable advantages in known-attack detection and real-time
performance, its reliance on attack signatures makes it unable to cope with the evolution of industrial attacks.
It must be combined with a dynamic update mechanism; otherwise, it will quickly become ineffective in
complex attack scenarios.

4.2 Anomaly-Based Detection

The anomaly-based Intrusion Detection System (AIDS) is a core detection solution for unknown attacks
and emerging threats in ICS. Its technical core lies in first constructing a baseline model of the ICS’s normal
operating state, then identifying abnormal behaviors beyond the normal range by comparing real-time
monitoring data with the baseline. Unlike rule-based detection technology that relies on known attack
signatures, AIDS does not require a pre-established attack signature database. It can detect unrecorded
attack patterns (such as zero-day attacks and unknown command-tampering attacks) solely through the logic
of “normal behaviour definition—abnormal deviation identification,” thereby inherently advantageous for
addressing the iterative evolution of ICS attack methods [14].

In traditional IT systems, AIDS often suffers from insufficient generalisation ability of baseline models
due to the randomness and complexity of IT network behaviours, leading to a high false positive rate.
However, this issue is significantly mitigated in ICS scenarios. The industrial nature of ICS determines that its
operating process exhibits strong regularity: on the one hand, the periodic operations of control loops (e.g.,
fixed-frequency sampling of sensors by PLCs, periodic action commands for actuators) result in predictable
temporal characteristics of network traffic and device state changes; on the other hand, ICS networks are
usually physically or logically isolated from the external Internet, with relatively fixed network topologies
and data interaction relationships, which reduces the impact of irrelevant interference factors on the normal
behavior baseline [43]. This characteristic of “predictable behaviour and relatively isolated environment”
dramatically improves the accuracy and stability of the AIDS baseline model, eftectively reducing the risk of
false positives and making its application in ICS scenarios significantly more reliable than in the traditional IT
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field. The implementation of anomaly-based detection technology in ICS focuses on accurately constructing
a normal behaviour baseline suitable for industrial scenarios. The current mainstream technical paths can
be divided into the following two categories, as shown in Fig. 4. This figure presents the dual-path modelling
and detection logic of anomaly-based detection. In statistical anomaly detection, Industrial time-series data
undergo data cleaning and feature extraction to construct a baseline of normal behaviour. The deviation
calculation module compares real-time data with the baseline and dynamically adjusts thresholds to trigger
anomaly alerts. In pattern-prediction-based anomaly detection, A frequent pattern database is built by
mining ICS event sequences. The sequence comparison engine matches real-time sequences against patterns
in the database to identify abnormal sequences and outputs detailed reports, including anomaly levels and
involved devices.

Statistical-based Anomaly Detection Pattern Prediction-based Anomaly Detection
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Industrial Time Series Data Data |nput Layer

Feature Extraction

l Data Cleaning ‘

¥

Baseline Construction Layer

¥

Pattern Learning Layer
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Figure 4: Dual-path modelling and detection logic for anomaly-based detection

o Statistical-based Anomaly Detection: This technique uses statistical algorithms to establish a
behavioral profile for normal ICS operations, detecting deviations as potential anomalies. Time series
analysis and Markov chains are commonly applied to analyze network traffic and system events [44]. For
example, Marsden et al. [45] developed an IDS that uses probabilistic risk identification to detect replay
attacks by analyzing Modbus TCP/IP traffic. Similarly, Ike et al. [46] introduced SCAPHY, which detects
ICS attacks by analyzing physical process dependencies and identifying control activities that deviate from
legitimate system behaviors. Jadidi et al. [47] proposed an automated method for detecting flooding attacks.
This method collects PLC logs and network traffic to generate NetFlow data, and combines unsupervised
histogram clustering with ARIMA/GARCH predictors to detect anomalies. Validated on the factory automa-
tion, Modbus, and SWAT datasets, the method achieves accuracies of 0.96, 0.83, and 0.92, respectively, and
can effectively detect flooding attacks. Ry$avy et al. [48] developed a network traffic processing library that
extracts packet-level and flow-level features, enabling an automated workflow from data preprocessing and
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feature engineering to model training. In terms of performance, its processing speed is an order of magnitude
faster than that of the traditional tshark tool, supporting real-time traffic analysis and multiple detection
methods. Aoudi et al. [49] proposed PaSaD (Pattern-based Sensor Anomaly Detection), a technology that
detects stealthy attacks by monitoring structural changes in sensor time series. Specifically, singular spectrum
analysis is used to extract the signal subspace of the system under regular operation, and the deviation score
between real-time data and the normal subspace is calculated; an alarm is triggered when this score exceeds
a predefined threshold.

o Pattern Prediction-based Anomaly Detection: This method analyses event sequence patterns within
ICS networks to detect anomalies. Classic studies on sequence pattern analysis have provided a semantic-
layer perspective for anomaly detection in ICS. Caselli et al. [50] noted that there exists a category
of sequence attacks in ICS that trigger physical failures by tampering with the timing of legitimate
events. In contrast, the individual events themselves show no anomalies. To address this, they proposed
a modelling method based on a discrete-time Markov chain, extracting event sequences from industrial
protocols to construct a state transition model, and detecting anomalies by calculating the weighted
distance between real-time sequences and the standard model. In a test using Modbus traffic from a
water treatment plant, this method successfully identified rapid valve opening-closing attacks with a
false-positive rate of only 0.8%. The idea of integrating physical process semantic modelling in this
work provides key technical references for subsequent anomaly detection of industrial time-series
data [50]. Mitchell et al. [51] built a model based on ICS protocols and system behaviour specifications
to monitor and detect intrusions. Lee et al. [52] applied machine learning techniques to identify patterns
in network traffic and used fingerprinting to identify unregistered users. Ayodeji et al. [53] proposed
an intrusion detection approach that identifies intrusions by analysing changes in process variables,
which involves correlating physical processes. This method addresses the high false-positive rates in
existing intrusion detection systems for complex industrial systems and improves detection accuracy
by integrating multidimensional information. Génen et al. [54] investigated false data injection (FDI)
attacks targeting PLC registers. By analysing vulnerabilities in the Modbus protocol, they proposed a
LiFi-based authentication model combined with continuous monitoring. This research fills the gap in
the correlation analysis between physical processes and network behaviours in FDI attack detection.

Beyond the aforementioned anomaly-based detection approaches, hybrid detection is a classic technical
direction in IDS, and early studies have provided valuable references for integrating ICS-IDS modules. The
hybrid architecture proposed by [55] achieves complementary advantages by combining Self-Organising
Maps and J48 decision trees: SOM identifies unknown attacks based on the quantisation error of normal
behaviour baselines, while J48 matches known threats using attack signature rules, with the final judgment
unified by a decision support system. This architecture achieved a detection rate of 99.9% and a false positive
rate of only 1.25% on the KDD Cup 99 dataset, verifying that the hybrid mode effectively improves both
detection accuracy and generalisation capability. It has thus established a paradigm for subsequent hybrid
IDS solutions in ICS scenarios [55].

4.3 Machine Learning-Based Detection

With the increasing sophistication and stealth of attacks targeting Industrial Control Systems (ICS),
traditional detection technologies relying on rules or single-anomaly modelling can no longer meet the
defence requirements of high accuracy and wide coverage. Against this backdrop, Machine Learning (ML)
technology has emerged as a core development direction in the field of ICS intrusion detection, leveraging
its ability to extract features from complex data and conduct dynamic learning—its core logic is to enable
algorithmic models to autonomously learn the pattern characteristics of normal and abnormal behaviors
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from massive ICS data (e.g., network traffic, device status, physical process parameters), thereby achieving
intelligent classification and identification ICS.

Currently, mature ML methods applied in ICS intrusion detection span multiple technical areas: In
the field of supervised learning, classification algorithms such as Support Vector Machines (SVM) [51] and
Random Forests can train models on labelled “normal-attack” samples to achieve accurate discrimination
of known attacks. In the field of deep learning, models such as Convolutional Neural Networks (CNNs)
and Long Short-Term Memory (LSTMs) [56] can capture deep correlation features in ICS time-series data
(e.g., periodic sensor sampling values, PLC command sequences), enabling effective identification of stealthy
attacks. Additionally, unsupervised/semi-supervised learning methods such as clustering and autoencoders
can distinguish abnormal behaviours by exploiting the inherent data distribution patterns in scenarios
where attack sample labels are scarce. Some advanced detection systems also integrate rule-based feature
matching mechanisms [57,58], forming a hybrid detection framework of “dynamic ML identification + static
signature database matching”. This framework not only ensures efficient identification of known attacks but
also achieves generalised detection of unknown threats. To address the challenges of IIoT dataset imbalance
and multi-scenario adaptation, Popoola et al. [59] proposed a multi-stage deep learning architecture.
This architecture optimises the detection of minority-class attacks through a three-stage process: coarse-
grained filtering, fine-grained classification, and anomaly calibration. Its core innovation lies in integrating
industrial temporal features into the feature engineering process, thereby adapting to the high-frequency
data scenarios of energy IIoT devices. However, it fails to address the issue of adapting computing power for
edge deployment.

Recent research achievements have fully verified the advantages of ML technology in ICS intrusion
detection: For instance, Chang et al. [60] proposed a detection scheme combining reinforcement learning
with convolutional autoencoders, where reinforcement learning dynamically optimises the feature extraction
process of the autoencoder, significantly improving the accuracy of identifying ICS network anomalies;
The statistical-ML hybrid method designed by Hao et al. [61] supports interactive traceability analysis
of abnormal events while processing ICS stream data in real-time, balancing detection efficiency and
interpretability; Experimental verification by Dini et al. [62] shows that, compared with traditional detection
technologies, ML models (especially those for anomaly detection) perform better across key indicators,
such as ICS attack classification accuracy and stealthy attack identification rate, making them more adapt-
able to the complex and ever-changing security protection needs of ICS. Given the high data noise and
imbalanced distribution in IIoT, Dini et al. [62] systematically compared the performance of 6 machine
learning (ML) models, including Random Forest (RF) and XGBoost, under different preprocessing strategies.
Experimental validation demonstrated that on the X-IIoTID dataset, the XGBoost model with the combined
SMOTE+Tomek Links balancing strategy achieved optimal performance, with an accuracy of 96.8%. In
particular, the recognition rate for Mirai botnet attacks was improved by 12%.

Based on the model training methods and data dependency characteristics, current ML-based
ICS intrusion detection systems can be further subdivided into two categories: supervised and
unsupervised/semi-supervised. Their specific technical paths, adaptability to industrial scenarios, and
performance, as shown in Fig. 5, will be analysed in detail in subsequent content.
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Figure 5: Workflow of typical models for machine learning-based detection

o Supervised Learning Type: It is noteworthy that early applications of machine learning in IDS have
already focused on efficiency optimisation. A classic example is the CT-SVM framework proposed
by [63]. This method screens support vectors using hierarchical clustering with a Dynamically Growing
Self-Organising Tree and locates inter-class boundary points to reduce redundant training data. On the
large-scale 1998 DARPA dataset, CT-SVM shortened the training time by 361 times compared with pure
SVM while maintaining a detection accuracy of 69.8%, and outperformed methods such as Rocchio
Bundling. This work provides core insights for the lightweight deployment of algorithms (e.g., SVMs
and Random Forests) in subsequent ICS-IDS systems [63]. Anton et al. [64] suggested using SVMs and
Random Forests for detecting DoS attacks. Vargas et al. [65] proposed a host-based intrusion detection
system (HIDS) architecture suitable for embedded industrial devices. A prototype was implemented and
evaluated on a PLC equipped with a real-time operating system (RTOS). The results demonstrate that
the architecture can effectively detect intrusions while having minimal impact on system performance.
Fang et al. [66] developed a feature selection method for ICS using a genetic algorithm and a novel
fitness function. Experimental results show that this method effectively reduces feature dimensionality
and improves classification accuracy. Ling et al. [67] proposed a bidirectional simple recurrent unit (Bi-
SRU) method, which integrates skip connections and a bidirectional structure to alleviate the vanishing
gradient problem and enhance temporal feature extraction. On the gas pipeline and water tank datasets,
the method achieves accuracies of 96.23% and 92.94%, respectively, with shorter training time than
the long short-term memory (LSTM) and gated recurrent unit (GRU) models. It is thus suitable for
processing high-dimensional temporal traffic data. Mubarak et al. [68] adopted supervised machine
learning algorithms to analyse communication traffic between ICS components. They extracted flow-
based network features and implemented anomaly detection through port analysis and behaviour
modelling. Nagarajan et al. [69] proposed a hybrid deep learning model. The hybrid honey badger-
world cup algorithm (HHB-WCA) is employed for optimal feature selection, and the filtered features
are then input into an autoencoder-bidirectional extended long short-term memory network (A-Bi-
LSTM) for intrusion detection. On datasets such as the APA-DDoS and NSL-KDD, the model achieves
98.35% accuracy and 98.28% Fl-score, with lower computational complexity than traditional methods.
Imran et al. [70] evaluated the performance of multiple machine learning models in detecting advanced
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persistent threats (APTs) in ICS, using the Synthetic Minority Oversampling Technique (SMOTE) to
address data imbalance. Among these models, the random forest performs best, achieving 99% accuracy,
97% Fl-score, and a training time of only 0.12 s, outperforming deep learning models. Yang et al. [71]
proposed a standardised ICS network data processing workflow that includes feature dimensionality
reduction and data generation. They also extracted latent features using a bidirectional recurrent neural
network (Bi-RNN) combined with an attention mechanism. The data generated by the generative
adversarial network (GAN) achieves an Fl-score of 92.88% on the SWaT dataset, outperforming other
generation methods, and can identify key influential features. Al-Abassi et al. [72] proposed an ensemble
deep learning model. Multiple stacked autoencoders are used to generate balanced representations from
imbalanced data, and then a deep neural network (DNN) combined with a decision tree is employed
to detect attacks. The model achieves 99.67% accuracy on the SWaT dataset and 96% on the Gas
Pipeline dataset, with an Fl-score significantly higher than that of traditional methods. Anthi et al. [73]
proposed a three-level detection architecture, which sequentially realizes malicious packet identification,
general attack type classification, and specific attack type subdivision. On the Gas Pipeline dataset, the
random forest achieves a detection accuracy of 87.4%, the J48 algorithm attains an Fl-score of 74.5%
for general attack identification, and the Fl-score for specific attack classification reaches 44.5%. Hwang
et al. [74] designed a multi-model fusion Bi-LSTM anomaly detection framework that incorporates
SHAP (Shapley Additive exPlanations) technology to visualise the contributions of abnormal sensors.
On the HAI dataset, the framework achieves an eTaPR Fl-score of 0.959, outperforming the champion
model from HAICon 2020. It successfully detects 49 of 50 attack types, missing only 1. Wang et al. [75]
proposed a layer-wise relevance propagation (LRP) method to explain the basis of DNN detection. They
also improved data normalisation to enhance the distinguishability between normal and attack data.
On the gas pipeline dataset, the method accurately identifies key attack attributes, such as command
injection and response injection. Cluster analysis shows that the hidden-layer output is highly correlated
with attack types, achieving an accuracy of over 95%. Zhang et al. [76] proposed a multi-layer defence
intrusion detection system that integrates network traffic, host system data, and physical process data.
Supervised learning models, such as k-nearest neighbours (KNN) and decision trees, are utilised for
network and system data. In contrast, the autoassociative kernel regression (AAKR) model is employed
to process the data. Experiments show that the KNN model achieves an actual positive rate of 98.84%.
The Bagging and random forest models have a false positive rate of 0. The AAKR model can trigger
alarms in the early stage of physical process anomalies.

Unsupervised/Semi-supervised Type: Early explorations of hybrid architectures in machine learning-
based IDS have provided essential references for industrial scenarios. The DT-SVM hybrid model
proposed by [77] extracts data node information using decision trees to assist the SVM in feature
learning, while designing an ensemble method to weight-fuse the outputs of multiple classifiers. On
the KDD Cup 99 dataset, this method achieved a 100% detection rate for Probe attacks, improved
the accuracy for R2L attacks to 97.16%, and reduced computational overhead by 32% compared to
pure SVM. Such a classifier-complementary optimisation approach laid the foundation for the design
of subsequent hybrid models in ICS-IDS, such as CNN-LSTM combined with Random Forest, and
is particularly instructive for addressing the detection bottlenecks of minority industrial attacks [77].
Bernieri et al. [78] developed an unsupervised machine learning-based framework that separates IT
and OT traffic to capture side-channel data, detecting otherwise overlooked attacks. Zainudin et al. [79]
proposed a low-complexity technique for Software-Defined Networking ICS using Federated Learning,
enhancing detection efficiency through feature selection. Ortega-Fernandez et al. [80] introduced a
deep autoencoder-based system for detecting DDoS attacks in an unsupervised learning environment,
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achieving superior performance. Nedeljkovic et al. [81] proposed a semi-supervised method based
on CNNs, which automatically selects appropriate CNN architectures and detection thresholds for
detecting communication link attacks. On the SWaT dataset, the method achieves an Fl-score of 0.902,
an accuracy of 97.846%, and a false positive rate of 0.135%. In a custom electro-pneumatic positioning
system, it can detect multiple types of attacks in real time, such as linear attacks and harmonic injection.
Zeng et al. [82] proposed a federated intrusion detection backdoor defence framework based on
multi-objective clustering combinations. The non-dominated sorting genetic algorithm II (NSGA-II) is
employed to optimise the combination of 12 clustering strategies and their corresponding confidence
levels, aiming to maximise both the true positive rate (TPR) and the true negative rate (TNR). On the
SWaT, WADI, and PSA datasets, compared with single clustering strategies and traditional methods, the
backdoor sample misclassification rate of this framework is reduced to below 0.03, and the maximum
TNR reaches 96.76%, enabling effective defence against SIG and BadNet backdoor attacks. Kim et al. [83]
compared the performance of five time-series anomaly detection models on the SWaT and HAT datasets.
This study addresses two key issues in ICS anomaly detection: the lack of unified standards for model
selection and the high costs caused by large-scale training data. It clarifies the applicable scenarios of
different models and provides a basis for model selection in practical deployment. Kravchik et al. [84]
proposed a 1D convolutional neural network model. By predicting sensor and actuator time-series data,
the model detects attacks by calculating deviations between predicted and actual values. This method
addresses the challenges of complex training and high computational costs associated with traditional
recurrent neural networks, enabling efficient detection of stealthy attacks and meeting the real-time
requirements of ICS. Khan et al. [85] proposed an IDS model based on LSTM autoencoders. The
model processes network traffic through statistical feature extraction and detects attacks by combining
standardised probability transformations and reconstruction-error analysis. On the Gas Pipeline dataset,
it achieves 97.95% accuracy, and on the UNSW-NBI5 dataset, 97.62% accuracy. The training time is
only 7-8 min, and the detection latency is as low as 0.021 ms. Chahal et al. [86] proposed the Fed Avg-
integrated classifier architecture, which enables collaborative model training among distributed IIoT
nodes via Federated Learning while preserving the privacy of local device data. On the TON-IoT dataset,
this model achieved a detection accuracy of 98.2%, reduced latency by 50 ms compared to the centralised
CNN, and maintained an accuracy of 92% even when 50% of node data was missing, thus adapting to the
heterogeneous network environments of multi-factory IIoT. Srinivasan and Senthilkumar [87] proposed
a CNN-blockchain-RL hybrid framework, which uses CNN for IIoT traffic anomaly identification,
leverages blockchain to ensure the integrity of detection results, and employs reinforcement learning
(RL) to achieve autonomous threat mitigation. On the BoT-IoT dataset, this framework achieved 96.8%
recognition accuracy for DDoS attacks, reduced threat response time by 90.8%, and thus adapts to the
real-time detection and active defence requirements of IToT in smart manufacturing. Bansal et al. [88]
systematically summarised the lightweight IIoT-IDS technology routes and proposed a compressed
CNN and edge preprocessing scheme. By pruning 30% of redundant convolutional kernels, the scheme
maintained an accuracy of 94.3% on the Edge-IloTset dataset while reducing the model size by 65%,
making it suitable for resource-constrained devices such as PLCs.

Although machine learning-based methods can detect unknown attacks, their “black-box” nature
makes it challenging to build trust in industrial decision-making. For example, when the model identifies
abnormalities in PLC registers, operation and maintenance personnel cannot determine whether they are
caused by real attacks or by sensor noise. It is necessary to improve credibility by integrating interpretable
AT with industrial knowledge; otherwise, it will be challenging to implement in practice.
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4.4 Specific-Requirement-Oriented Detection

Although ICS intrusion detection systems based on rules, anomalies, and machine learning have been
applied in some scenarios, the complexity and diversity of industrial environments have led to numerous
implementation bottlenecks for existing general-purpose detection solutions. These bottlenecks include
limited coverage of emerging and stealthy attacks, excessive latency in real-time data stream processing
(which fails to meet the millisecond-level response requirements of industrial control), low efficiency in
feature extraction caused by high-dimensional industrial data (e.g., concurrent data collected by multiple
sensors), and dataset imbalance arising from scarce attack samples and excessive normal data [89]. The
superposition of these issues directly results in reduced detection accuracy and increased false favorable rates
of general-purpose detection solutions in real industrial scenarios, making it difficult for them to adapt to the
differentiated operating requirements of ICS across various industries (e.g., power SCADA systems, water
treatment PLC systems, and oil and gas pipeline control networks).

To address the bottlenecks above, the research community has begun to focus on developing “scenario-
specific” and “customised” detection technologies. Dedicated intrusion detection solutions are designed to
cater to the specific operational needs and environmental constraints of ICS. The industrial adaptability
of detection systems is enhanced by specifically resolving single or composite technical challenges. Such
specific requirement-based detection technologies are not entirely new systems, independent of the three
preceding technology categories; instead, they are optimisations and innovations based on existing technical
frameworks, combined with the characteristics of industrial scenarios. For example, sample generation and
model training strategies are optimised to address dataset imbalance, lightweight detection algorithms are
designed to meet real-time requirements, and industrial physical mechanisms are integrated to verify results,
thereby reducing high false favourable rates.

Currently, ICS intrusion detection systems based on specific requirements have formed several distinct
research branches, each focused on addressing specific pain points in industrial scenarios. In subsequent
sections, from dimensions such as “data constraint adaptation” and “scenario performance adaptation,”
the optimisation ideas, implementation methods, and application effects of various technologies in typical
industrial scenarios will be elaborated in detail, providing customised technical references for the security
protection of ICS in different industries, as shown in Fig. 6. This figure shows the scenario-specific solution
architecture for specific demand-oriented detection, with optimisation paths designed for four types of core
industrial pain points. To address adaptation to imbalanced datasets, SMOTE is used to synthesise attack
samples, and feature selection is applied to address the low proportion of attack samples. To optimise the
false-positive rate, Joint verification of network anomaly detection and physical models is implemented
to eliminate misjudgments caused by industrial noise/transient faults. To address the real-time response
requirement, Model compression, edge deployment, and feature simplification are adopted to meet the
millisecond-level latency requirements of scenarios such as power SCADA. To address the adaptation to
noisy environments, Noise suppression, data augmentation, and robust model training are combined to resist
data noise caused by electromagnetic interference in industrial sites.
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Figure 6: Scenario-based solution architecture for specific-requirement-oriented detection

o IDS for Imbalanced Datasets: Traditional ICS intrusion detection systems often neglect the imbalance
in resource allocation across hierarchical devices, focusing primarily on known attack patterns. This
leaves critical nodes vulnerable to unknown threats. To resolve this, Soliman et al. [89] introduced
an intelligent detection system that uses singular value decomposition to reduce data features while
employing the synthetic minority over-sampling technique to mitigate overfitting and underfitting
issues, improving classification accuracy. Al-abassi et al. [72] proposed a detection method using
ensemble deep learning to create balanced dataset representations, enhancing the system’s ability to
detect attacks. Ali et al. [90] presented an instance-based intrusion detection technique for SCADA
systems to improve detection performance. Wang et al. [91] developed a hybrid approach combining
convolutional neural networks and bidirectional long short-term memory networks, using the synthetic
minority over-sampling technique in the preprocessing stage to address data imbalance and thereby
reduce the impact of noise in the majority classes. Finally, Xiang et al. [92] proposed a multi-level
hierarchical framework that deploys packet signature models and an enhanced fast search and find of
density peaks model at different layers, facilitating the detection of both known and unknown attacks
with improved speed and accuracy.

o Integrated Perception-Based IDS: Traditional anomaly detection systems mainly perform local analy-
ses, often missing correlations between devices and attack processes. This limitation hinders their ability
to detect network-wide attacks or anticipate future ones. To overcome this, Jadidi et al. [93] proposed
a comprehensive anomaly detection solution using recurrent neural networks that not only detects
attacks but also predicts future attack patterns. Additionally, multi-layer and multi-domain detection
methods have gained attention. Bernieri et al. [78] adopted a distributed detection approach, integrating
information from various ICS points to identify more complex vulnerabilities. Kim et al. [83] developed
a hierarchical IDS that consolidates data from distributed sources to detect distributed-impact attacks.
Caselli et al. [50] introduced a sequence-aware IDS that monitors ICS network security by analyzing
event sequences, enhancing the detection of evolving threats.

+ Real-Time Response-Based IDS: Current ICS intrusion detection methods often struggle with latency
and are unable to extract relevant features from real-time data, underscoring the need for more
efficient and responsive detection approaches. Ahakonye et al. [57] employed a fusion feature selection
method in real-time SCADA networks to classify and detect attacks, developing a highly effective
intrusion detection model with improved detection rates. Similarly, Abid et al. [51,94] integrated cloud
computing and big data technologies for data fusion, creating an ICS real-time intrusion detection
system that reduces false alarms while enhancing accuracy and efficiency. The introduction of digital
twin technology also presents new opportunities for safeguarding real-time ICS environments [95].
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Unlike traditional systems that rely on historical data for security, digital twins can operate in multiple
modes [96]. Akbarian et al. [97] showed that a digital twin system reduces negative impacts on real-
time operations while using fewer computing resources. Dietz and Pernul [98] further demonstrated
that digital twins can simulate historical data and optimize performance.

Explainable IDS: Traditional rule-based methods depend heavily on manual configurations, and the
subtlety of attacks complicates the effectiveness of these rules. Machine and deep learning approaches
often lack transparency due to their complex designs, and the semantic gap between the models and
operational interpretations restricts their practical use. To address these issues, Xu et al. [99] proposed an
intrusion detection method grounded in anomaly logic representation learning. This approach employs
a lightweight neural network and uses knowledge distillation to achieve robust classification, enabling
the direct generation of clear, concise intrusion detection rules from the model’s learned knowledge. The
model’s hierarchical structure and residual connections enhance the explainability of the regulations.
IDS for Noisy Environments: Most existing intrusion detection techniques are developed in noise-free,
ideal settings, overlooking the inherent noise and complexity present in actual industrial environments.
To tackle this challenge, Izuazu et al. [100] introduced a security framework that effectively differentiates
between attacks, normal operations, and noise through the analysis of ICS network traffic. This approach
can successfully identify malicious activities amidst routine industrial network operations, showcasing
enhanced robustness and detection accuracy. Gu et al. [101] proposed a data-augmented intrusion
detection system. This system expands attack data using the CenterBorderline_ SMOTE algorithm
and combines a reconstructed convolutional neural network (CNN) to extract features and perform
classification. On the SWaT and S7 datasets, the system achieves a detection accuracy of over 97%
and a relative error reduction rate (RERR) that is significantly higher than that of traditional methods.
Peralesetal. [102] proposed a unified framework based on edge computing, software-defined networking
(SDN), and network function virtualization (NFV). This framework deploys applications such as cyber
threat detection, indoor positioning, activity recognition, and shared workspace security. On the Electra
dataset, neural network-based models within the framework can process 217 feature vectors per second,
achieve attack-detection accuracy over 97%, and provide real-time responses. Fan et al. [103] proposed
a defense-in-depth system that includes firewalls, intrusion detection, and access control, and discussed
both anomaly detection and signature-based detection technologies. Nankya et al. [104] integrated IDS,
anomaly detection, and signature-based detection, and combined them with the Dragos platform to
achieve real-time monitoring and response. Experiments show that this integrated system achieves a
detection rate of 92%, a false-positive rate of 5%, a response time of 2 s, and a CPU utilization of 30%,
covering 85% of threat types. Hui et al. [105] constructed a testbed consisting of 4 physical sub-processes
and a multi-layer network architecture. This testbed supports protocols such as S7comm and Profinet,
can simulate the interaction between PLC control logic and physical processes, and provides a testing
environment for IDS algorithms.

4.5 Multi-Dimensional Comparison of Core ICS-IDS Methods

The core architectures of the above four types of detection technologies are compared in Table 5.

Table 5: Comparison of ICS attack detection technologies

Technology Data input Core processing module Output result

Attack signature database
Snort/Suricata rule matching
engine

Alerts for known
attacks

Rule-Based Network traffic
detection device logs

(Continued)
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Table 5 (continued)

Technology Data input Core processing module Output result
Normal behavior baseline Alerts for
Anomaly-based Sensor data PLC . ,
. model deviation calculation abnormal
detection status . .
engine behaviors
Machine _ .
) Multi-source Feature extraction model Attack type
learning-based .. .
_ heterogeneous data training, classifier confidence
detection
SMOTE samplin
Specific- Imbalanced dataset . . p. g. Attack alerts
. . lightweight quantization
requirement- real-time . , adapted to
. , . model cyber-physical fusion .
oriented detection streaming data scenarios

verification

The rule-driven type excels in scenarios involving known attacks and high real-time requirements,
but cannot address unknown attacks. The machine learning-based type can detect unknown attacks but
sacrifices real-time performance and increases resource consumption, making it only suitable for scenarios
with low real-time requirements. When an industrial scenario involves both known and unknown attacks, a
hybrid framework combining rule-driven approaches and lightweight ML models can be adopted to balance
detection coverage and real-time performance. The high false-positive rate of anomaly-driven approaches
leads to dire consequences in industrial settings, so this technology is only suitable for high-fault-tolerance
scenarios. However, the rule-driven type’s inability to detect unknown attacks poses security risks to critical
infrastructure, and it is necessary to pair it with technology tailored to specific requirements to address
this deficiency.

Next, we systematically compare differences across three dimensions—performance quantification, sce-
nario scalability, and practical trade-offs—among four method types: rule-based, anomaly-based, machine
learning-based, and specific-requirement-oriented detection, to provide a clear basis for technology selection
in industrial scenarios, as shown in Table 6.

Table 6: Multi-dimensional comparative analysis of ICS attack detection technologies

. . . Rule-based Anomaly-based Mfmhme Sp © cific-
Dimension Indicator . . learning-based requirement-
detection detection . . .
detection oriented detection
0/ 0,
. 92%-98% = 8,SA) 9?A’ 90%-99% (known 93%-97% (after
Detection (including .
accuracy (known attacks unknown + unknown scenario adapta-
23,35 70,72 ion) [51,82,¢
P?rgo.rmtance only) [23,35] attacks) [49,52] attacks) [70,72] tion) [51,82,96]
indicators
2.5%-5.09
False positive (a?fe/octe?dolf) 1.0%-3.5% (afte 0.8%-2.0% (after
P 0.1%-1.2% [35] . . Y model optimiza- scenario
rate industrial tion) [67,70] verification) [82,92]
noise) [49] 7 oers
. 01-10 ms 50-200 ms 20-150 ms (model 5-80 ms
Detection (lightweight . . . L
latency atch. (baseline modeling inference (optimized on
ime) [45,49 i 7,85 51,82,9:
ing) [23,36] time) [45,49] time) [67,85] demand) [51,82,94]
Industrial
Scalability and . . . - Low- Medium-
35 49,54 . _ . _
compatibility dev1c§ High [3] Medium [49,54] Medium [65,85] High [82,97]
adaptation

(Continued)
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Table 6 (continued)

Machine Specific-
. . . Rule-based Anomaly-based . P
Dimension Indicator . . learning-based requirement-
detection detection . . .
detection oriented detection
Industrial
protocol Medium [35] Medium [41,53] High [69,83] High [93,102]
compatibility
Data Volume . - . .
N Low [23] Medium [45,48] High [62,72] Medium [89,91]
Dependence
Strong in
known attack
detection, Can detect .
. . Balances detection
. extremely low unknown attacks, Widest detection .
Detection . . capability and
. resource but higher resource range, but high
Core trade-off Capability vs. . . resources, but
. . occupation, but occupation than resource .
relationships Resource L development cost is
) completely rule-based and occupation, limited )
Occupation higher than the
unable to greatly affected by edge deployment
. . . first three
handle industrial noise
unknown
attacks
Low Medium . .
Deployment High deployment High deployment
deployment deployment cost, .
Cost vs. . . cost, low cost, medium
) cost, high medium ) .
Maintenance maintenance maintenance maintenance maintenance
Difficult ~ cost [66,74 cost [90,98
¥ cost [24,40] cost [47,52] [66,74] [ ]
Medium
Poor universality, High universality,
. . optimal adaptation ~ optimal adaptation
. universality, . . .
Scenario . to unknown attack to multiple Optimal scenario
. but optimal . . .
Adaptation vs. . scenarios, but scenarios, but adaptation, but
. . adaptation to . . .
Universality prone to requires worst universality
known attack - . .
. misjudgment due scenario-specific
scenarios .
to normal parameter tuning
fluctuations

Next, with reference to Table 6, the underlying causes of differences in performance indicators among

the technologies above are discussed from a quantitative perspective.

Accuracy Difference: The rule-driven type (92%-98%) achieves higher accuracy for known attacks than
the anomaly-driven type (85%-93%). This is because the former relies on predefined attack signatures,
enabling unambiguous matching; in contrast, the anomaly-driven type relies on normal behavior
baselines, and sensor noise in industrial environments can cause deviations from these baselines, thereby
reducing accuracy. The machine learning-based type (90%-99%) offers a wide range of accuracy:
supervised learning models can optimize attack detection using labeled samples, while unsupervised
models can capture unknown attack patterns. However, sample quality significantly impacts accuracy—
when the proportion of attack samples is <5%, the accuracy of ML models drops to approximately 95%,
requiring techniques such as SMOTE to balance the dataset.

Latency Difference: The latency of the rule-driven type (0.1-10 ms) is much lower than that of the
machine learning-based type (20-150 ms). The core reason is that rule matching only requires packet
feature comparison. In contrast, ML models require additional steps such as feature extraction and
model inference, resulting in a significant increase in inference time on edge devices. The specific
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requirement-oriented type reduces latency to 5-80 ms through model lightweighting, which can adapt to
some real-time scenarios. Still, its development cost is 2-3 times higher than that of the rule-driven type.

« False Positive Rate Difference: The rule-driven type has the lowest false-positive rate (0.1%-1.2%),
as its rules are based on explicit attack signatures, thereby avoiding misjudgments of normal behavior.
The anomaly-driven type has the highest false positive rate (2.5%-5.0%), since normal fluctuations in
industrial environments are easily misclassified as attacks. The machine learning-based type controls the
false positive rate within 1.0%-3.5% through feature engineering and model optimization. However, this
rate is still higher than that of the rule-driven type, necessitating a trade-off between detection range and
false positive rate.

4.6 Empirical Verification of ICS-IDS Technologies

This section, based on the selected literature, integrates the experimental results of various detection
technologies. Through quantitative tables and case studies, it provides empirical support for technical
performance claims and verifies the practicality of these technologies in industrial settings. The details are
presented in Table 7.

Table 7: Comparison of ICS-IDS technologies empirical verification

Representative Validation
Technology pmetho d dataset/Experimental Core performance indicators
scenario
Fl-score for device identification:
iFinger (Device Measured data of 10 97.1%;
Fingerprint types of industrial Recall rate for register tampering
Rule-Based Matching) [35] devices (PLC/RTU) attack: 98.0%;
detection Detection delay: <2 ms
IT layer response time: 1.5 s;
ISERA Simulated DoS attack OT layer response time: 2 s;
. + malicious software System availability: maintained
architecture [36] . . .
intrusion scenario above 95%;
Attack isolation success rate: 100%
Accuracy of stealth attack
PaSaD (S detection: 92%;
aSaD (Sensor SWaT water treatment ¢ e? }on ° 0
A Iy Temporal ICS dataset False positive rate: 2.3%;
nomaty Analysis) [49] Recognition rate of sensor data
based R
‘ injection attack: 90%+
detection

Traffic temporal
analysis [48]

Factory automation
dataset + Modbus
dataset

Data processing speed: surpasses
traditional tools by one order of
magnitude;

Real-time detection accuracy: 0.96
(factory automation), 0.83
(Modbus)

(Continued)
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Table 7 (continued)

Representative Validation
Technology P dataset/Experimental Core performance indicators
method R
scenario
Accuracy in gas pipeline scenario:
96.23%;
Bi-SRU (Bidirectional  Gas pipeline dataset + _ % .
_ _ Accuracy in water tank scenario:
Machine Simple Recurrent water tank control 92.94%
.94%;
o i) 167
le{a)rnlr(lig Unit) [67] dataset Training time: 30% shorter than
4 a5« LSTM
etection A-BLLSTM Highest accuracy: 98.35%;
F1- : 98.28%;
(Autoencoder + APA-DDoS + Com utili?(frelalgioriblexit :
Bidirectional NSL-KDD dataset P . prextty:
LSTM) [69] reduced by 40% compared to
traditional DL models
When the proportion of attack
samples is 3%, accuracy still
, SWaT+WADI water reaches 95.2%;
. Federated clustering . o
Specific- , | treatment/water Backdoor sample misclassification
) fusion framework [82]
requirement- supply ICS dataset rate: <0.03;
oriented True negative rate (TNR): up to
detection 96.76%

MitM/DDoS attack detection
accuracy: 0.98;
False positive rate: reduced by
99.9% compared to traditional IDS;
PLC simulation interaction

Simulated S7 series
PLC communication
scenario

Dual-proxy honeypot
system [41]

consistency: 100%

The core of applicability in real-time industrial environments lies in the degree of alignment between
technical performance and scenario requirements. For scenarios with extremely high real-time requirements
(<100 ms) and clear attack types (e.g., power systems, automotive manufacturing), the rule-driven type is the
optimal choice, as its low latency and low false-positive rate directly meet these needs. For scenarios with
moderate real-time requirements (<200 ms) that need to address unknown attacks (e.g., water treatment,
general manufacturing), the lightweight machine learning-based type is more suitable—it balances real-
time performance and detection range through model compression. For scenarios with low real-time
requirements (>200 ms) and data imbalance (e.g., cloud monitoring in smart factories), the requirement-
oriented type can improve detection capabilities through sample generation and cross-domain learning,
without concern for real-time constraints.

Meanwhile, it should be noted that the fault tolerance of industrial scenarios inversely affects technology
selection. In low fault tolerance scenarios (e.g., nuclear power plants, oil pipelines), even if real-time
requirements are met, technologies with a false positive rate exceeding 1% should be avoided; priority must
be given to the rule-driven type (with a false positive rate <1%) or optimized machine learning-based type.
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5 Analysis of Challenges

Based on an analysis of 115 studies (2000-2025) included in the SLR, the current IDS technology for ICS
faces several core challenges in its implementation in real-world industrial scenarios, as illustrated in Fig. 7.
These issues directly constrain the reliability and practicality of detection systems.

al-time and AL _ s Dataset imbalance
s O <7 B

latency constraints — ) and scarcity

k- Attack samples account for < 5%
1
‘- Sample deviation — opaque model logic

Q_p

Simplifying models to improve real-time performance - \ oo
— increased false alarm rate d o

T
|
Power systems require a response time of <100ms - !
1

Core challenges
Protocol and s of ICS-IDS .
[ Hardware compatibility } 1

T T
1 1

Modbus/DNP3 have no encryption - ' k- False alarms cause shutdown losses of millions
1 1

i
1
Insufficient computing power of old hardware - ' - Few attack samples — model missed detection
1
1

— increased latency
[A Insufficient interpretability ]
T

1
k- ML models are "black boxes" and difficult to correlate with physical meanings

1
\

- Inability to explain alarms
— misjudgment by operation and maintenance personnel

Figure 7: Core challenges of ICS-IDS

5.1 Conflict between Real-Time Performance and Latency Constraints in Industrial Environments

ICS imposes stringent requirements on real-time performance. For example, the response time for
control commands in power systems must be <100 ms. However, existing detection technologies, such
as machine learning, often suffer from detection latency exceeding the threshold due to their high
computational complexity.

Deep neural networks require extensive parameter calculations. When deployed on edge devices such
as Programmable Logic Controllers (PLCs) and sensors, they are limited by the low computing power of
industrial hardware, making it challenging to meet millisecond-level response requirements [106]. During
multi-source data fusion—e.g., integrating network traffic with physical sensor data—the high proportion
of time consumed by data preprocessing further exacerbates latency [107].

5.2 Dataset Imbalance and Sample Scarcity

The number of ICS attack samples is far smaller than that of normal operational data, leading detection
models to be biased toward standard patterns and resulting in a high false negative rate for unknown attacks.

Data in industrial scenarios is highly sensitive, and public datasets (e.g., CSE-CIC-IDS2018) mainly
consist of simulated data, which exhibit a distribution discrepancy compared to real ICS environments [108].
For zero-day attacks, there are no historical samples, making it difficult for traditional supervised learning
models to learn their features. Reliance on manual annotation further exacerbates sample scarcity [109].

5.3 Contradiction between High False Positive Rates and Low Fault Tolerance of Industrial Systems

In ICS environments, false positives can trigger unnecessary emergency shutdowns, causing substantial
economic losses. Consequently, the tolerance for falsely favorable rates is much lower than that in IT systems,
but existing technologies struggle to meet this requirement.
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Normal fluctuations occur in industrial environments (e.g., sensor noise, transient equipment faults),
which can be misclassified as attacks by anomaly detection models [110]. The specificity of industrial
protocols—such as the periodic communication of Modbus—renders traditional threshold settings ineffec-
tive, and rule-based matching is vulnerable to interference from typically variable traffic [111].

5.4 Compatibility Limitations of Protocols and Hardware

ICS protocols are diverse, and some outdated protocols lack security extensions, making it difficult for
detection technologies to adapt to heterogeneous environments. Meanwhile, the limited computing power
of industrial hardware prevents the deployment of complex detection algorithms.

Traditional industrial protocols were not designed with security in mind and lack encryption or
authentication fields, which hinders detection systems from distinguishing between normal and malicious
traffic [112]. Early research on lightweight IDS in the IoT domain has provided valuable insights for
the compatibility of edge devices in ICS. The SVELTE architecture proposed by [113], which integrates
6LoWPAN Border Route centralised modelling with lightweight node module design, directly inspired
subsequent lightweight detection modules for PLC/RTU in ICS, effectively alleviating the contradiction
between complex algorithms and hardware resource constraints [113].

With the integration of ICS into industrial clouds, the compatibility issues of traditional Intrusion
Detection and Prevention Systems become even more prominent. A systematic review by [114] noted
that the dynamic nature of cloud environments, virtualisation vulnerabilities, and multi-tenant isolation
requirements demand that IDPSs possess greater scalability and adaptability. This conclusion is equally
applicable to industrial cloud scenarios: the diversity of ICS protocols and the limited computing power
of edge devices require drawing on classical approaches such as ontology-based unified knowledge sharing
and autonomic computing self-configuration, which provide solutions for cross-protocol compatibility and
lightweight deployment [114].

5.5 Conflict between Insufficient Interpretability and Trust in Industrial Decision-Making

In industrial scenarios, it is essential to clearly explain “why an event is identified as an attack” However,
machine learning models are often “black boxes,” and their outputs are challenging to interpret—this reduces
the trust of operations and maintenance personnel.

The feature extraction process of complex models (e.g., deep autoencoders) is opaque, making it
impossible to correlate model outputs with industrial physical meanings (e.g., the relationship between
“abnormal temperature sensor data” and “attack vectors”). Existing interpretability methods, such as
attention mechanisms, are susceptible to noise interference in industrial data, resulting in a decline in
interpretation accuracy [115].

The challenges above are interrelated. For instance, simplifying models to improve real-time perfor-
mance may lead to higher false positive rates; dataset imbalance can exacerbate model bias and further reduce
interpretability. Collectively, these issues constitute core obstacles to the practical implementation of ICS-IDS
technology and also provide clear directions for future development.

6 Future Hotspots of ICS-IDS

Based on the bibliometric analysis of relevant literature through a Systematic Literature Review (SLR),
and considering the challenges encountered in the current technology implementation—such as insufficient
real-time performance, defects in dataset quality, and high false favourable rates—the future research
hotspots of ICS intrusion detection technology will focus on addressing the bottlenecks above. The specific
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evolutionary paths can be summarised into the following four directions, as shown in Table 7. The five future
hotspots proposed in this paper are not general directions but rather targeted solutions that address the core
research gaps identified in Section 5. Their corresponding relationships have been systematically clarified
in Table 8.

Table 8: Comparison of hotspot directions

Hotspot direction Addressed difficulties Core technologies

Lightweight deep learning models

Contlicts between the edge edge-cloud collaborative

Lightweight intelligent .
. device resources and >
Detection technology architecture hardware-level

real-time performance . _ .
customised algorithm optimisation
Industrial scenario-specific data
augmentation federated and

Data-driven robustness  Data distribution differences cross-domain transfer learning
Enhancement technology and sample scarcity in-depth application of
unsupervised/semi-supervised
learning
Misjudgment of normal Physical process-aware integrated
Physical-network Juce yoica procs are s
fluctuations and lack of detection digital twin virtual-real
Integrated accurate _ . I . .
_ physical meaning in verification dynamic adaptive
Detection technology _ .
detection threshold adjustment
Cross-protocol abstraction layer
Cross-Protocol and Poor compatibility and fusion of interpretable Al and
interpretable universal credibility caused by industrial knowledge, standardised
architecture protocol diversity interfaces, and open-source
detection frameworks
. Fragmentation of detection Detection-response linkage
Systematic defence . . _ )
svstermn and defence and difficulty in mechanism adaptive defence
4 real-time disposal strategy optimisation

6.1 Lightweight Intelligent Detection Technology: Breaking Limitations of Real-Time Performance and
Edge Deployment

To address the constraints of limited memory and computing power in industrial edge devices, a
lightweight ICS-IDS supporting millisecond-level response times is developed through model compression,
an edge-cloud collaborative architecture, and hardware-level optimization. This balances the demand for
real-time detection with the resource constraints of industrial hardware. The core technical paths include:

Construction of Lightweight Deep Learning Models: Model compression techniques, such as knowledge
distillation and pruning, are used to reduce the parameter count while maintaining detection accuracy. This
lowers computational latency and adapts to the computing power requirements of edge devices.

Edge-Cloud Collaborative Detection Architecture: Edge nodes are responsible for real-time preliminary
detection and for uploading only suspected abnormal data to the cloud. The cloud leverages sufficient
computing power for in-depth analysis, forming a collaborative model of “real-time edge response + in-depth
cloud verification” to balance real-time performance and detection accuracy.
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Customized Optimization of Hardware-Level Algorithms: Targeting the architectural characteristics of
industrial-specific chips, detection algorithms with fixed-point computing and low memory occupancy are
designed. This reduces the algorithm’s reliance on hardware resources and improves operational efficiency
on edge devices.

6.2 Data-Driven Robustness Enhancement Technology: Resolving Dataset Imbalance and Sample Scarcity

To address distribution discrepancies between existing public datasets and real ICS environments, as
well as the scarcity of historical samples for zero-day attacks, sample diversity is enhanced through data
augmentation, cross-domain learning, and unsupervised learning. This reduces reliance on manually labeled
data and improves the robustness of detection models. The specific technical directions are as follows:

Industrial Scenario-Specific Data Augmentation: Realistic attack samples are generated by integrating
industrial physical mechanisms—for instance, simulating time-series data for attacks such as PLC command
tampering and sensor data injection. This avoids sample detachment from actual scenarios caused by over-
reliance on statistical methods.

Federated Learning and Cross-Domain Transfer Learning: Federated learning enables “decentralized
training” across multiple institutions, addressing the problem of data silos in industry. Transfer learning
adapts mature detection models from the IT domain to ICS scenarios, reducing the need for ICS-specific
labeled data. For edge ICS scenarios (e.g., PLCs, RTUs, and other devices), it is necessary to optimize
lightweight federated training protocols further—reducing computational overhead on edge devices through
local training pruning and gradient parameter compression. Meanwhile, a collaborative architecture of
edge gateway sub-aggregation and cloud-based global optimization is constructed to balance data privacy
protection and millisecond-level detection requirements.

In-Depth Application of Unsupervised/Semi-Supervised Learning: Detection models are trained using
readily available data from the regular operation of industrial systems. Anomaly detection is achieved by
identifying behaviors that deviate from standard patterns, eliminating reliance on scarce attack samples. This
is particularly suitable for detecting zero-day attacks.

6.3 Physical-Network Integrated Accurate Detection Technology: Reducing False Positives and Improving
Credibility
To address problems such as misjudging normal fluctuations in industrial environments as attacks
and the lack of physical significance in support for detection results, network traffic data is integrated with
physical process data. Industrial mechanisms are used to verify detection results, reducing false positives
caused by noise interference. The core technical approaches include:

Physical Process-Aware Integrated Detection: Network attack detection is correlated with physical sys-
tem anomalies. For example, dual verification of “network traffic anomalies, physical parameter anomalies”
is used to determine whether an attack is real, avoiding misjudgments caused by over-reliance on network
data alone.

Digital Twin Virtual-Physical Mapping Verification: A virtual mirror of the industrial system is
constructed using digital twin technology. The impact of attacks on the physical system is simulated in the
virtual space to verify the authenticity of the detection model’s results, thereby improving the credibility
of the detection conclusions. Furthermore, for Al-generated adversarial attacks (e.g., micro-disturbance
samples that tamper with protocol data frames), it is necessary to identify isolated adversarial samples that
only exist at the network layer through cross-validation of network features and physical parameters (e.g.,
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abnormal traffic must match physical anomalies such as valve opening and motor speed), thereby improving
the robustness of the detection model.

Dynamic Adjustment of Adaptive Thresholds: Detection thresholds are dynamically optimized based
on the range of normal fluctuations in industrial scenarios (e.g., traffic fluctuations caused by changes in
production load). This prevents fixed thresholds from misclassifying normal operational fluctuations as
attacks, thereby reducing false-positive rates.

6.4 Cross-Protocol and Interpretable Universal Architecture: Solving Compatibility and Trust Issues

To address the poor compatibility of detection systems due to the diversity of industrial protocols (e.g.,
Modbus, DNP3, S7COMM) and the reduced user trust caused by the “black-box” nature of deep learning
models, a cross-protocol universal detection framework and interpretable models are developed to enhance
system compatibility and user trust. The specific measures are as follows:

Design of Cross-Protocol Abstraction Layer: Common features of different industrial protocols (e.g.,
time-series interaction patterns, data frame structure rules) are extracted to construct a protocol-agnostic
abstraction layer for detection models. This enables unified adaptation across multiple protocols without the
need to redevelop detection algorithms for each protocol.

Integration of Interpretable AI and Industrial Knowledge: The decision logic of detection models is
linked to industrial domain knowledge (e.g., ladder diagrams, process flow diagrams). Detection results are
explained using terms understandable to industrial users (e.g., “unauthorized modification of PLC start-stop
commands”), breaking the “black-box” barrier.

Construction of Standardized Interfaces and Open-Source Frameworks: Standardization of ICS-IDS
interfaces is promoted to reduce integration costs between detection systems from different vendors and
industrial control platforms. Open-source detection frameworks are designed to facilitate technology
iteration and industry collaboration, thereby promoting widespread adoption.

6.5 Systematic Defense System: Closed-Loop Collaboration from Detection to Response

Breaking the current fragmented state of detection and defense links, a closed-loop defense system
of “detection-response-repair” is constructed to achieve real-time attack disposal and dynamic defense
optimization:

Detection-Response Linkage Mechanism: A linkage interface is established between ICS-IDS and
industrial security devices (e.g., industrial firewalls and PLC security modules) to enable detection and
response integration. When an attack is detected, defensive actions (e.g., blocking abnormal traffic, isolating
compromised devices, and restarting control loops) are automatically triggered to minimize its impact. It can
be combined with the “never trust, always verify” logic of zero trust—dynamic trust levels are assigned based
on device fingerprints. Only the minimum necessary operational permissions are authorized. When the IDS
detects anomalies, the permissions of suspicious devices are revoked in real time to prevent the spread of
attacks; meanwhile, the impact is simulated via digital twins, thereby reducing interference from false alarms
in industrial processes.

Adaptive Defense Strategy Optimization: Detection rules and defense strategies are dynamically
adjusted based on the evolutionary trends of attack behaviors (e.g., changes in DoS attack traffic charac-
teristics, new command injection attacks). For example, redundant communication links are automatically
switched in response to DoS attacks to enhance the defense system’s adaptability.
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6.6 Actionable Research Frameworks for ICS-IDS: Data, Experiment, and Deployment

The implementation of the aforementioned future hotspots relies on standardized data, reproducible
experiments, and quantitative deployment metrics. Herein, three types of actionable research frameworks
are proposed to cover the entire data collection, experimentation, and deployment process, providing specific
action paths for research in this field.

(1) Standard Dataset Construction Framework

It aims to address the issue that the public datasets mentioned above are mostly simulated data with
significant discrepancies in distribution from real ICS environments, and to provide standardized data
resources for cross-industry reuse. The data sources of relevant studies [51] are integrated to ensure that the
data covers three dimensions: network traffic, physical parameters, and attack samples. Based on the attack
classification in Section 4, a three-level annotation system including attack categories, technical details, and
physical impacts is formulated. A consortium is established by uniting universities and enterprises, and
new attack types are added annually to ensure the dataset’s timeliness. Currently, it is necessary to address
standardization bottlenecks: first, there is a lack of unified cross-industry detection indicators, requiring
industry alliances to formulate domain-specific standards; second, there are no specifications for dataset
formats and interfaces between IDS and industrial control systems—reference should be made to the OPC
UA protocol to unify data interaction formats, thereby reducing multi-vendor integration costs.

(2) Reproducibility Practice Scheme

It aims to address the challenges of reproducibility and comparability of technical effects, thereby
enhancing research credibility. It is necessary to specify the hardware platform, software version, and
network topology, and provide Docker environment configuration scripts. Data preprocessing steps, model
hyperparameters, and calculation methods of evaluation metrics should be recorded.

(3) Deployment Indicator Evaluation System

It aims to solve the problem that technologies with excellent performance in the laboratory are
unavailable in the industrial field, and to provide quantitative evaluation criteria from technological research
and development to industrial deployment. The three-level indicator system is shown in Table 9.

Table 9: ICS-IDS deployment indicator evaluation systems

Indicator dimension  Specific indicator Measurement method

On-site injection attack real attack data
verification
Count misjudgments from normal
fluctuations in 30 days

Performance indicator ~Detection accuracy

False positive rate

Detection delay Measurement based on PLC time difference
Resource indicator CPU utilization Collected by industrial monitoring software
Security indicator DoS resistance Simulated DoS attack test

As indicated by the bibliometric analysis of relevant literature via SLR and the challenges in tech-
nology implementation, future research will focus on resolving bottlenecks, such as insufficient real-time
performance and dataset imbalance, to advance the evolutionary paths outlined above. This paper, through
the logical closed loop of identifying challenges, proposing hotspots, and designing frameworks, not only
clarifies the evolutionary direction of ICS-IDS technology but also provides feasible solutions to address
existing research gaps, with the expectation of promoting the technology from theoretical research to
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industrial practice. Practical deployment requires overcoming two significant barriers: first, legacy devices
have limited resources—lightweight detection modules can be deployed by connecting external low-power
edge gateways to avoid production shutdowns for retrofitting; second, there are skill gaps among operation
and maintenance personnel—automated model update platforms should be developed, and industrial
control knowledge graphs should be integrated to simplify false alarm classification, thereby lowering the
operation threshold.

7 Conclusion

This paper explores the unique aspects of ICS network security, highlighting its potential attack
vectors. It assesses the current research landscape on ICS security detection technologies, both domestically
and internationally, focusing on four main approaches: misuse-based intrusion detection, anomaly-based
intrusion detection, machine learning-based intrusion detection, and intrusion detection tailored to specific
requirements. Finally, the paper presents a forward-looking view of the development trends and research
directions for ICS intrusion detection systems.

The ongoing innovation and development of key intrusion detection systems for ICS signal significant
potential for future breakthroughs. By integrating new technologies and methodologies, ICS intrusion
detection systems can provide more comprehensive and intelligent security measures, effectively addressing
the constantly evolving cyber threats. This is crucial for ensuring the security of the national informa-
tion infrastructure.
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