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ABSTRACT: The rapid advancement of large language models (LLMs) has driven the pervasive adoption of
Al-generated content (AIGC), while also raising concerns about misinformation, academic misconduct, biased or
harmful content, and other risks. Detecting Al-generated text has thus become essential to safeguard the authenticity
and reliability of digital information. This survey reviews recent progress in detection methods, categorizing approaches
into passive and active categories based on their reliance on intrinsic textual features or embedded signals. Passive
detection is further divided into surface linguistic feature-based and language model-based methods, whereas active
detection encompasses watermarking-based and semantic retrieval-based approaches. This taxonomy enables system-
atic comparison of methodological differences in model dependency, applicability, and robustness. A key challenge for
Al-generated text detection is that existing detectors are highly vulnerable to adversarial attacks, particularly paraphras-
ing, which substantially compromises their effectiveness. Addressing this gap highlights the need for future research on
enhancing robustness and cross-domain generalization. By synthesizing current advances and limitations, this survey
provides a structured reference for the field and outlines pathways toward more reliable and scalable detection solutions.
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1 Introduction

In recent years, the rapid development of large language models (LLMs) such as the GPT series [1],
BERT [2], T5 [3], and the recently open-sourced DeepSeek [4], has significantly propelled the progress of
natural language generation (NLG). These models have demonstrated outstanding performance in tasks such
as text summarization, machine translation, and content creation, producing outputs that are often stylis—
tically and semantically indistinguishable from human writing. However, the increasing sophistication and
accessibility of LLMs have introduced numerous challenges, including intellectual property infringement,
the spread of misinformation, biased or discriminatory content, privacy breaches, malicious exploitation,
academic plagiarism, fabricated news, and fake reviews on social media platforms [5-7]. While LLMs can
generate coherent and fluent text, they remain susceptible to producing unreliable or fabricated content.
As Al-generated text becomes increasingly ubiquitous online, the need for reliable detection mechanisms
has become urgent and indispensable. In response, researchers have focused on Al-generated text detection
(AIGTD) as a safeguard for information authenticity, driving the evolution of detection techniques from
early statistical heuristics to the modern approaches explored today.
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Early research on Al-generated text detection primarily employed statistical heuristics or basic classi-
fication models. The emergence of ChatGPT marked a watershed moment, drastically expanding both the
capabilities of LLMs and the challenges of detecting their outputs. Since then, research attention has shifted
toward more complex scenarios, such as distinguishing Al-generated text from human-authored content,
evaluating the robustness of detection systems, and developing defenses against adversarial attacks. Typically,
AIGTD is formulated as a binary classification problem, as illustrated in Fig. 1. Given an input text sample
s € S, the detector assigns a label y € {0,1}, where y = 1 denotes Al-generated text and y = 0 denotes human-
authored text. The detector D(s) can be a probabilistic model or a discriminative classifier designed to infer
the origin of the input text.

Input Text s€S
(Sentence/Paragraph/Document)

A 4
( Text Detector D(s))

1

Human-authored Al-generated

Figure 1: Binary classification framework for Al-generated text detection

Current detection methods can be broadly categorized into two paradigms: passive and active detection.
Passive detection does not require access to the text generation process; it discriminates between human-
authored and AlI-generated text by analyzing linguistic features, statistical patterns, or semantic coherence,
among other factors. This approach offers high flexibility and ease of deployment; however, it often exhibits
limited generalization across domains and remains vulnerable to evasion through paraphrasing or style
manipulation. In contrast, active detection embeds identifiable signals—such as watermarks—into the text
during or after generation to enable provenance tracking. While generally more robust and tamper-resistant,
this approach presents substantial challenges for integration and deployment in real-world settings.

Building on this categorization, this paper presents a systematic review of Al-generated text detection.
Unlike prior surveys that often emphasize either watermarking or linguistic analysis in isolation, our work
provides a holistic taxonomy that jointly considers both passive and active paradigms. By integrating recent
advances into this framework, we aim to clarify the methodological landscape, highlight the connections
and distinctions among different detection strategies, and offer readers a structured reference for navigating
this rapidly evolving field. On this basis, this review seeks not only to consolidate fragmented research efforts
but also to provide a foundation for future investigations into reliable and scalable detection solutions.

The remainder of this review is organized as follows. Section 2 provides an overview of AIGTD,
including task definitions, challenges, and a taxonomy of existing methods. Section 3 discusses passive
detection methods, which infer authorship based solely on the properties, including surface-linguistic
feature-based and language model-based approaches. Section 4 focuses on active detection approaches,
covering watermarking-based and retrieval-based methods. Section 5 highlights current limitations and
emerging challenges, outlining potential research directions. Finally, Section 6 concludes the paper by
summarizing key insights and implications for future work.
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2 Overview of AI-Generated Text Detection

This section provides a structured overview of AIGTD. It begins with the general workflow of text
classification and its distinctions from AIGTD. It then examines the text generation mechanisms of
LLMs, emphasizing the linguistic and statistical properties that are particularly relevant to distinguishing
Al-generated text from human-authored text. The section further considers the principal challenges that
complicate reliable detection at the technical, model, and application levels, followed by a taxonomy that
organizes existing detection methods into passive and active paradigms to clarify the methodological land-
scape.

2.1 Task Formulation and Foundations

As outlined in Section 1, AIGTD is typically formulated as a binary classification problem, where the
objective is to distinguish between human-authored and Al-generated text. While this binary framing cap-
tures the essence of the task, practical settings often extend beyond it. For instance, detection may be designed
as a multi-class problem to identify outputs from different LLMs, or as an open-set problem to handle
previously unseen generative systems. The theoretical foundation of this task lies in text classification [8],
which is a fundamental task in NLP. Text classification aims to automatically assign a text sample to one or
more predefined categories. It includes binary, multi-class, and multi-label classification, and is widely used
in applications such as sentiment analysis, spam detection, and topic labeling. A typical pipeline involves
three steps:

(1)  Text representation: transforming raw text into structured features using techniques such as bag-of-
words, TF-IDE, or word embeddings;

(2) Classifier modeling: building classifiers with statistical methods (e.g., SVM, Naive Bayes) or deep
neural architectures (e.g., CNN, RNN, Transformer);

(3) Decision output: producing a probability distribution over the discrete class labels and determining
the final predicted category.

Although AIGTD inherits the general pipeline of text classification, it differs substantially in objectives,
feature dependencies, and operational complexity. Traditional classification tasks, such as sentiment analysis
or topic labeling, are predominantly content-driven, focusing on semantic signals directly aligned with
the label. Even when employing deep encoders, these models learn meaning-oriented representations
tied to topics, stances, or sentiments. In contrast, AIGTD is largely authorship-driven or process-driven,
relying on linguistic and generative regularities that are weakly coupled to content. Such cues include
lexical choice distributions and burstiness, syntactic and stylistic regularities, discourse-level coherence,
and probability calibration or perplexity profiles. In addition, AIGTD detectors must operate in dynamic
and adversarial environments shaped by rapidly evolving generative models and deliberate attempts to
evade detection. Improvements in language models have significantly narrowed surface-level distinctions
(e.g., n-gram frequency, sentence length) that traditional text classifiers exploit. Meanwhile, detectors trained
on structured domains such as news or academic writing often struggle to generalize effectively to informal
text, including dialogue and social media [9]. The rapid evolution of generative models (e.g., from GPT-
3 to GPT-5) also introduces frequent distribution shifts, necessitating continuous updates to detectors to
maintain effectiveness. These differences are summarized in Table 1.
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Table 1: Key differences between traditional text classification and AI-generated text detection methods

Traditional text classification Al-generated text detection

Multi-class classification (e.g.,

Task objective ) i . ) ) Binary discrimination (Human vs. AI)
sentiment analysis, topic classification)
: Content-driven semantic Authorship/process-driven linguistic
Feature reliance . . .
representations and generative regularities

Evolving distributions; adversarial

Data environment Relatively static obfuscation (e.g., paraphrasing, style
transfer)
Cross-domain (e.g., dialogue,
Domain scope Domain—speciﬁc (e.g., news, reviews) . ( 8 . g_ .
summarization, academic writing)
Classification )
Clear and well-separated Blurred and dynamic
boundary

In summary, while AIGTD can be formally situated within the paradigm of text classification, it requires
more advanced semantic reasoning and modeling techniques to capture subtle inconsistencies, adapt to
shifting generative patterns, and ensure robustness across diverse domains.

2.2 Text Generation Mechanisms of Large Language Models

Detecting Al-generated text requires a deep understanding of how large language models (LLMs)
produce text. LLMs are trained on massive corpora to learn the conditional distributions of tokens, enabling
them to model and generate texts that are syntactically coherent and semantically plausible. Formally, the
training objective of an LLM is to maximize the likelihood of observing a token sequence by predicting the
next token given its preceding context:

Lim (x) = logP (x¢|x<50) 1)

where x; denotes the current ¢-th predicted token, x.; represents the historical context, and 0 refers to the
model parameters. This autoregressive approach allows the model to recursively generate text, with each
selected token appended to the sequence for subsequent prediction.

During generation, the output is shaped not only by the learned conditional distribution but also by
decoding strategies that trade off determinism and diversity. Common approaches include greedy decoding,
temperature sampling, top-k sampling, and nucleus sampling [10]. These techniques directly affect lexical
choice, stylistic variability, and the overall naturalness of generated text.

As model scale continues to expand, LLMs demonstrate a set of “emergent abilities”, such as in-context
learning, instruction following, and chain-of-thought reasoning [11]. These capabilities substantially enhance
the coherence, informativeness, and stylistic sophistication of generated outputs. To further align generations
with human intent, LLMs are commonly refined through instruction tuning and reinforcement learning
with human feedback (RLHF) [12]. Instruction tuning adapts models to standardized prompts and task
specifications, while RLHF incorporates human preference modeling and strategy optimization to ensure
generated content aligns with human preferences, ethical norms, and usage scenario requirements.
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Despite these advances, LLM-generated text remains a probabilistic sampling process subject to lim-
itations. Biases in training data, stochasticity in sampling strategies, and context window constraints may
introduce artifacts such as “hallucinations” or logical inconsistencies [13,14]. Although often subtle, these
imperfections, together with statistical regularities in lexical distributions, stylistic uniformity, and discourse-
level structures, constitute the very signals that current AIGTD methods seek to identify and exploit, thereby
underpinning many existing detection approaches.

2.3 Challenges in the AI-Generated Text Detection Task

The improved realism and diversity of LLM-generated outputs have made the task of detecting
Al-generated text increasingly challenging. Unlike traditional text classification tasks, AIGTD confronts
multifaceted obstacles. These include the inherent difficulty of distinguishing between human and machine
outputs, limitations imposed by access constraints to black-box models, and uncertainties regarding the
generalizability of models across diverse domains and languages. A recent empirical study by Nabata et al. [15]
found that human experts not only failed to distinguish Al-generated scientific abstracts from originals
reliably but also demonstrated a significant preference for the Al-generated versions, citing their superior
structure. This highlights the unreliability of manual detection and the challenge posed by the high quality
of machine-generated text. In summary, AIGTD involves three significant types of complexity: technical
mechanisms, model environments, and application contexts. Each of these aspects is characterized by a high
degree of uncertainty.

(1)  Technical Level: The linguistic similarity between AlI-generated and human-authored text has
increased substantially with the advent of advanced models such as GPT-4 [16]. These models can
produce outputs that match or even surpass human writing in terms of perplexity, syntactic complexity,
and information density, thereby eroding traditional discriminative features. Moreover, the adversarial
robustness of Al-generated text detectors remains fragile: even simple paraphrasing techniques, such
as synonym substitution or sentence reordering, have been shown to reduce the accuracy of systems
like DetectGPT from nearly 70% to below 5% [17]. Another bottleneck is text length. In short-text
scenarios, most detectors typically exhibit a marked decline in performance compared with long-text
settings [18].

(2) Model Level: Detection often occurs in black-box settings, especially when dealing with proprietary
APIs like GPT-4 Turbo. These systems expose neither logits nor token probabilities, rendering zero-
shot detection methods relying on probability curvature analysis (e.g., DetectGPT [19]) infeasible. In
addition, robust cross-model detection is challenged by the diversity of generative systems. Models
such as GPT, LLaMA, and Claude differ in architectures, stylistic tendencies, and output distributions,
creating substantial barriers to generalization across heterogeneous model families.

(3) Application Level: As Al-generated text becomes increasingly prevalent in various fields such as
education, news, and social media, detection tasks are gradually expanding toward multilingual and
multi-scenario applications. Cross-language detection necessitates adaptability to diverse morpho-
logical structures and discourse styles, thereby further complicating robustness and generalization.
In practical deployments, Al-generated text often appears in hybrid forms, such as mixed human-
machine writing, lightly edited content, or iteratively revised drafts, further blurring the boundaries
of text origins and complicating classification. Beyond technical considerations, AIGTD intersects
with broader societal issues, including academic integrity, content responsibility, and legal boundaries.
Especially in high-sensitivity scenarios, misclassifying human-authored text as Al-generated entails
serious ethical, reputational, and legal consequences. Consequently, improving the accuracy and
fairness of detection systems has become a key research direction.
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2.4 Taxonomy of AI-Generated Text Detection Methods

In response to the technical and practical challenges outlined above, numerous detection methods
have been developed in recent years. These methods differ in terms of how they access information, the
linguistic or statistical cues they exploit, and their resilience against evasion strategies. To provide conceptual
clarity, existing AIGTD methods can be broadly categorized by whether they depend on embedded signals
or inherent textual features. This yields two major detection paradigms: passive detection, which relies solely
on analyzing the generated text, and active detection, which requires embedding auxiliary signals into the
generation process. Each paradigm can be further divided into distinct technical pathways, as illustrated

in Fig. 2.
—— e Lexical Feature
S‘Egﬁfﬁﬁgg:ﬁc e Syntactic Feature
e Semantic & Discourse Feature
e Probability Perturbation
Zero-Shot || e  Statistical Feature
e Cross-Model Divergence

e Multi-Granularity Detection
e Transferability Enhancement
(d

Cross-Domain Learning

Passive Detection

Language Model
Based

e Generation-Time Watermarking
e Post-Generation Watermarking

AIGTD

Watermarking-
Based

Retrieval-Based

Active Detection

Figure 2: Taxonomy of active and passive Al-generated text detection approaches

Passive detection. Passive methods determine whether a text is Al-generated by analyzing its linguistic
characteristics or statistical regularities without relying on the text generation process or embedding
additional information. They are particularly suited for detecting content from unknown or untrusted
sources, offering strong versatility and broad applicability. Passive detection methods can be broadly grouped
into two categories:

(1)  Surface linguistic feature-based methods, which examine shallow linguistic and statistical cues across
multiple dimensions, including lexical, syntactic, semantic, and discourse features, such as vocabulary
richness, sentence structure, semantic coherence, n-gram frequency, and perplexity. These features
often exhibit distinctive patterns between human-authored and Al-generated text, providing informa-
tive signals for detection. However, their discriminative power tends to diminish as generative models
advance, closely mimicking human writing.

(2) Language model-based methods use large language models to score text under learned distributions
and include two lines: zero-shot and fine-tuned detection. Zero-shot methods require no labeled
data and probe the model’s probability space: via perturbation tests, perplexity/token-likelihood
features, or cross-model divergence, making them lightweight and easy to deploy in low-resource
settings. By contrast, fine-tuned detectors adapt pre-trained models on labeled human- and Al-
generated corpora to learn discriminative distributional patterns, including work on multi-granularity
features, transferability across generators, and cross-domain generalization. While fine-tuned models
often achieve higher in-distribution accuracy, robustness to paraphrasing and domain shift remains
a challenge.
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Active detection. Active detection methods embed identifiable signals into text either during the
generation process or after the text has been produced. These signals serve as embedded markers, such
as watermarks or semantic signatures, that facilitate provenance verification. Among active methods,
watermarking has been the most widely studied and can be divided into two types:

(1)  Generation-time watermarking, which modifies the token-sampling distribution (e.g., logit biasing,
vocabulary partition, entropy-gated selection) so that generated text carries statistically testable traces.
Thresholds are calibrated to balance between reliability and false-positive rates.

(2) Post-generation watermarking, which embeds a short binary identifier by applying semantically
constrained synonym substitution or controlled paraphrasing while preserving meaning.

In addition to watermarking, another active strategy is retrieval-based detection, which encodes the
detected text into a semantic vector space and compares it against a database of previously generated outputs.
If the maximum similarity score exceeds a predefined threshold, the text is recognized as Al-generated.
Watermarking generally supports single-text verification but degrades under heavy paraphrasing or lossy
transformations. Retrieval-based methods are comparatively robust to light edits when comprehensive
generation logs are available, yet they cannot handle unlogged outputs and may raise privacy concerns.

3 Passive Detection Methods

Passive detection methods analyze the linguistic and statistical properties of text to distinguish
between human-authored and Al-generated text. Building on the taxonomy outlined in Section 2.4, this
section reviews their main methodological directions, focusing on surface linguistic feature-based detection
(Section 3.1) and language model-based detection (Section 3.2).

3.1 Surface Linguistic Feature-Based Detection

Surface linguistic feature-based detection methods constitute one of the earliest and most widely
explored approaches in AIGTD. As illustrated in Fig. 3, these methods follow a general workflow: undergo
preprocessing steps such as tokenization, part-of-speech tagging, or function word tagging, after which
features are extracted across multiple linguistic levels, including lexical, syntactic, and semantic/discourse
attributes. These features are then subjected to feature selection and fusion, ensuring that the most
discriminative indicators are retained and combined into a unified representation. The resulting feature
vectors are fed into downstream classifiers to determine whether the text is human- or Al-generated.
Classifiers range from traditional machine learning algorithms (e.g., SVM, Random Forests, Naive Bayes,
Decision Trees) to neural architectures (e.g., CNNs, RNNs, LSTMs). More recent work has explored hybrid
frameworks that integrate engineered linguistic indicators with deep learning, thereby enhancing robustness
and cross-domain generalization.

Research in this line has investigated a wide range of features across multiple linguistic dimensions:

(1)  Lexical features primarily focus on metrics such as word frequency distributions, lexical diversity, and
repetition patterns. Research has shown that Al-generated text exhibits a significant tendency towards
using structured and repetitive vocabulary. Frohling and Zubiaga [20] proposed a linguistic feature
ensemble method, noting that text from automated language models often displays fixed distribution
patterns in common words, named entities, and stop words, resulting in significantly lower lexical
diversity than human-authored text. Guo et al. [21] introduced syntactic-discourse profiling. They
observed that language models, compared with human authors, have a higher propensity to use nouns,
determiners, and conjunctions, leading to a more objective and structured writing style. In the context
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of Chinese, Wang et al. [22] developed a linguistic-statistical classifier ensemble. They found that AI-
generated abstracts displayed substantial homogeneity and logical regularity, while human-written
abstracts reflected greater individual variation and policy-specific terminology. Additionally, Gallé
et al. [23] proposed an unsupervised distributional detection method, further highlighting the high
degree of repetition in AIGT, particularly in higher-order n-grams.

(2) Syntactic features typically capture sentence-level structural differences in sentence length, syntactic
complexity, and logical organization, offering valuable cues for detection at the syntacticlevel. Uchendu
et al. [24] introduced a neural authorship attribution framework that analyzes Al-generated text
using Flesch reading scores and syntactic complexity metrics. They found that AI-generated text
often exhibits monotonous sentence structures, unclear logical hierarchies, and a lack of diverse
rhetorical devices. Frohling and Zubiaga [20] corroborated these findings by leveraging part-of-speech
distributions and syntactic depth as input features to train multiple classifiers. In a Chinese context,
Wang et al. [22] also reported that Al-generated academic abstracts tend to use longer and more
structurally consistent sentences, whereas human texts employ more varied sentence breaks and
emphases. These differences provide a crucial entry point for detection at the syntactic level.

(3) Semantic and discourse features emphasize coherence, logical consistency, and connectivity across
sentences and paragraphs. Liu et al. [25] introduced a novel coherence representation model COCO,
which constructs entity coherence graphs to model inter-sentential semantic relations, achieving
strong performance even in low-resource settings. Hamed et al. [26] proposed the xFakeSci system,
which is based on the statistical similarity of bigrams, and showed that ChatGPT-generated scientific
text covers only 23% of academic bigrams. By comparing TF-IDF scores, they further found that
bigrams generated by ChatGPT were significantly deficient in technical terminology, highlighting a
substantial terminological gap between human authors and LLM-generated content. At a deeper level
of discourse organization, Kim et al. [27] proposed the “discourse motifs” representation method. By
constructing a recursive hypergraph, they captured profound structural differences in texts, which
significantly enhanced detection performance for cross-domain and long-text scenarios.

Input Text

| Text Preprocessing |

Tokenization/Part-of-Speech Tagging/Function Word Tagging/etc.

v v v
Lexical Features Syntactic Features Semantic & Discourse
Extraction Extraction Features Extraction

v

|Features Selection and Fusion|

v

I Classifier |
1

Al-generated Human-authored
Figure 3: Flowchart of surface linguistic feature-based Al-generated text detection

While earlier surface linguistic feature-based methods performed well in specific scenarios, the increas-
ing sophistication of LLMs has exposed the limitations of approaches that rely solely on shallow linguistic
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features, such as their lack of robustness and poor cross-domain generalization. To address these challenges,
research has begun to combine multiple features with deep learning models. For instance, Alhijawi et al. [28]
proposed a multi-modal model named AI-Catcher for detecting ChatGPT-generated scientific text. This
method fuses two distinct types of features: a multilayer perceptron (MLP) component learns representations
of linguistic and statistical features, while a convolutional neural network (CNN) component extracts high-
level sequential patterns from the textual content itself. By concatenating the two feature representations,
Al-Catcher leverages information from different modalities, thereby significantly improving its detection
accuracy in specific domains, such as scientific content. Their release of the AIGTxt dataset also provides a
valuable benchmark for future evaluation.

In summary, surface linguistic feature-based detection methods have played a foundational role in
AIGTD owing to their intuitive design, strong interpretability, and modest computational requirements. By
leveraging lexical, syntactic, semantic, and discourse-level attributes, they can uncover systematic differences
between human and Al-generated text, effects that were especially salient for earlier generators. Their
transparency and capacity for visualization also make them attractive for sensitive application domains such
as content moderation, educational integrity verification, and forensic linguistics.

Nevertheless, the rapid advance of LLMs—such as GPT-4, GPT-5, and DeepSeek—has increasingly
exposed the limits of shallow linguistic features. Handcrafted indicators and statistical heuristics are fragile,
highly domain-dependent, and susceptible to adversarial paraphrasing or stylistic manipulation, leading
to degraded detection accuracy. Moreover, models trained on specific corpora or languages struggle to
generalize to heterogeneous real-world contexts in which stylistic diversity and semantic nuance are
critical. The redundancy and instability among manually engineered features further erode robustness and
interpretability. These challenges underscore the need to move beyond shallow cues by integrating surface-
linguistic feature approaches with deep neural representations and by developing semantically grounded,
context-aware detection frameworks.

Table 2 summarizes the representative surface linguistic feature-based detection methods discussed in
this section.

Table 2: Representative surface linguistic feature-based detection

Name Ref. Year Key points

Combines several shallow linguistic features with
traditional classifiers (e.g., SVM, RF); evaluates how
[20] 2021 each feature and classifier uniquely contribute to
the detection of LLM-generated text, tested on
GPT-2, GPT-3, and Grover.
Compares POS tag distributions and discourse

Linguistic feature
ensemble

Syntactic-discourse markers between Al-generated and

21 2023
profiling [21] human-authored texts, and trains a logistic
regression classifier on stylistic features.
Constructs multiple classifiers (logistic regression,
Linguistic-statistical 2] 2023 random forest, LightGBM, and BERT) to

classifier ensemble distinguish AI- and human-authored Chinese

academic abstracts.

(Continued)
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Table 2 (continued)

Name Ref. Year Key points

Detects LLM-generated texts by leveraging

Unsupervised and repetitive high-order n-grams (super-maximal

23 2021
distributional detection (23] repeats) and ensemble classification without labeled
data.
Utilizes statistical and linguistic psychological
Neural authorship , gUISHE poy 5
. [24] 2020 features to analyze the differences between
attribution framework
human-authored and Al-generated texts.
Models surface-level coherence through sentence
order perturbations and paragraph structure
Coco [5] 2022 peris paragrap®
graphs, using contrastive learning for
representation alignment.
Compares the differences in vocabulary importance
, distribution between AI-generated text and
xFakeSci [26] 2023 on peveen 2 78 >
authentic scientific literature by calculating the
TF-IDF weights of word pairs.
. . Constructs a set of discourse motifs to represent
Discourse motif _
i [27] 2024 subtle textual structures such as contrast,
modeling . _—
elaboration, and attribution.

Analyzes a combination of linguistic and statistical

features, along with high-level sequential patterns

Al-catcher 28] 2025 § With hugh-fevel seq P

from the text, to detect ChatGPT-generated
scientific content.

3.2 Language Models-Based Detection

Language model-based detection methods leverage the probabilistic and contextual representations
of pre-trained large language models to identify Al-generated text. Unlike surface linguistic feature-based
approaches that depend on handcrafted cues, these methods directly exploit the internal scoring mechanisms
of LLMs, such as token-level probabilities, entropy, or ranking statistics, to capture generative regularities.

As illustrated in Fig. 4, two dominant categories have emerged. Zero-shot detection operates without
labeled training data by scoring input text with pre-trained models and applying statistical thresholds to
determine the likelihood of a match. It enables rapid deployment but often suffers from sensitivity to model
versions and unstable performance across domains. Fine-tuning-based detection, by contrast, adapts pre-
trained models using labeled datasets, allowing them to learn discriminative representations tailored for
classification. These detectors achieve higher accuracy and adaptability to specific tasks, but at the expense
of substantial data requirements and vulnerability to distribution shifts.

3.2.1 Zero-Shot Detection

Zero-shot detection methods can identify Al-generated text without requiring additional training or
fine-tuning. Instead of learning from labeled data, these methods exploit the internal statistical properties
of large language models (LLMs) to identify generative patterns. A common strategy analyzes the token-
level log-probabilities that an LLM assigns to an input text. Because Al-generated text typically exhibits



Comput Mater Contin. 2026;86(3):5 1

distinct probability distributions, such as smoother or more concentrated log-probability curves, zero-shot
methods often calculate metrics like the curvature of the negative log-likelihood (NLL) or the variance
of token ranks. A threshold is then applied to these metrics to distinguish between human-authored and
Al-generated content.

Zero-Shot Detection VS Fine-Tuning Detection

Input Text

Pretrained LLM

Input Text

Pretrained LLM

’ Statistical Scoring(e.g. UID/Prob/Entropy) ‘ ‘ Fine-Tuning With Labelled Data ‘
‘ Zero-Shot Classifier ‘ ‘ Fine-Tuned Classifier ‘
Al-Generated Human-Authored Al-Generated Human-Authored
-No Training Data Needed -Needs Labeled Data
-Fast Deployment -High Accuracy
-Sensitive to Model Version -Domain Adaptation
-Performance Varies -Fragile to Data Drift

Figure 4: Comparison of zero-shot and fine-tuning-based Al-generated text detection methods

Early research showed that the probability distributions of Al-generated text follow statistical reg-
ularities within a language model. Gehrmann et al. [29] proposed the GLTR framework, which utilizes
statistical indicators such as token prediction probability, rank, and entropy to reveal that generated text
exhibits a notable tendency to use high-probability words. Subsequently, Mitchell et al. [19] introduced the
DetectGPT method, which innovatively utilizes the probability curvature of a language model’s output to
distinguish between generated and natural text. They found that machine-generated text often lies in the
region of negative curvature of the model’s probability function. By perturbing the original text and analyzing
the resulting changes in its log probability, they could achieve effective and highly robust detection. This
method demonstrated strong cross-model adaptability on various open-source models (e.g., GPT-2, NeoX),
achieving AUC scores that significantly outperformed most existing zero-shot methods.

However, DetectGPT’s reliance on numerous perturbations incurs a high computational cost. To
mitigate this, Miao et al. [30] proposed an improved method based on a Bayesian surrogate model. By using
a Gaussian process to select a small number of representative perturbation samples, they achieved superior
performance to DetectGPT with only 2-3 model queries, compared to the 200 queries used by the original.
Bao et al. [31] introduced Fast-DetectGPT, which replaces the global perturbation strategy with conditional
probability curvature. Fast-DetectGPT not only improved detection performance by approximately 75%
in both white-box and black-box settings but also accelerated the detection process by a factor of 340,
enabling detection within just 1-2 model calls. Furthermore, Liu et al. [32] noted that DetectGPT was prone
to redundancy in perturbation selection and proposed the PECOLA framework. By combining selective
perturbation with contrastive learning, the PECOLA framework effectively reduces noise and improves
detection robustness in complex scenarios.

Beyond log probabilities, word-ranking signals have also proven useful. Su et al. [33] proposed
DetectLLM, which incorporates two discriminative mechanisms based on log-likelihood and log-rank
information. The perturbation-free variant efficiently calculates the ratio of log-likelihood to log-rank. In
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contrast, the perturbation-sensitive variant leverages the source model’s internal statistics by introducing
a separate model (e.g., T5) to generate perturbations and analyzing the normalized change in log-rank.
Experiments demonstrate that these methods strike a good balance between efficiency and performance,
exhibiting strong generalization across various generative models, including GPT-2, OPT, and LLaMA.

Other approaches leverage multiple models. Hans et al. [34] introduced Binoculars, which uses the
concept of cross-perplexity. By comparing a texts perplexity under one language model with its cross-
perplexity under a second, Binoculars can efficiently detect AI-generated text without any training data. This
process captures the statistical signature of generated text by analyzing its probability distribution across two
different models (an observer and a performer). This methodology offers a novel technical approach for zero-
shot detection, and its training-free nature makes it well-suited for detecting outputs from unknown models
across diverse domains. While Binoculars excels at detecting distributional differences, its robustness in
adversarial scenarios, such as paraphrasing, requires further investigation. Similarly, Yang et al. [35] proposed
DNA-GPT, which truncates an original text, uses an LLM to generate a continuation, and then analyzes
the divergence between the continuation and the original in terms of n-gram similarity and probability
distribution. This training-free method performs stably on multilingual datasets (English and German) and
is applicable in both white-box and black-box scenarios. Guo and Yu [36] proposed AuthentiGPT, which
was the first method to leverage the denoising capability of language models for zero-shot detection. This
approach injects noise into a text, uses a model like GPT-3.5-turbo to perform semantic denoising, and then
compares the similarity between the denoised and original texts. The method does not require access to
model parameters, making it suitable for black-box deployment, particularly for commercial APT models
like GPT-4.

While many zero-shot methods perform well on long texts, effectively detecting short LLM-generated
texts remains challenging due to insufficient signal. To address this, Wei et al. [37] proposed Short-PHD,
a zero-shot method specifically designed for short texts. Building on a prior work that utilizes persistent
homology dimension (PHD) from topological data analysis, Short-PHD stabilizes the PHD estimation for
short texts by inserting off-topic content before the input. This oft-topic content insertion (OCI) technique
helps alleviate the “local density peak” problem, making detection scores more stable and reliable. Through
this novel approach, Short-PHD achieved superior performance in detecting short texts compared with
existing zero-shot baselines and even some supervised methods.

In addition to proposing new detectors, another trend in zero-shot research focuses on improving the
reliability and fairness of existing ones. Zhu et al. [38] introduced MCP (multiscale conformal prediction), a
zero-shot framework designed to reliably constrain the false positive rate (FPR) while enhancing detection
performance. Recognizing that a single, fixed threshold can lead to biased results across different text
characteristics, MCP utilizes a small calibration set of human-authored texts to derive multiscale quantiles
(thresholds) tailored to varying text lengths. By dynamically adjusting the threshold based on text length,
MCP strikes a balance between FPR control and accuracy. This framework can be applied to a wide range of
existing zero-shot detectors, demonstrating its strong generalization and potential to mitigate societal risks
associated with misclassification.

Table 3 summarizes representative zero-shot-based detection methods.
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Table 3: Representative zero-shot-based detection methods

Name Ref.  Year Key points

Visualizes token-level probability from a pretrained
GLTR [29] 2019 language model to reveal unnatural patterns in
Al-generated text
Detects machine-generated text by using the

DetectGPT [19] 2023  logarithmic probability curvature of the perturbed
samples.
Bayesian Improves the efficiency of DetectGPT by using a
Surrogate [30] 2023 Bayesian surrogate model to approximate the
model curvature with fewer queries.

Applies conditional perturbation and approximated

Fast-
e [31] 2023 probability curvature to achieve rapid zero-shot
DetectGPT . . .
detection with minimal model calls.
Leverages perturbation-based contrastive views to
PECOLA 5] 2024 build semantic representations for detecting

Al-generated text, without requiring labeled
examples or model fine-tuning.
Proposes a fast model-agnostic method using the
DetectLLM [33] 2023 log-rank test and likelihood ratio without needing

perturbations or training.
Compares the perplexity and cross-perplexity of
Binoculars [34] 2024  text segments across models to detect Al generation
without fine-tuning.
Uses n-gram divergence between language model
DNA-GPT [35] 2023 generations and original context to locate unnatural
continuation boundaries.
Leverages noise injection and semantic denoising
AuthentGPT [36] 2023 to analyze reconstruction behavior and identify
model-generated segments.

Stabilizes the persistent homology dimension
(PHD) score by inserting off-topic content before
the input text, making it effective for texts that are

too short for other methods.
Proposes a zero-shot framework that leverages
multiscale conformal prediction to constrain the
MCP [38] 2025 false positive rate (FPR), thereby enhancing the
reliability and performance of existing detectors

Short-PHD [37] 2025

without additional training.

Overall, zero-shot methods provide efficiency and adaptability without requiring training data.
Nonetheless, they face several challenges: (1) reliance on internal statistical properties of language models
can hinder applicability to closed APIs; (2) adversarial perturbations—such as paraphrasing and style
transfer—can substantially disrupt probability-based features, enabling many detectors to be evaded; and
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(3) performance is sensitive to factors including model version, data domain, and text length, indicating that
both robustness and interpretability warrant further improvement.

Future research may focus on hybrid scoring strategies, cross-model fusion, lightweight self-supervised
training mechanisms, and adaptation techniques for multilingual and multi-style scenarios to enhance the
applicability and scalability of zero-shot detection in real-world settings.

3.2.2 Fine-Tuning Detection

Unlike zero-shot methods, fine-tuning approaches adapt pre-trained language models (e.g., BERT,
RoBERTa) into binary classifiers for text authenticity. These models are trained on large, labeled datasets to
learn more targeted linguistic features. Typically, these methods take a text as input and output a probability
or a class label (“human” or “AI”). Compared with traditional methods that rely on explicit textual features,
fine-tuned language models can automatically learn more profound differences in semantics, syntax, and
style, leading to stronger expressive power and higher detection accuracy. Typical tasks include classification
at the document, paragraph, and sentence levels, offering high precision and flexible adaptation.

As Al-generated content becomes increasingly integrated into diverse contexts, fine-tuning methods
have expanded from early document-level detection to multi-granularity tasks. In a technical evaluation,
Popescu-Apreutesei et al. [39] demonstrated that a fine-tuned bidirectional long short-term memory
(BiLSTM) model with a global vector for word representation embedding (GloVe) could achieve nearly
97% accuracy on the Al-generated abstracts (AI-GA) dataset. However, the authors emphasized that the
inability to reach 100% accuracy highlights the ethical risks of relying solely on automated tools. They
advocated for a hybrid approach that incorporates expert human judgement instead. To address mixed
human-AI texts, Zeng et al. [40] proposed a hybrid-sentence RoBERTa classifier with a two-stage detection
process involving both paragraph and sentence-level analysis. First, the text is segmented into paragraphs
from different sources; then, a fine-grained judgment is made on the sentences within each paragraph.
Models like RoBERTa are then fine-tuned on this basis to improve accuracy on such complex texts. Liu
etal. [41] introduced ArguGPT, a multi-level detection framework for argumentative essays. By constructing
a three-tiered classifier (document, paragraph, sentence), the model captures syntactic and lexical cues
across granularities, achieving 99% accuracy at the document level. Oghaz et al. [42] conducted a systematic
comparison of Transformer versus traditional classifiers, highlighting the superior performance of fine-tuned
Transformer at both sentence-level and discourse-level classification. These studies collectively mark a shift
from holistic discrimination to structural comprehension in fine-tuning detection approaches.

While refining detection tasks, researchers have also explored a diverse range of training strategies and
model architectures for challenging inputs such as short texts, ambiguous boundaries, and domain-specific
stylistic variations. For instance, Tian et al. [18] proposed MPU, a multi-scale positive unlabeled learning
framework specifically designed for short text detection. By integrating length-sensitive loss functions with
dynamic data augmentation, MPU addresses the partial labeling problem often encountered in real-world
scenarios where annotated datasets are incomplete or imbalanced, improving robustness on concise textual
inputs and adaptability to distribution shifts.

Mitrovi¢ et al. [43] adopted a complementary approach by integrating explainable AI (XAI) tools,
such as SHAP, into their detection workflow. Through detailed analysis of keyword contributions within
a DistilBERT model, they found that ChatGPT-generated text tends to adopt a neutral, formal tone with
reduced lexical variety and minimal personalized expression. Such findings offered valuable insights into
the stylistic discrimination mechanisms of language models and informed targeted fine-tuning strategies.
In another line of work, Chen et al. [44] introduced the GPT-Sentinel framework, reframing detection as a
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sequence-to-sequence prediction task. Using a T5 model to directly generate categorical labels (“human” or
“AI”), their method leverages the generative capacity of Transformer models to capture nuanced contextual
dependencies, resulting in notable gains in generalization and interpretability across a wide variety of
benchmark datasets.

To address the poor robustness of existing detectors against out-of-distribution (OOD) data and
adversarial attacks, as well as their lack of interpretable evidence, Chen et al. [45] proposed an IPAD
(inverse prompt for Al detection) framework. The method adopts a multi-stage fine-tuning pipeline whose
core is a Prompt Inverter that reconstructs an original prompt likely to have produced the given text;
two distinguishers then evaluate the text’s consistency with that prompt. IPAD demonstrates superior
performance to existing baselines on in-distribution, OOD, and adversarial attack data. Furthermore, by
providing evidence such as the predicted prompt and regenerated text, the framework significantly enhances
the credibility and interpretability of its detection results.

Given the substantial variability in generator models, languages, and application domains observed
in real-world settings, improving the transferability of fine-tuned detectors has become a major research
focus. Rodriguez et al. [46] addressed this challenge through cross-domain detection, a two-step fine-tuning
strategy. In the first stage, the model undergoes pre-training on proxy generator outputs to substitute for
unseen generators. In the second stage, few-shot domain adaptation is performed to align the detector with
the specific target domain. This incremental adaptation process was shown to alleviate domain shift issues
significantly. Antoun et al. [47] extended this idea to multilingual contexts with XLM-R and CamemBERT
models, showing stable detection accuracy across English, French, and Arabic. Furthermore, Wang et al. [48]
developed a fine-tuned RoBERTa approach for fake news detection, training on social media platforms to
distinguish human- from Al-generated content. Achieving 98% classification accuracy in noisy, real-world
environments underscored the practical viability of such fine-tuning methods. Collectively, these studies
highlight that fine-tuned detectors, when designed with adaptability and robustness in mind, can maintain
strong performance even in scenarios involving high noise levels, varied linguistic registers, and rapidly
evolving generative model behaviors.

Table 4 summarizes representative fine-tuning-based detection methods.

Table 4: Representative fine-tuning-based detection methods

Name Ref. Year Key points

Evaluates single-layer and dual-layer BiLSTM
models on the AI-GA dataset, achieving

BILSGI;i\flzmh [39] 2025  approximately 97% accuracy and highlighting the
ethical risks of relying solely on imperfect
automated detectors.
Hybrid- Combines paragraph-level and sentence-level
sentence [40] 2024 classification using a fine-tuned RoBERTa model to
RoBERTa detect Al-generated content in human-Al
classifier collaborative writing.
ArguGPT (41] 2023 Proposes a three-level detector to identify
argumentative essays generated by GPT.
Transformer vs. Systematically comparing the detection
Traditional [42] 2025 performance of classic machine learning and
classifiers Transformer models.

(Continued)
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Table 4 (continued)

Name Ref. Year Key points

Proposes a multi-scale positive-unlabeled (MPU)
MPU [18] 2023 detection framework by modeling short text
detection as a partial positive-unlabeled problem.
Uses the SHAP method to interpret attention
patterns and highlight the neutral tone of AI text.
Introduces the GPT-Sentinel framework with
GPT-sentinel [44] 2023 fine-tuned RoBERTa and T5 models to distinguish
Al-generated from human-authored content.

SHAP [43] 2023

Proposes a multi-stage fine-tuning framework that
uses a Prompt Inverter to reconstruct original
prompts and two distinguishers to evaluate
text-prompt consistency.

Proposes a cross-domain framework that fine-tunes

[46] 2022 RoBERTa with domain adaptation techniques to

IPAD [45] 2025

Cross domain

detection detect GPT-2-generated text across diverse topics.
Mcligilsligl\jal [47] 2023 Applies XLM-R and CamemBERT models to the
. datasets in English, French, and Arabic.
detection
Fine-tuned Uses a fine-tuned RoBERTa model to detect
RoBERTa for [48] 2023 Al-generated fake news on social media with 98%
fake news accuracy.

Despite advantages in accuracy, task adaptability, and semantic understanding, fine-tuning methods
face several challenges. They depend heavily on large-scale, high-quality labeled data, which limits their
applicability in low-resource scenarios. Fine-tuned models exhibit a strong dependency on the style of
their training corpus, often suffering from performance decay when encountering different generators or
new domains, a problem known as “in-domain overfitting”. Finally, because these models are typically
optimized for specific generators, their robustness may be insufficient against unseen models or novel
generation strategies.

In contrast, zero-shot methods better accommodate diverse and rapidly iterating generators due to their
training-free nature and flexibility, offering advantages in closed-API environments. However, these methods
often rely on probability or structural outputs from the generator, which limits their effectiveness in black-box
scenarios where this information is unavailable. In summary, fine-tuning methods offer superior accuracy
and task-specific adaptation, whereas zero-shot methods excel in generalizability and deployment efficiency.
Future research should focus on hybrid paradigms that integrate the efficiency of zero-shot scoring with the
precision of fine-tuned detectors, employing strategies such as semi-supervised learning, transfer learning,
and knowledge distillation to build more robust AIGTD systems.

4 Active Detection Methods

Active detection methods determine whether a text is Al-generated by embedding identifiable infor-
mation during or immediately after generation. Compared with passive detection, active methods typically
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require access to or control over the generation system, making them more suitable for platform-level
deployment or proprietary model settings.

Broadly, active detection can be divided into two categories: (1) watermarking-based methods, which
introduce embedded signals into the generated text to enable source attribution; and (2) retrieval-based
methods, which compare the input text with a database of known model outputs based on semantic similarity.
The following subsections provide a detailed introduction to these two active detection strategies.

4.1 Watermarking-Based Detection

The key idea behind watermarking-based AIGTD is to embed identifiable watermark signals into
Al-generated text, allowing them to be later extracted and verified for reliable source attribution and
traceability. A complete watermarking-based detection framework typically includes two interdependent
phases: watermark embedding, where a specific watermark signal is embedded into the text during or
after generation, and watermark detection, where the candidate text is subsequently analyzed to verify the
presence of the embedded watermark signals.

The overall effectiveness of watermarking-based detection methods largely depends on the watermark
embedding strategies, since they directly influence both the feasibility and robustness of subsequent detec-

tion. As shown in Fig. 5, watermarking embedding strategies can be categorized into two types according to
the stage of the text generation pipeline where the watermark is embedded.

Generation Input

|

LLM Generation Generated Text
Watermark Watermark Modification Watermark
Signals Embedding Strategy Signals
1 |
Logits Perturbation Token Sampling Lexical-Level End-to-End
Control Replacement Regeneration
(a) Generation-time (b) Post-generation

Figure 5: Embedding schemes of watermarking-based AIGTD

Generation-time watermarking (Fig. 5a) embeds watermark signals by incorporating watermarking
operations into the model’s generation process. This is typically implemented through two mechanisms:
logits perturbation (e.g., modifying the output probability distribution via logit biasing or vocabulary
partitioning) and token sampling control (e.g., entropy-gated selection or rule-based token promotion).

Post-generation watermarking (Fig. 5b) introduces watermark signals after different modification
strategies have generated the text. The most common techniques include lexical-level replacement (e.g.,
context-aware synonym substitution) and end-to-end regeneration (e.g., semantic representation-based re-
decoding). These operations are designed to preserve the original semantics while embedding identifiable
watermark patterns.

Once the watermark embedding phase is complete, the detection process is applied to verify the

presence of the watermark. As illustrated in Fig. 6, this process typically involves three stages: (1) watermark
signal extraction, which identifies potential embedded cues from the candidate text; (2) a watermark score
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assessment step, which quantifies the strength of the extracted signals into a numerical score; (3) a threshold-
based decision, which determines whether the candidate text is watermarked Al-generated content or
human-authored content.

Candidate Text for Verification

v

Watermark Signal Extraction

v

Watermark Score Assessment

Score =
Threshold T ?
Yes No

Al-generated Human-authored

Figure 6: The verification phase of watermarking-based AIGTD

The design and implementation of watermark embedding approaches are crucial for enabling effective
detection. Each method introduces a distinct statistical or semantic signature into the text, which in turn
determines the watermark signal that must be identified during verification. The following sections elaborate
on these embedding strategies, examining how their unique mechanisms ultimately support robust and
efficient watermark detection.

In generation-time embedding, a typical approach intervenes in the token sampling distribution during
logit generation. WLLM by Kirchenbauer et al. [49] exemplifies this: it uses a pseudorandom seed to
partition the vocabulary. It adjusts the logits at each step, thereby increasing the probability of sampling
“green” tokens and thus embedding a statistically identifiable bias. This strategy requires no access to model
weights; detection relies on a hash function and hypothesis testing, making it efficient and straightforward.
Building on this, Zhao et al. [50] proposed provable robust watermarking, which utilizes a fixed vocabulary
partition rather than dynamic hashing to enhance robustness to text perturbations; however, this approach
also increases the risk of the watermark being identified and attacked. For code generation, Lee et al. [51]
introduced SWEET (selective watermarking with entropy thresholding), which inserts watermarks only
at high-entropy positions. This enhances detection accuracy and imperceptibility while preserving the
naturalness of the text. These methods typify perturbing the sampling process at the logit level.

Such strategies represent early watermarking paradigms focusing on token-level statistical manipula-
tion. In addition, more advanced token-level methods have emerged. Chen et al. [52] introduced MCMARK
(multi-channel-based watermarks), a family of unbiased, multi-channel-based watermarks that significantly
enhance detectability and robustness while preserving text quality. MCMARK partitions the vocabulary into
multiple segments and promotes token probabilities within a selected segment. This approach ensures that
the original output distribution of the language model is maintained, addressing a key challenge of traditional
biased watermarks. Furthermore, researchers are exploring synergistic frameworks that combine multiple
strategies to enhance effectiveness. Wang et al. [53] proposed SymMark (symbiotic watermarking), a versatile
symbiotic watermarking framework that aims to achieve synergy rather than a trade-oft between robustness,
text quality, and security. This method integrates both logits-based and sampling-based watermarking
schemes. It adaptively embeds watermarks based on token entropy and semantic entropy, dynamically
selecting the optimal approach for each token to ensure high detectability and robustness while minimizing
impact on text quality.
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However, more recent methods further leverage semantic-level constraints. In addition to modifying
the logits, another class of generation-time watermarking methods focuses on embedding control during
the token-sampling phase. Hou et al. [54] proposed the SemStamp method, which maps text to a vector
space using sentence-level semantic encoding and uses a locality-sensitive hashing (LSH) structure to define
watermark regions. Employing rejection sampling ensures that the generated content falls within a target
semantic interval, thereby embedding a sentence-level semantic watermark. Christ et al. [55] approached
the problem from a cryptographic perspective, constructing an undetectable watermarking system—a
pseudorandom watermark structure controlled by a secret key. Its core lies in coupling a hash block with
a key-based decoding mechanism. Although it lacks experimental support, it offers a new direction for
the theoretical security of text watermarking. Beyond these semantic or cryptographic formulations within
token-sampling control, Keles et al. [56] introduced a sampling watermarker that samples multiple candidate
tokens at each step, computes a secret hash-derived score for each, and selects the one with the highest score.
This process embeds a detectable pattern without altering the model’s probability distribution, achieving
high detection rates and robustness against token-level paraphrasing. However, its performance is sensitive
to sampling parameters, and its performance against more complex attacks remains to be validated.

In contrast to intervening directly in the model’s sampling process, another category of methods
processes the text after it has been generated, known as post-generation watermarking. Among these,
synonym-level replacement methods hide information by substituting specific words in a way that preserves
semantics. The word-level watermarking method based on contextual synonym replacement, proposed
by Yang et al. [57], context-aware LS Watermarking, focuses on embedding watermarks at the lexical
level while maintaining semantic integrity. Their early work uses a BERT model to generate semantically
equivalent replacement words and a fine-tuned natural language inference model to screen for semantic
consistency. By testing for synchronicity and substitutability, they identified suitable positions for embedding
the watermark without altering the original meaning of the text. Subsequently, Yang et al. [58] introduced
WTGB (watermarking for generated text in black-box models), a random binary encoding mechanism. This
approach encodes candidate words into bits and replaces words representing ‘0" with words representing ‘I’
while preserving semantic plausibility. Statistical hypothesis testing then distinguishes watermarked from
standard text. This strategy achieves a more detectable watermark structure while maintaining semantic
soundness, making it particularly suitable for black-box detection scenarios that do not require intervention
in the generator’s internal structure. Building on these methods, Hao et al. [59] introduced a post-hoc
watermarking method for text generated by black-box language models. Their approach, RSFAW (robust
semantics-faithful adaptive watermarking), embeds watermarks by identifying specific words that are
semantically or syntactically fundamental to the text and therefore robust to minor modifications. The
watermark is then injected using a paraphrase-based lexical substitution method that preserves the text’s
original semantic integrity. This strategy shows enhanced robustness against various attacks, including word
substitution and paraphrasing, with higher detectability than previous methods.

In addition, REMARK-LLM, proposed by Zhang et al. [60], represents an end-to-end trainable
watermarking method. This approach encodes the watermark signal into the semantic representation space
during training and constructs a dedicated decoder for extraction. During generation, this decoder uses a
beam search to regenerate watermarked natural language text from the latent vectors, creating a complete
training-generation-detection loop. Table 5 lists representative watermarking-based detection methods.



20

Comput Mater Contin. 2026;86(3):5

Table 5: Representative watermarking-based detection methods

Name Ref. Year Key points
Proposes a statistical method by randomly dividing the
WLLM [49] 2023  vocabulary and biasing the generation toward a “green
list”.
Provable robust Replaces dynamic Vocabu.lary lists ‘,Nith ﬁxec.i lis.ts to
. [50] 2023 enhance robustness, while potentially sacrificing
watermarking .
stealthiness.
Inserts watermarks only at high-entropy positions in
SWEET [51] 2024  code generation tasks to improve imperceptibility and
accuracy.
Proposes an unbiased, multi-channel watermark that
MCMARK (5)] 2025 partitions the. \./c?cabu.lar.y into segments and promotes
token probabilities within a selected segment based on
a watermark key.
Proposes a symbiotic watermarking framework that
SymMark (53] 2025 integrates bo‘Fh logits-based and sampling-based
schemes to achieve synergy between robustness, text
quality, and security.
Map sentences to a semantic space and use local
SemStamp [54] 2024  similarity hashing technology to restrict the output to
a predefined area.
Undetectable . Defines theoretically undetectable watermarking
. [55] 2024 .
watermarking technology using key-controlled hash blocks
Intervenes in the sampling process by selecting the
Sampling _ token with the highest “secret number” from multiple
[56] 2025 ) . : :
watermarker candidates, embedding a pattern without altering the
model’s output distribution.
Context-aware Uses synonyms generated by BERT and the NLI model
LS [57] 2022  to ensure semantic consistency during the embedding
watermarking process.
Proposes a decoupled framework to watermark text
from black-box LMs via semantically-constrained
WTGB [58] 2023 lexical substitutions and a robust statistical detector,
enabling watermarking without access to model
internals.
Injects watermarks using paraphrase-based lexical
substitution on semantically or syntactically
RSFAW [59] 2025  fundamental text features that are invariant to minor
modifications, enhancing robustness and semantic
faithfulness.
REMARK-LLM  [60] 2024 Encodes the watermark in the semantic representation

and regenerates the text through a trained decoder.
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Although watermarking technology provides a robust mechanism for content attribution, its robustness
in complex adversarial environments remains a focal point for both academia and industry, particularly
when facing paraphrasing attacks that preserve semantic meaning. To precisely quantify the vulnerability of
Al-generated text detectors under paraphrasing attacks, Krishna et al. [17] developed a powerful paraphras-
ing model named DIPPER. This model provides a set of critical empirical data quantifying the performance
degradation of standard watermarking methods proposed by Kirchenbauer et al. [49] under DIPPER attacks
of varying strengths. Table 6 summarizes their core experimental findings, visually demonstrating how the
accuracy of watermark detectors systematically declines as the strength of paraphrasing attacks increases.

Table 6: Impact of DIPPER paraphrasing attacks on watermark detection performance

Model Attack type Detection rate (%)
GPT-2-1.5B No attack (baseline) 100.0
+DIPPER (20L) 97.1
+DIPPER (40L) 85.8
+DIPPER (60L) 68.9
+DIPPER (60L, 600) 57.2
OPT-13B No attack (baseline) 99.9
+DIPPER (20L) 96.2
+DIPPER (40L) 84.8
+DIPPER (60L) 63.7
+DIPPER (60L, 600) 52.8

Note: Data is sourced from the study by Krishna et al. (2023) [17], showing
the change in detection accuracy of the watermark detector under DIPPER
paraphrasing attacks of varying intensities (L for lexical diversity, O for order
diversity) at a fixed 1% False Positive Rate (FPR).

The data in Table 6 reveal a key issue: even minor, meaning-preserving paraphrases can significantly
weaken the effectiveness of watermark detectors based on statistical signals.

Without any attack, the detection accuracy of the watermark is nearly perfect. However, as the intensity
of the DIPPER attack increases, detection performance exhibits a marked and quantifiable decline. For
example, with GPT-2-generated text, merely increasing lexical diversity (60L) reduces detection accuracy
to 68.9%; when combined with content reordering (60L, 600), accuracy drops further to 57.2%. A similar
trend is observed for the larger OPT-13B model, where detection accuracy drops to 52.8% under the
strongest attack.

Crucially, these attacks largely preserve the original text’s semantics. The study by Krishna et al.
reports that even under the strongest attack configuration, the semantic similarity score (Sim) between
the paraphrased and original text remains above 94%. This indicates that an attacker can effectively erase
or obscure the watermark signal without significantly altering the content’s meaning, thereby successfully
evading detection.

The success of the DIPPER attack demonstrates that leveraging external, high-capacity paraphrasing
models is a highly effective and practical strategy for evading watermark detection, posing a severe challenge
to the reliability of watermarking technology. Future research could further promote the integration
of semantic-level embedding, neural watermarking mechanisms, and cross-modal detection, as well as
exploring unified watermarking protocol standards to enhance the scalability and practicality of active
detection systems.
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4.2 Retrieval-Based Detection

As text-generation models expand in scale and capability, detecting Al-generated text has become
increasingly challenging. Unlike passive detectors that infer authorship from intrinsic statistical properties
of a single document (e.g., perplexity, token-level likelihood, stylometric cues), or active methods such as
watermarking that verify an embedded watermark signal, retrieval-based detection reformulates the task
as a provenance query: has the candidate text or a close semantic paraphrase appeared in the API’s logged
outputs? To address this, Krishna et al. [I7] proposed a highly robust retrieval-based detection method,
offering a new technical pathway for AIGTD. Rather than relying on local token statistics or watermark traces
in the candidate alone, it performs a similarity search over an indexed log of prior generations. This design is
more robust to paraphrasing as semantic content is preserved, is agnostic to model internals, and is auditable
via matched evidence.

Fig. 7 illustrates a two-phase framework. Phase 1 (database construction): for each served prompt, the
APT’s generated output is logged and indexed into a growing database that serves as the reference corpus
for subsequent queries. Phase 2 (retrieval and verification): given a candidate text of unknown provenance,
the system submits it to a retrieval module that performs a similarity search over the index. The maximum
similarity among the matches is compared with a calibrated threshold, T. If the score > T, the detector reports
“generated by this API”; otherwise, it returns “unknown”

Logged API
Outputs Database

Generated

Prompts —» LLM APl —» Outputs

Generated by

T Yy this API

Retrieval Module Max Similarity Score
(Cross-Index Similarity Search) > Threshold T ?

No\A Unknown

Candidate Text —»

Figure 7: Retrieval-based detection framework

However, this method also has significant limitations. It relies on a complete archive of generated
content; if data is not recorded at generation time, subsequent tracing is impossible. Furthermore, research
by Sadasivan et al. [61] found that after five rounds of recursive paraphrasing, detection accuracy dropped
below 60%, indicating that its robustness against extensive rewriting needs improvement. Additionally,
retrieval-based methods face challenges related to data privacy and compliance in practical deployment.
Regulations such as the European Union’s General Data Protection Regulation (GDPR) may restrict how
long model providers can store generated content, thereby affecting the feasibility of large-scale application of
this method. Under the GDPR, storage must be time-bound and purpose-limited. Long retention improves
recall but increases compliance risk; short retention reduces exposure but lowers coverage. Raw-text logs
maximize auditability, yet create a high-value breach target and complicate erasure requests. De-identified
embeddings reduce exposure, but still require deletion propagation and careful access control. In practice,
systems should make this privacy-utility trade-oft explicit and report retrieval recall as a function of the
retention window.

Overall, retrieval-based detection, with its non-invasive nature, high interpretability, and resilience to
light paraphrasing, serves as a valuable component of the active detection framework. Future research could
explore the integration of adversarial training to enhance the robustness of semantic matching, develop
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multi-round retrieval and reverse semantic restoration mechanisms, and create compliant detection systems
that balance privacy with traceability under data protection regulations.

5 Leveraging Adversarial Learning to Enhance the Robustness of AIGTD

As the text generation capabilities of large language models continue to advance, a variety of evasion
methods have emerged. Adversarial operations, such as minor text paraphrasing, semantic perturbation,
and instruction rewriting, can compromise detection performance, raising false-positive rates and lowering
detection rates. Traditional detectors often exhibit significant vulnerability to such adversarial perturbations.
Therefore, enhancing the robustness and adaptability of detection systems in complex environments through
the introduction of adversarial learning has become a critical research direction in AIGTD.

Early research demonstrated that even high-performing AIGTD detectors are susceptible to failure
under minor perturbations. Crothers et al. [62] conducted a systematic evaluation at the feature level,
finding that while neural network-based features excel in standard scenarios, statistical features exhibit
greater robustness when subjected to character-level and word-level adversarial attacks (e.g., TextFooler,
DeepWordBug). This revealed the sensitivity of deep features to superficial perturbations. To address
more sophisticated paraphrasing techniques, Shi et al. [63] designed adversarial attack strategies based on
synonym substitution and style transfer, showing that these light modifications can substantially degrade
the performance of various detectors. Furthermore, Wang et al. [64] proposed a comprehensive stress-
testing framework covering 12 attack methods across the pre-generation, in-generation, and post-generation
stages, systematically evaluating the robustness of statistical detectors, fine-tuned language model detectors,
and watermark-based detectors. The results showed that the average accuracy of all detectors dropped
by approximately 35% under attack, and even the most robust watermarking methods had applicability
limitations. Additionally, within their adversarial detection attack (ADAT) framework, Zhou et al. [65]
generated adversarial samples that successfully evaded multiple detectors by using perturbation strategies
based on word importance and perplexity, further confirming the vulnerability of current detection systems
to fine-grained rewriting attacks.

Recent studies have further systematically improved the avoidance strategies based on synonymous
sentences. Kadhim et al. [66] introduced an embedding-guided substitution method that prioritizes low-
probability tokens while ensuring semantic consistency through WordNet synonyms. The approach employs
an interpretable TM-AE embedding to control the replacements and demonstrated significant decreases in
detection accuracy. Specifically, against Fast-DetectGPT, the AUROC on the XSum dataset dropped from
0.4431 to 0.2744 (a relative reduction of 38.1%), while on SQuAD it fell from 0.5068 to 0.3532 (a relative
decrease 0of 30.3%). These findings highlight that semantically constrained rewrites remain a persistent threat,
reinforcing the need for adversarial learning strategies to enhance robustness.

Collectively, these studies indicate that existing AIGTD systems lack adaptability to realistic adversarial
scenarios and require the integration of systematic adversarial learning mechanisms to improve robustness.
In response to these vulnerabilities, researchers have proposed various adversarial learning methods to
enhance detectors, such as improving feature extraction, optimizing training procedures, or designing
adversarial training schemes where attackers and defenders improve the model’s resilience to attacks.

Shen et al. [67] proposed the TextDefense framework, which detects adversarial perturbations by
leveraging changes in the entropy of the word importance distribution within a text. Because attacks typically
increase entropy, TextDefense effectively captures this shift, achieving robust detection across multiple
attack environments. For higher-level feature modeling, Huang et al. [68] introduced the siamese calibrated
reconstruction network (SCRN). By incorporating a reconstruction network and a siamese calibration
mechanism, SCRN separates the semantic and noise components of a text, significantly improving detector
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performance against mild adversarial perturbations like PWWS and DeepWordBug. SCRN shows excellent
adversarial robustness and generalization capabilities across multiple cross-domain datasets.

To more systematically enhance detector robustness against paraphrasing, Hu et al. [69] proposed the
RADAR (robust Al-text detector via adversarial learning) framework. This framework co-trains a rewriter
and a detector and uses the PPO algorithm to optimize their interaction. RADAR shows superior anti-
paraphrasing ability and transferability on texts generated by eight different language models and across
multiple domain datasets. Guo etal. [70] introduced the OUTFOX framework, which incorporates a context-
interactive learning mechanism. Through continuous competition, it generates more deceptive adversarial
texts, thereby promoting detector adaptation to novel attacks. OUTFOX achieved a top F1 score of 96.9
on a real-world student essay detection task, validating the potential of interactive adversarial learning in
practical applications. Meanwhile, Zhou et al. [71] systematically developed 12 text perturbation methods
of varying granularities. They proposed a comprehensive strategy combining multi-granularity adversarial
sample training, dynamic adversarial training, contrastive learning, and domain adaptation. Although this
approach achieved significant results against common perturbations, performance bottlenecks remain for
unseen, extreme attack types, providing direction for future research.

Despite significant progress, multiple challenges persist. Many adversarial training methods are
optimized for specific attack scenarios and lack universal defenses against complex, composite attacks.
Performance still degrades on unseen domains or under cross-lingual transfer. Furthermore, adversarial
training incurs high computational and data generation costs, limiting scalability in large-scale applications.

6 Conclusion

Parallel advances in detection technologies have accompanied the rapid evolution of AI-generated
content. As this survey has demonstrated, the field of Al-generated text detection has progressed from early
surface linguistic feature analysis to a mature methodological landscape, encompassing zero-shot detectors,
fine-tuned models, watermarking techniques, and retrieval-based systems. Our taxonomy organizes these
approaches into two fundamental paradigms: passive and active detection, which are defined by a critical
trade-oft between post-hoc analytical flexibility and source-level control. Despite substantial progress,
increasingly sophisticated LLMs continue to expose limitations in both paradigms.

For passive detection, the primary challenge is susceptibility to semantic-preserving perturbations, such
as paraphrasing, and limited generalization across domains or unseen generators like GPT-4, Claude, and
DeepSeek, whose outputs often resemble human-authored text. Future research should move beyond shallow
surface cues to capture deeper structural and semantic artifacts, strengthen robustness through advanced
adversarial training and adaptive learning, and explore hybrid frameworks that combine automated detec-
tion with human expertise to address residual blind spots.

For active detection, key obstacles concern security, scalability, and practical deployment.
Watermarking-based techniques offer stronger reliability by embedding signals at the source; however,
they require access to the generation process and remain vulnerable to adaptive signal-removal or spoofing
attacks. Moreover, considerations of privacy, regulatory compliance, and the computational overhead
of storing and retrieving generation logs pose significant barriers to widespread adoption. Progress in
this paradigm depends on designing more secure and imperceptible watermarking schemes, developing
privacy-preserving protocols, and establishing collaborative infrastructures that operate effectively and
ethically in real-world contexts.
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By structuring the landscape around these paradigms, this survey provides more than a catalog of
existing methods; it offers a strategic roadmap that clarifies challenges, highlights research gaps, and points
to promising future directions for the field.

To address the challenges identified in this survey, future research may proceed along several key
directions as follows:

(I)  Cross-domain and cross-task detection: Develop detectors capable of transferring across domains, text
styles, and outputs from diverse generators to improve adaptability in applications.

(2) Human-AI collaborative detection mechanisms: Explore frameworks that combine rapid automated
detection with nuanced expert human review, leveraging human intuition to compensate for blind
spots of machine detectors.

(3) Enhanced robustness: Strengthen resilience against adversarial attacks through advanced adversarial
training, adaptive learning, and techniques for detecting previously unseen perturbations.

(4) Privacy-aware and compliant system design: Incorporate privacy protection and regulatory compli-
ance into detector design to ensure feasibility and trustworthiness in practical deployments.

Through innovation across these dimensions, AIGTD can evolve from preliminary defense toward an
intelligent, robust, and trustworthy framework for safeguarding digital information.
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