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ABSTRACT: With the development of sharded blockchains, high cross-shard rates and load imbalance have emerged
as major challenges. Account partitioning based on hashing and real-time load faces the issue of high cross-shard
rates. Account partitioning based on historical transaction graphs is effective in reducing cross-shard rates but suffers
from load imbalance and limited adaptability to dynamic workloads. Meanwhile, because of the coupling between
consensus and execution, a target shard must receive both the partitioned transactions and the partitioned accounts
before initiating consensus and execution. However, we observe that transaction partitioning and subsequent consensus
do not require actual account data but only need to determine the relative partition order between shards. Therefore,
we propose a novel sharded blockchain, called HATLedger, based on Hybrid Account and Transaction partitioning.
First, HATLedger proposes building a future transaction graph to detect upcoming hotspot accounts and making more
precise account partitioning to reduce transaction cross-shard rates. In the event of an impending overload, the source
shard employs simulated partition transactions to specify the partition order across multiple target shards, thereby
rapidly partitioning the pending transactions. The target shards can reach consensus on received transactions without
waiting for account data. The source shard subsequently sends the account data to the corresponding target shards in the
order specified by the previously simulated partition transactions. Based on real transaction history from Ethereum, we
conducted extensive sharding scalability experiments. By maintaining low cross-shard rates and a relatively balanced
load distribution, HATLedger achieves throughput improvements of 2.2x, 1.9x, and 1.8x over SharPer, Shard Scheduler,
and TxAllo, respectively, significantly enhancing efficiency and scalability.
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1 Introduction

Blockchains [1-3] have garnered sustained attention from both academia and industry. Various sharded
blockchains [4-6] have been proposed to improve system performance. In SharPer [4], each account is
managed by only one shard. Each shard S; consists of N; nodes, among which faulty nodes F; satisty the
condition N; > 3F; + 1. In this generic blockchain sharding model, system performance is constrained by
the cross-shard transaction rate and load distribution. OmniLedger [7] uses hash-based sharding to evenly
distribute accounts across shards, resulting in a high cross-shard transaction rate. To address this issue,
existing techniques [8-10] propose account partitioning to effectively balance the cross-shard transaction
rate and cross-shard load distribution.

As shown in Fig. 1, the Hash-based account partitioning method [4] is limited by high cross-shard
transaction rates. Shard Scheduler [8] proposes partitioning transactions and their associated accounts across
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low-load shards based on the current load distribution, achieving better load balancing but still encountering
high cross-shard transaction rates. In contrast, TxAllo [9] constructs a hotspot account graph based on
historical transactions, and assigns hotspot accounts to the same shard to reduce cross-shard transaction
rates. However, TxAllo faces challenges that shard with hotspot accounts is overloading, while other shards
remain underutilized.
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Figure 1: Account partition in different systems: (a) Account Partition in SharPer [4]; (b) Account partition in shard
scheduler [8]; (c) Account Partition in TxAllo [9]; (d) Hybrid account and transaction partition in our HATLedger

As shown in Fig. la, the hash-based account partitioning method SharPer [4] distributes accounts
randomly across shards, forcing B; and B, to undergo cross-shard consensus and execution, thus suffering
from a high cross-shard transaction ratio. In Fig. 1b, Shard Scheduler [8] partitions accounts through fre-
quent cross-shard transactions (AccP;,, and AccP,_,3) according to the current load distribution, assigning
By, By, and Bs to low-load shards to achieve a more balanced workload. However, it still faces a high
cross-shard transaction ratio. In Fig. Ic, TxAllo [9] constructs a hotspot account graph based on historical
transactions and performs a cross-shard partitioning (AccP; 3-,1) to allocate hotspot accounts to the same
shard, thereby reducing the cross-shard transaction ratio. Consequently, B, B, and B3 in TxAllo are all
intra-shard. However, TxAllo faces challenges that shard with hotspot accounts is overloading, while other
shards remain underutilized.

We analyze the causes of high cross-shard transaction rates and shard overloading. Based on [8,10,11],
the workload in blockchains can be divided into transaction consensus load and transaction execution
load. Additionally, account partition can be regarded as a special type of consensus load. In a sharded
blockchain system, the consensus load requires relevant nodes to reach consensus through multi-round
communication protocols, such as PBFT [12]. In contrast, the transaction execution load only requires each
node to locally execute and commit transactions in the consensus order. Therefore, the transaction consensus
load is significantly higher than the transaction execution load. As shown in Fig. la—c, existing account
partitioning and transaction partitioning are limited by Consensus-Execution coupling. Therefore, the target
shard can only begin reaching consensus on the partitioned transactions after receiving both transactions
and accounts.

However, we observe that transaction consensus only requires the relative partition order between
shards, whereas transaction execution relies on account data. Moreover, the overhead associated with
consensus among multiple nodes is considerably higher than that of local transaction execution on individual
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nodes. This creates an opportunity to decouple consensus and execution during partition. As shown
in Fig. 1d, in HATLedger, the source shard can partition By, B, and B across target shards. The target shard
immediately begins consensus without waiting for account data. Subsequently, the source shard proceeds
to send the account data in the previously specified order (SPT,_,, and SPT;_,3). Therefore, transaction
partitioning with Consensus-Execution decoupling can effectively address the issue of shard overloading
while ensuring a low cross-shard transaction rate, significantly enhancing overall system performance.

A sharding approach aimed at lowering the cross-shard rate and mitigating load imbalance faces several
challenges: (1) How to select appropriate accounts for partitioning to effectively reduce the cross-shard
transaction rate. As the system load fluctuates dynamically, existing methods based on historical transactions
for account selection incur significant latency, thereby failing to effectively reduce the cross-shard transaction
rate. (2) How to decouple consensus and execution during transaction partitioning, thereby effectively
mitigating load imbalance. (3) How to ensure the security of system in the presence of faulty nodes.

To address the aforementioned challenges, we propose a sharded blockchain ledger based on the
Hybrid Account and Transaction partitioning, denoted as HATLedger. First, at the beginning of each
epoch, we propose constructing a future transaction graph based on the pending transactions in each shard.
The proposed future transaction graph can more effectively identify upcoming hotspot accounts. Hotspot
accounts are detected, and an account sharding strategy is developed for this epoch, thereby effectively
reducing the cross-shard transaction rate. Next, we propose Simulated Partition Transactions to decouple
consensus and execution. When an overload is imminent, the source shard first constructs two blocks, Bs,rce
and Bigrger. Subsequently, the source shard reaches consensus on Bg,yrc., While the target shard reaches
consensus on By, .. Before this, simulated partition transactions are added to these blocks, as shown
in Fig. 1d. These simulated partition transactions specify the partition order of accounts between shards.
Upon receiving Byarg.; and its subsequent transactions from the source shard, the target shard initiates
consensus without waiting for the actual account data. Subsequently, the source shard sequentially sends the
account data to the target shard in the order specified by the previously simulated partition transactions.
Finally, we analyze the security of HATLedger. Consequently, HATLedger not only maintains a low cross-
shard transaction rate but also resolves shard overloading issues through simulated partition transactions,
significantly enhancing system performance.

In summary, this paper provides the following contributions:

Contribution 1: Compared to outdated hotspot accounts detected from historical transaction graphs, we
propose constructing a future transaction graph based on pending transactions. By leveraging the identified
upcoming hotspot accounts, we achieve more precise account partitioning, which effectively reduces the
cross-shard transaction rate.

Contribution 2: We propose simulated partition transactions to decouple consensus and execution. We
implement a sharded blockchain ledger based on the hybrid account and transaction partitioning, denoted as
HATLedger. In the event of an impending overload, the source shard quickly partitions pending transactions
to target shards. The target shard can simultaneously initiate consensus on the partitioned blocks without
additional waiting for account data.

Contribution 3: We provide a detailed analysis showing that HATLedger ensures both safety and liveness
even in the presence of malicious attacks from faulty nodes.

Contribution 4: We conduct extensive scalability experiments under real workloads. The results show
that HATLedger’s hybrid account and transaction partitioning effectively reduces cross-shard transaction
rates and mitigates load imbalance, thereby leading to significant performance gains.
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2 Background and Analysis
2.1 Background

Existing research [4-6,8,9,13] has made extensive attempts to explore sharding structures in sharded
blockchains. SharPer [4], Shard Scheduler [8], and TxAllo [9] adopt a one-to-one account-to-shard mapping,
where each account is managed by exactly one shard. Zilliga [14] and LMChain [5] employ sharding
technology based on a beacon chain. While each account is managed by a single shard, the beacon chain
in the system acts as a scheduler, synchronizing the global state across all shards. BrokerChain [6] and
SharDAG [13] adopt a one-to-many account-to-shard mapping, where some accounts can be replicated or
distributed across multiple shards for concurrent processing. Therefore, to ensure greater generality and
adaptability, this work focuses on the one-to-one sharding structure. Next, we introduce the system model
and assumptions under the one-to-one sharding structure.

2.2 Analysis

Table 1 summarizes existing works in one-to-one blockchain sharding models. In SharPer [4], accounts
are evenly distributed across shards based on account hashes. Under ideal conditions with uniformly
distributed account access, the Hash-based partition strategy achieves load balancing. However, when
account access becomes skewed, the shard containing hotspot accounts may experience overloading. Shard
Scheduler [8] allocates pending transactions and new accounts to low-load shards based on the current load
of each shard. This ensures load balancing across shards even under skewed account access by leveraging
account partition and transaction partition. Nevertheless, both SharPer and Shard Scheduler face the
limitation of high cross-shard transaction rates due to account dispersion. On the other hand, TxAllo [9]
constructs a historical transaction graph from historical transactions and applies community detection
algorithms to identify hotspot accounts, which are then assigned to the same shard. While this approach
reduces the cross-shard transaction rate for transactions involving hotspot accounts, it inevitably leads to
overloading of shards due to the concentration of hotspot accounts within the same shard.

By analyzing the real transaction history on Ethereum, existing studies [5,8-10] consistently reveal
that a small portion of hotspot accounts dominate the majority of transactions, highlighting the skewed
distribution of account access. Hu et al. [5] pointed out that approximately 14.3% of accounts are involved
in nearly 90% of transactions, while the top 14.3% of accounts are not constant. Therefore, as the load
dynamically changes, outdated hotspot accounts identified from the historical transaction graph cannot
effectively reduce the cross-shard transaction rate in future workloads.

Table 1: Comparison of blockchain sharding mechanisms

i . " Cross-shard Load
System Account partition Transaction partition e e
rate distribution
C -Executi
SharPer [4] Hash-based onsensus .xecu on High Imbalance
coupling
h -E i
Shard Current load Consensus .xecutlon High Balance
Scheduler [8] coupling
E '
TxAllo [9] Historical Txn Graph Consensus .Xecutlon Low Imbalance
coupling
C -Executi
HATLedger Future Txn Graph ONSEnSus-Execttion Low Balance

decoupling
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Next, we provide a detailed analysis of how hotspot account distribution affects sharding perfor-
mance. The distribution of hotspot accounts impacts system performance primarily by influencing the
cross-shard transaction rate and the workload balance among shards. (1) When hotspot accounts are
uniformly distributed across shards, shard workloads become balanced. However, because most transactions
involve hotspot accounts stored in different shards, the cross-shard transaction rate increases substantially.
Consequently, the frequency of cross-shard consensus operations—characterized by high latency and
communication overhead—rises significantly, thereby degrading overall system performance. (2) When
hotspot accounts are partitioned within a single shard, most transactions access hotspot accounts located
in that shard. As a result, the cross-shard transaction rate drops sharply, and intra-shard consensus—
characterized by low latency and minimal communication overhead—becomes dominant. However, because
most transactions are processed within the same shard, the limited processing capacity of that shard leads to
overload, while other shards remain idle. Consequently, overall performance deteriorates due to inefficient
resource utilization.

As shown in Table 1, by comparing existing studies, we further analyze the causes that limit system
performance and identify potential opportunities for improvement. As shown in Fig. 2a, we observe that the
transaction partition with Consensus-Execution Coupling in existing works typically follows the sequence:
Transaction Consensus Loads and Execution Loads in the Source Shard — Transaction Partition —
Transaction Consensus Loads and Execution Loads in the Target Shard. The target shard can only
begin reaching consensus on the partitioned transactions after receiving actual account data. However,
the consensus phase in blockchain systems focuses on the consensus of pending transactions and their
order [11]. We observe that when the target shard reaches consensus on the partitioned transactions, it
only needs the source shard’s ID and the hash of the previous block, without requiring the actual account
data. This provides a potential opportunity to decouple consensus and execution, thereby addressing shard
overloading and improving system performance. In Fig. 2b, we propose a transaction partitioning scheme
with Consensus-Execution Decoupling. Pending transactions are first partitioned to the target shard,
initiating the corresponding consensus workload without waiting for data. The execution workload is then
triggered once the associated data have been partitioned to the target shard.

(a) Transaction Partition with (b) Transaction Partition with
Consensus-Execution Coupling in Existing Works Consensus-Execution Decoupling in HATLedger
Source Shard Source Shard Target Shard

Consensus Loads Consensus Loads Txn Partition Consensus Loads
Execution Loads Execution Loads Execution Loads

Txn Partition

Target Shard

Consensus Loads

Execution Loads

Figure 2: Transaction partition in different systems: (a) Transaction partition with consensus-execution coupling in
existing works; (b) Transaction partition with consensus-execution decoupling in HATLedger
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3 HATLedger
3.1 Overview

We propose HATLedger, a sharded blockchain ledger based on the Hybrid Account and Transaction
partitioning, to further enhance system performance.

System Model and Assumptions: The system model and assumptions used in this work, HATLedger,
are consistent with those of SharPer [4]. HATLedger consists of a series of distributed nodes. Each shard §;
comprises N; nodes, among which the number of Byzantine malicious nodes F; satisfies the condition N; >
3F; + 1. HATLedger employs Byzantine fault-tolerant (BFT) protocols, such as PBFT [12], to ensure deter-
ministic safety. As is common, this work assumes the partially synchronous communication model [12,15].
Additionally, messages might include public-key signatures and message digests [12]. We denote a message
m signed by a node n; as (m),,, and the digest of a message m as D(m). We also assume a strong adversary
capable of coordinating malicious nodes and delaying communication to disrupt the replicated service.
However, faulty nodes cannot forge messages from non-faulty nodes. Each account is managed by only one
shard. We adopt a periodic trigger mechanism based on lightweight load detection. When the number of
pending transactions or the transaction latency exceeds 0 times the throughput or latency under the normal
case (0 = 2 by default), the trigger identifies the shard as approaching overload and initiates account and
transaction repartitioning.

Transaction Processing Workflow: When a transaction accesses accounts within a single shard, it is
classified as an intra-shard transaction and is processed solely within that shard for both consensus and
execution. When a transaction accesses accounts across multiple shards, it is classified as a cross-shard
transaction. For cross-shard transactions, multiple leaders from the involved shards compete to become the
proposer of the transaction. This proposer coordinates the involved shards to reach consensus on the cross-
shard transaction using the PBFT protocol. Existing studies [4,11] have thoroughly explored the workflows
and security of transaction processing for intra-shard and cross-shard transactions. As this work focuses on
account partitioning, transaction processing is beyond the scope of this paper.

Design Goals: HATLedger proposes a novel hybrid partitioning approach to address the challenges of
dynamic hotspot accounts and shard overload in dynamic workloads.

System Workflow: As shown in Fig. 3, HATLedger operates in epochs. The workflow of HATLedger is
as follows:

(1) At the beginning of a new epoch, HATLedger constructs a future transaction graph based on the
pending transactions of all shards. Using this graph, HATLedger detects the upcoming hotspot accounts and
repartitions all accounts across shards accordingly, thereby reducing the cross-shard transaction rate.

(2) Each shard then reaches consensus on transactions under the new account partition, executes the
transactions, and updates the account data. When a shard detects an impending overload, it can further
repartition the numerous pending transactions of hotspot accounts to different underloaded shards. Upon
receiving these transactions, the underloaded shards proactively initiate intra-shard concurrent consensus.

(3) Once the source shard completes processing all relevant transactions, it transfers the updated account
data to the underloaded shards. The underloaded shard then utilizes the received account data to serially
execute transactions that have already achieved consensus.
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Figure 3: System workflow of HATLedger

3.2 Account Partitioning Based on Future Transaction Graph

As shown in Algorithm 1, at the beginning of a new epoch Epy, the shard with an identifier that
satisfies the condition (Shard; == Epi%S,.m) serves as the coordinator shard, which facilitates the initial
account repartitioning (Line 13). Based on the accounts accessed by pending transactions in epoch Epy, the
remaining shards construct their respective future transaction graphs. In the future transaction graph FTG,
a vertex v represents an account ID, and a weighted edge (u, v, w) indicates that w pending transactions
access both accounts u and v simultaneously. Each shard sends its future transaction graph FTG to the
coordinator shard (Lines 2 to 8). After merging the FT Gs from all shards to rebuild the FTG, the coordinator
shard utilizes a graph-based partitioning method, such as METIS [16], to generate the account partitioning
proposal Partitiony. The coordinator shard then reaches consensus with all other shards on Partitiony
(Lines 13 to 18). Based on the consensus account partition (Partitiony),, each shard migrates the relevant
accounts and associated pending transactions. Following the completion of account repartitioning for the
new epoch Epy, all shards process pending transactions according to the transaction processing workflow
outlined in Section 3.1 (Line 10 and Line 20). When impending overload is detected, the shard preemptively
mitigates the loads using simulated partition, ensuring efficient workload distribution (Lines 11 to 12 and
Lines 21 to 22).

The sharding model guarantees that each account is managed exclusively by a single shard. Suppose
accounts x and y belong to Shard;, while account z belongs to Shard;. For an intra-shard transaction
T(x, y), the edge (x, y) in the future transaction graph (FT'G;) of Shard,; has its edge weight incremented
by 1. Consequently, edge (x, y) exists only in FT'G; and not in any other shard’s FTG. For a cross-shard
transaction T(x, z), the edge (x, z) of FTG; is incremented by 1, and (x, z) of FTG; is incremented by 1.
After merging FTG; and FTGj, the edge weight of (x, z) becomes 2. All transactions are executed under
MVCC-based snapshot isolation. If a transaction reads an outdated snapshot or encounters a concurrent
conflict, it is marked as invalid.
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Algorithm 1: Account partitioning based on future transaction graph

Data: Epk is the next epoch number; Shard,,,, is the number of shards; N is the set of all nodes in the
system; N; is the set of nodes in Shard;, where its proposer is #;.
1 PROPOSER of Shard;: Node n; (Epy%Shard,,,,! = Shard,)
2 Upon Enter Next Epoch Ep, Do
3 for each T € PendingT; do
4 for each u and v accessed by T do
5 FTG;.addEdge(u, v);
6 EWeight;(u, v)++;
7 Shard; < Epi%Shard,,m;
8 Send(FTG;, EWeight;) to Shard;;
9 Upon Reach Consensus on (Partitiony), of Epy Do

10 Process PendingT; based on Partitiony;
1 When Impending Overloading Detected
12 TxnPartition(Shard;, PendingT;,Partition;); // Details in Algorithm 2

13 PROPOSER of Shard;: Node n; (Ep%Shard,,,, == Shard;)
14 Upon Enter Next Epoch Ep; Do

15 When Receive all FTGs from all Shard

16 FTGy < Merge(FTGs);

17 Partitiony < FTGy.Partition();

18 Consensus(Partitiony, Ny );

19 Upon Reach Consensus on (Partitiony), of Epy Do

20 Process PendingTj based on Partitiony;

21 When Impending Overloading Detected

22 TxnPartition(Shard;, PendingT;, Partitiony);// Details in Algorithm 2

Analysis: (1) The account partition based on the future transaction graph has the same cost and security
guarantees as TxAllo's method, which uses the historical transaction graph. Through global consensus, all
shards adopt a consistent account partition. Moreover, the future transaction graph enables more precise
detection of upcoming hotspot accounts, leading to more effective account partitioning and significantly
reducing the cross-shard transaction rate. Experiments in Section 5 validate this observation. (2) HATLedger
maintains both security and liveness even in the presence of malicious behavior. The potential malicious
actions include incomplete FT'Gs sent by proposers from other shards and inappropriate account partitioning
schemes proposed by the coordinator shard’s proposer. However, consensus protocols such as PBFT [12]
ensure that all shards reach an agreement on a consistent account partitioning scheme, guaranteeing
the systems security. Additionally, the coordinator shard rotates the coordinator role and repartitions
accounts at the beginning of each new epoch, effectively mitigating the long-term impact of inappropriate
partitioning and enhancing system robustness. While a malicious proposer from the coordinator shard
may cause temporary performance degradation by proposing an inappropriate partitioning scheme, other
shards can promptly identify and report such behavior. Furthermore, the transaction partitioning techniques
introduced in the next section effectively address shard overloading caused by inappropriate partitioning
schemes. Therefore, HATLedger maintains both security and liveness.
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3.3 Transaction Partitioning Based on Consensus—Execution Decoupling

As discussed in Section 2, assigning hotspot accounts to the same shard effectively reduces the
cross-shard transaction rate. However, it introduces a critical issue: overloading the associated shard and
underutilizing other shards. To address this issue, we propose a transaction partitioning approach with
Consensus-Execution decoupling.

As described in [8,9], the transaction partitioning in existing works, which is based on Consensus-
Execution coupling, is as follows: consensus and execution can begin in a shard only when it holds both the
partitioned account data and the corresponding assigned pending transactions.

In contrast, our proposed transaction partitioning in HATLedger, which is based on Consensus-
Execution decoupling, is as follows: upon receiving the partitioned pending transactions, a shard promptly
initiates consensus without the corresponding account data. The shard then executes the agreed transactions
once the corresponding account data becomes available.

Therefore, we present the following theorem:

Theorem 1: Both the transaction partitioning in existing works, which is based on Consensus—Execution
coupling, and the transaction partitioning in HATLedger, which is based on Consensus—Execution decoupling,
achieve equivalent results for transaction consensus and execution, thereby ensuring system consistency.

Proof: Assume the source shard contains a partitioned account (u, vy), a related transaction T;(u) pending
consensus on the source shard, and another transaction T, (u) designated for partitioning to the target shard.
Since account data is not involved during transaction consensus, the outputs of both the existing workflow
and HATLedger are the same. The source shard first reaches consensus on T (u), executes it, and updates the
account (u, vi). Subsequently, the target shard reaches consensus on T,(u) and executes T,(u), updating
(u,v1) to (u,v;).0

Therefore, as shown in Fig. 4, when Shard, in HATLedger faces impending overload, transac-
tion partitioning can be performed continuously. Shard, selects the partitioned accounts PAccSet{acc}
and their associated pending transactions PTxnSet from the pending transaction pool. Subsequently,
two blocks, B; and B,, are constructed from PTxnSet, where B; contains the simulated partition-
out transaction SPT,,;Shard, - Shard,, h(B,) and B, contains the simulated partition-in transactions
SPT;,Shard, — Shard,, h(B;). Shard, then starts consensus on B; and simultaneously sends B, along
with the remaining PTxnSet to Shard,. Upon receiving B, and PTxnSet, Shard, immediately begins
consensus on B, without waiting for the actual account data PAccSet{A}. Similarly, Shard, can construct
block B; from PTxnSet, where B, contains the simulated partition-out SPT,,;Shard, - Shards, h(B;)
and B; contains the partition-in transactions SPT;,Shard, — Shards, h(B,). This enables Shard;, Shard,,
and Shards to independently start consensus on B;, B, and B; without waiting for one another. Once
Shard, completes consensus and execution of By, it sends the updated set { PAccSet{A, v}, h(B;), h(B:)}
to Shard,. Likewise, Shard, sends the updated { PAccSet{A,v,}, h(B;), h(Bs)} to Shards.
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Figure 4: Transaction partitioning based on consensus—execution decoupling in HATLedger

Algorithm 2: Transaction partitioning based on consensus-execution decoupling
Data: Epk is the next epoch number; Partitiony is the account partition in epoch K; N; is the set of nodes

in Shard;, where its proposer is #;.

1 PROPOSER of Shard;: Node n;

2 When Impending Overloading Detected

3 PAccSet, Bsource> Brarget» PTxnSet, Shard,arger < TxnPartition(Shard;, PendingT;,
Partitiony);

4 Send (Biarger, PTxnSet) to Shardyarger;

5 Consensus (Bsource, Shard,);

6 PAccSet < Execute(PAccSet, Bsoyrce )

7

8

9

Send (PAccSet, h(Bsource )s H(Btarget)) t0 Shardyargess
PROPOSER of Shard;: Node n;
Upon Receive (Byarger, PTxnSet) from Shardsoyrc. Do

10 PendingT;.push(PTxnSet);

11 Consensus (Biarger> Shard,);

12 When Receive (PAccSet, h(Bsource )> N(Btarget)) from Shardsource
13 Validate (h(Bsource)> h(Brarget) )

14 Execute (PAccSet, Bsoyrce );

15 When Impending Overloading Detected

16 TxnPartition (Shardj, PendingT;, Partitiony);

17 Function: TxnPartition (Shardsey,c., PendingTso,rce, Partitiony)
18 Shardarger < LowLoadShard (Partitiony);

19 PAccSet, PTxnSet < PendingTsource-pop();

20 Bsource < PTxnSet.pop();

21 Biarger < PTxnSet.pop();

22 SPT;, < (h(Bsource)> Shardsource )

23 SPTour < (h(Biarget)> Shardarger)s

24 Bsource-append (SPTpyut);

25 Biarger-append (SPT;y);

26 return PAccSet, Bsource> Brargets PTxnSet, Shard arger;
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In Algorithm 2, we present the details of transaction partitioning upon detecting an impending
overload. We propose using simulated partition-out transactions SPT,,; and simulated partition-in
transactions SPT;, to provide transaction partition information to the source and target shards, respectively,
instead of actual account data. Specifically, when the source shard (Shard;,,..) detects impending overload,
it selects a low-load target shard (Shard;s,g4.¢) according to the account partitioning (Partitiony). Subse-
quently, the source shard identifies the accounts to be partitioned (PAccSet) and all their associated pending
transactions (PTxnSet) from the pending transaction pool (PendingT;y,c.) (Lines 17 to 19). Two blocks,
Bsource and Bygarges, are then constructed from PTxnSet. Byource continues consensus in the source shard,
while Bi4ger and the remaining PTxnSet are partitioned to the target shard for consensus. To replace actual
account data, HATLedger requires consensus in the source shard regarding the target shard information, and
vice versa. To achieve this, a simulated partition-out transaction SPT,,,; is inserted into Bs,y;ce, containing
the target shard’s ID Shard;,,ge: and the hash of the next related block B¢+ to be agreed upon in the target
shard. Similarly, a simulated partition-in transaction SPT;, is inserted into By, containing the source
shard’s ID Shard;e,.c. and the hash of the previous related block By,,,c. agreed upon in the source shard
(Lines 20 to 26).

Subsequently, the source shard sends the partitioned block By4rg.: and the remaining PTxnSet to the
target shard (Line 4). Upon receipt, the target shard immediately initiates consensus on Bis,ge; Without
waiting for actual account data, as Byarg; contains the necessary partition information via the simulated
partition-in transaction (SPT;,) (Lines 8 to 11). Meanwhile, the source shard initiates consensus on Bsyyrce»
which contains account partition-out information in SPT,,; (Line 5). After the source shard completes
consensus and execution of By, it sends the updated account data to the target shard specified in the
simulated partition-out transaction SPT,,; of Bsoyrce (Lines 6 to 7). The target shard, upon receiving the
account data, validates the hash and executes block By, followed by consensus and execution of the
remaining pending transactions in PTxnSet (Lines 12 to 14).

As a result, source and target shards can leverage the simulated partition to begin consensus on related
transactions without waiting for the execution involving actual account data. This innovative transaction par-
titioning strategy allows HATLedger to mitigate shard overloading while significantly improving transaction
throughput and overall system efficiency.

Analysis: (1) In terms of performance, HATLedger achieves a lower cross-shard transaction rate while
effectively addressing shard overloading. Specifically, HATLedger constructs a future transaction graph to
better identify upcoming hotspot accounts, enabling more effective account partitioning to reduce the cross-
shard transaction rate. When impending overload is detected, the shard performs fine-grained transaction
partitioning to efficiently reach consensus on pending transactions without requiring the source and target
shards to wait on each other. (2) In terms of security, both the source shard and the target shard independently
reach consensus on the simulated partition-out and partition-in transactions, ensuring consistency in the
transaction partition order and the hashes of Bource and Biyrget. Additionally, the source shard transmits
h(Bsource) and h(Byarget ) alongside the actual account data during transaction partitioning. This mechanism
ensures that if a proposer maliciously sends inconsistent Bsoyrce OF Byarges> the non-faulty nodes within the
shard can immediately detect and report the behavior. These approaches ensure the security of HATLedger.

4 Safety and Liveness

In this section, we analyze the safety and liveness of HATLedger. Specifically, HATLedger adopts the
same system model and assumptions, as well as the intra-shard and cross-shard transaction processing
workflows of SharPer [4]. Consequently, it inherits the same level of security and liveness as SharPer in these
aspects. Next, we analyze whether the solutions proposed by HATLedger—account partitioning based on
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the future transaction graph and transaction partitioning based on Consensus-Execution decoupling—may
be impacted by malicious behavior and how they may affect its safety and liveness.

When faulty nodes act as followers in shards, Byzantine fault-tolerant protocols such as PBFT [12] are
able to maintain the safety and liveness of HATLedger. Consequently, this discussion emphasizes scenarios
where shard proposers are faulty nodes and examines their potential impact on the system.

Safety: (1) The account partitioning based on the future transaction graph does not affect the safety of
HATLedger. This is because the account partitioning scheme proposed by the coordinator shard’s proposer
is agreed upon by all nodes in all shards through the consensus protocol. (2) To mitigate shard overloading,
we propose the transaction partitioning method. In this process, we construct a block Bj,,,,c., which reaches
consensus in the source shard, and a block By, 4.1, which reaches consensus in the target shard. Simulated
partition-out and partition-in transactions are appended to these blocks, respectively. These transactions
include the simulated partition-out and partition-in order, as well as the hashes of the preceding and
succeeding blocks ((B;ource) and h(Biarger)). When the proposer of either the source shard or the target
shard behaves maliciously, mismatches between Byarger and h(Biarger) OF Bsource and h(Bsource ) may occur.
For example, the proposer of Shard,rg.; may propose a mismatched B;,, 4. to intra-shard nodes, which does
not match h(Byarger) specified in the SPTo,; of Byoyrce. Similarly, the proposer of Shardey ... may propose
a mismatched By, . to intra-shard nodes or send a mismatched Byarges to Shard;ayger’s proposer. At this
point, through the hashes (/1 (B;ource) and h(Biarger)) sent during the subsequent account data transfer in
Algorithm 2, other nodes in both the source shard and the target shard can verify the hash or consensus
signature to determine whether the proposer has acted maliciously. Only after successful verification will the
other nodes execute and commit the transactions. Otherwise, the nodes can promptly report the malicious
behavior and invoke the view-change mechanism of the consensus protocol to replace the proposer and
re-initiate consensus and execution on the correct block. Therefore, HATLedger ensures safety.

Liveness: Consistent with existing sharded blockchain systems [4,8,9], when a malicious proposer
intentionally delays initiating a proposal, HATLedger ensures liveness through the timeout detection
mechanism of the consensus protocol’s view-change process, which promptly replaces the proposer. At
the beginning of a new epoch, if the proposer of the coordinator shard is a faulty node and proposes an
inappropriate account partitioning scheme, it does not compromise the security of HATLedger, as previously
discussed. However, it may lead to overloading in certain shards. To address this, the proposed transaction
partitioning method effectively mitigates the impact of shard overloading. Furthermore, when a shard
detects that its performance is significantly constrained by the inappropriate account partitioning, it can
preemptively request a transition to the next epoch. Entering a new epoch involves a different shard serving
as the coordinator, which proposes a new account partitioning scheme based on the future transaction graph.
This mechanism guarantees that any adverse effects of inappropriate account partitioning are transient,
ensuring long-term system stability and liveness. Therefore, HATLedger ensures liveness.

5 Evaluation
5.1 System and Setup

System: We implement HATLedger in C++. As shown in Table 2, we compare the following systems:
SharPer [4], Shard Scheduler [8], TxAllo [9], HATLedger, and HATLedger*. Specifically, SharPer, Shard
Scheduler, TxAllo, and HATLedger adopt different account partitioning strategies under Consensus—
Execution Coupling. Compared to these systems, HATLedger* employs transaction partitioning based on
Consensus-Execution decoupling, as described in Section 3.3.
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Table 2: Systems for comparative experiments

System Account partition Transaction partition
Sharper ( Accouljljlsg;zgshejr A Consensus-Execution coupling
Shard scheduler Present load Consensus-Execution coupling
LB-Chain Historical load of hot accounts Consensus-Execution coupling
TxAllo Historical Txn Graph Consensus—Execution coupling
HATLedger Future Txn Graph Consensus-Execution coupling
HATLedger* Future Txn Graph Consensus-Execution decoupling

Setup: Our experiments are conducted on Alibaba Cloud, where the default cluster consists of
8 clients and 4 shards. Each shard is composed of 8 nodes, totaling 32 nodes across the 4 shards. The
parameters for the scalability experiments are listed in Table 3, where Number of total nodes = Number of
nodes per shard * Number of shards. Each node is equipped with a 4-core Intel Xeon (Sapphire Rapids)
Platinum 8475 B processor and 16 GB memory. The operating system is 64-bit Ubuntu 20.04 LTS. We adopt
a transaction-countbased epoch configuration, where the coordinating shard (Shard; = Epy%Shard,,m)
initiates a transition to the next epoch after committing 100,000 transactions in Shard - Both account and
transaction repartitioning between the source and target shards are encapsulated as a cross-shard transaction,
making the cost of one migration equivalent to that of a single cross-shard transaction. All systems employ
PBFT [12] as the consensus protocol within each shard, and the experiments are conducted on Alibaba
Cloud’s internal network with a bandwidth of 1.2 Gbps.

Table 3: Setup for comparative experiments

Number of nodes Number of shards Number of total
per shard nodes
8 4,6,8,10,12,14 32, 48, 64, 80, 96, 112
8, 10,12, 14,16, 18 4 32,40, 48, 56, 64, 72

Workload: Consistent with the workloads used in existing studies [4,9,11], we employ three types of
workloads: ETH-Workload, Zipfian-Workload, and Hotspot-Workload. By default, all systems create 100,000
accounts. Specifically, ETH-Workload uses the Ethereum transactions between block heights of 13 to 13.2M
(Aug.—Oct. 2021), as accounts were particularly active during this period [17]. The default parameter for
the Zipfian-Workload (Zipf = 0.99) reflects common workload distributions in distributed systems. For the
Hotspot-workload, 1% of the accounts are designated as hotspot accounts, and 90% of the transactions access
these hotspot accounts, following a distribution similar to that described in [5]. For each test, we repeat the
experiment five times and take the average as the final result.

5.2 Overall Performance

As shown in Table 3, we conducted extensive sharding scalability experiments to compare the per-
formance of different systems. Using the default parameters underlined in Table 3 and the Eth-Workload,
we evaluated the overall performance of all systems. As illustrated in Fig. 5, HATLedger* achieved the
highest throughput of 37,398 tps, followed by HATLedger (32,317 tps), LB-Chain (23,703 tps), TxAllo
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(20,771 tps), Shard Scheduler (19,675 tps), and SharPer (16,929 tps). Compared to SharPer, Shard Scheduler,
TxAllo, and LB-Chain, HATLedger* demonstrated significant throughput improvements of 2.2x, 1.9x,
1.8x, and 1.6x, respectively. Meanwhile, as shown in Table 4, HATLedger and HATLedger* exhibited the
lowest average latency, attributable to the significant reduction in the cross-shard transaction rate. Across
all experiments (Figs. 6-9), HATLedger consistently achieved the best performance. Additionally, the
results of the ablation experiments validated the efficiency of the techniques proposed by HATLedger*
for account partitioning based on the future transaction graph and transaction partitioning based on
Consensus-Execution decoupling.

Table 4: The average latency across different systems

System  Sharper Shard TxAllo  LB-Chain HATLedger HATLedger*

scheduler

Latency 380 ms 362 ms 238 ms 365 ms 187 ms 185 ms
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Figure 5: The overall performance of different systems
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Figure 6: The throughput with different numbers of shards under (a) ETH-Workload, (b) Zipfian-Workload, and (c)
Hotspot-Workload
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Figure 7: The cross-shard rate with different numbers of shards under (a) ETH-Workload, (b) Zipfian-Workload, and
(c) Hotspot-Workload
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Figure 8: The throughput with different numbers of nodes per shard under (a) ETH-Workload, (b) Zipfian-Workload,
and (c) Hotspot-Workload
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Figure 9: The cross-shard rate with different numbers of nodes per shard under (a) ETH-Workload, (b) Zipfian-
Workload, and (c¢) Hotspot-Workload

5.3 The Impact of Different Numbers of Shards

First, we investigate the impact of varying the number of shards on system performance. As shown
in Table 3, we fix the number of nodes per shard at 8 and incrementally increase the number of shards from
4 to 14. Under the Eth workload, the throughput of HATLedger* increases from 37,398 to 83,927 tps as the
number of shards grows, while HATLedger’s throughput rises from 32,317 to 72,196 tps. In contrast, other
systems exhibit a smaller improvement, with throughput increasing from 20,000 to 50,000 tps. Moreover,
the cross-shard transaction rates of HATLedger and HATLedger* remain around 10%, significantly lower
than those of TxAllo (40%) and other systems (80%). These results demonstrate that both HATLedger and
HATLedger* enhance performance by accurately identifying upcoming hotspot accounts through future
transaction graph analysis, thereby reducing the cross-shard rate. Additionally, HATLedger* outperforms
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HATLedger due to its execution-consensus decoupled transaction partitioning strategy. As the number of
shards increases, the probability that transaction-accessed accounts are distributed across different shards
also rises. The results in Fig. 7 validate this observation. As the number of shards increases, the cross-shard
transaction rates of SharPer and Shard Scheduler sharply rise from 70% to 90%. This trend occurs because
SharPer ignores account partitioning, while Shard Scheduler allocates transactions to currently underloaded
shards—achieving load balance but sacrificing cross-shard rate. In comparison, TxAllo’s cross-shard rate
increases more gradually from 40% to 50%, as it detects hotspot accounts using historical transaction graphs
and groups them into the same shard to reduce cross-shard transactions. However, hotspot detection based
on historical graphs exhibits delayed adaptation. In contrast, HATLedger and HATLedger* exploit the future
transaction graph to more precisely identify forthcoming hotspot accounts, thereby maintaining a stable
cross-shard rate between 10% and 20%.

All systems show slightly better performance under the Zipfian and Hotspot workloads than under the
Eth workload. The Eth workload, being more random in hotspot distribution and transactions, leads to a
small performance drop in all systems.

5.4 The Impact of Different Numbers of Nodes per Shard

As shown in Table 3, we fixed the system at four shards and gradually increased the number of nodes per
shard from 8 to 18. As shown in Fig. 9, when the number of shards remains constant but the number of nodes
per shard increases, all systems exhibit noticeable performance degradation. The throughput of HATLedger*
declines from 37,398 to 22,173 tps, while HATLedger drops from 32,317 to 18,721 tps. SharPer’s throughput
decreases from 16,929 to 9251 tps. During this process, the cross-shard transaction rates of all systems remain
stable. This result indicates that increasing the node number per shard only increases the consensus cost
without affecting the cross-shard rate. Moreover, since cross-shard consensus incurs higher overhead than
intra-shard consensus, SharPer—with the highest cross-shard rate—suffers the most significant performance
decline. In contrast, HATLedger* effectively alleviates shard overload through transaction partitioning based
on Consensus—Execution decoupling, achieving the most stable performance among all systems.

5.5 The Workload Distribution of Different Systems

Each shard consists of 8 nodes, and we evaluated load distribution across different systems in a setup
with 8 shards. As shown in Fig. 10c,d, both TxAllo and HATLedger partition hotspot accounts to the
same shard (Shard 1), which reduces cross-shard transaction rate but leads to workload imbalance, as
Shard 1 becomes significantly overloaded. In contrast, as shown in Fig. 10e, HATLedger* achieves a more
balanced workload distribution across all shards. This improvement is attributed to the consensus-Execution
decoupled transaction partitioning mechanism, which redistributes pending transactions from Shard 1 to
other relatively idle shards. As a result, the load across shards in HATLedger* remains relatively balanced.
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5.6 The Performance under Overloads

We simulated an overload DDoS attack by increasing the client transaction sending rate from 10,000
to 100,000 tps. In Fig. 11a, the throughput of HATLedger* and HATLedger initially increases with the
growth of the sending rate and eventually stabilizes at 37,398 and 32,317 tps, respectively. When the
sending rate is below 30,000 tps, HATLedger* and HATLedger exhibit similar performance because both
systems have sufficient capacity to process all transactions. When the sending rate exceeds 30,000 tps, the
performance of HATLedger approaches saturation. HATLedger* reach saturation when the sending rate
exceeds 40,000 tps. This demonstrates that HATLedger* handles sudden overloads more effectively through
execution-consensus decoupled transaction partitioning mechanism, thereby providing better resilience
against DDoS attacks.
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Figure 11: The performance under different scenarios: (a) The performance under different client sending rates;
(b) The performance under different epoch lengths

5.7 The Performance under Different Epoch Lengths

We adopt a transaction-count-based epoch configuration, in which the epoch length is controlled by
the number of transactions committed in the coordinating shard (Shard; = Epy%Shard,,). As shown
in Fig. 11b, the throughput of HATLedger* rises sharply at first and then declines slowly. When the epoch
length is 100,000, HATLedger* reaches its optimal performance (37,398 tps). Specifically, the coordinating
shard Shard ; transitions to the next epoch after committing 100,000 transactions in Shard i A shorter
epoch length results in frequent account and transaction repartitioning, consuming system resources and
interfering with normal transaction execution, thereby reducing throughput. Conversely, an excessively
long epoch length lowers the repartitioning frequency. However, as hotspot accounts evolve over time, the
increased cross-shard transaction rate ultimately leads to performance degradation.

6 Related Work

Liu et al. [18] provided a comprehensive review of existing consensus protocols and proposed the
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to systematically assess their
respective advantages and limitations. Luo et al. [19] proposed the Symbiotic Blockchain Consensus (SBC),
an energy-efficient sharding mechanism designed for wireless networks to satisfy the low-power demands
of 6G systems. Xiong et al. [20] proposed a group-based approach to improve the efficiency of blockchains.
Chien et al. [21] proposed that making effective predictions is very important for resource allocation. A
more advanced step was made by OmniLedger [7], which introduced state sharding so that each shard
only manages a portion of the global ledger. RapidChain [22] was developed to substantially mitigate high
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reconfiguration costs. SharPer [4] targets scalability by dynamically redistributing shards across network
clusters. Shard Scheduler [8] proposes to partition transactions and their associated accounts to low-
load shards based on current load distribution, achieving better load balancing but still suffering from
high cross-shard transaction rates. In contrast, TxAllo [9] constructs a hotspot account graph based on
historical transactions and partitions hotspot accounts to the same shard, thereby reducing high cross-shard
transaction rates but leading to load imbalance.

7 Conclusion

HATLedger is an efficient sharded blockchain ledger built on Hybrid Account and Transaction
partitioning. Leveraging the future transaction graph, HATLedger identifies upcoming hotspot accounts
and effectively reduces the cross-shard transaction rate. To address potential shard overloading, HATLedger
supports transaction partitioning based on Consensus-Execution decoupling, eliminating the need for
waiting between source and target shards. Experimental results demonstrate that HATLedger achieves up to
a 2.2x improvement in throughput compared to existing sharded blockchains.
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