
echT PressScience

Doi:10.32604/cmc.2025.073155

ARTICLE

Defending against Topological Information Probing for Online Decentralized
Web Services

Xinli Hao1, Qingyuan Gong2 and Yang Chen1,*

1Shanghai Key Lab of Intelligent Information Processing, College of Computer Science and Artificial Intelligence, Fudan University,
Shanghai, 200433, China
2Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, 200433, China
*Corresponding Author: Yang Chen. Email: chenyang@fudan.edu.cn
Received: 11 September 2025; Accepted: 31 October 2025; Published: 12 January 2026

ABSTRACT: Topological information is very important for understanding different types of online web services, in
particular, for online social networks (OSNs). People leverage such information for various applications, such as social
relationship modeling, community detection, user profiling, and user behavior prediction. However, the leak of such
information will also pose severe challenges for user privacy preserving due to its usefulness in characterizing users.
Large-scale web crawling-based information probing is a representative way for obtaining topological information of
online web services. In this paper, we explore how to defend against topological information probing for online web
services, with a particular focus on online decentralized web services such as Mastodon. Different from traditional cen-
tralized web services, the federated nature of decentralized web services makes the identification of distributed crawlers
even more difficult. We analyze the behavioral differences between legitimate users and crawlers in decentralized web
services and highlight two key behavioral attributes that distinguish crawlers from legitimate users: instance interaction
preferences and hop count in profile viewing patterns. Based on these insights: we propose a supervised machine
learning-based framework for crawler detection, which is able to learn the federation-aware feature representations for
users. To validate the framework’s effectiveness, we construct a labeled dataset that integrates real users with real-trace
driven simulated crawlers in Mastodon. We use this dataset to train various supervised classifiers for crawler detection.
Experimental results demonstrate that our framework can achieve an excellent classification performance. Moreover,
it is observed that federation-aware features are effective in improving detection performance.

KEYWORDS: Anti-mapping; crawler detection; machine learning; decentralized online social networks

1 Introduction
Topological information plays a critical role in understanding online web services, particularly online

social networks (OSNs) [1]. Extensive studies are based on OSNs’ topological information, i.e., the social
graphs [2–5], as such information underpins a wide range of applications such as information diffu-
sion [6], community detection [7–9], and recommender systems [10]. However, the topological information,
characterizing the relationships among the users of online web services, is not only a foundation for
functionality but also a target for adversarial exploitation. In particular, large-scale web crawling-based
information probing has become a pressing concern. Such probing enables unauthorized data harvesting,
cross-community profiling, and manipulation of users’ social relationships, thereby threatening the leakage
of topological information.

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.073155
https://www.techscience.com/doi/10.32604/cmc.2025.073155
mailto:chenyang@fudan.edu.cn

2 Comput Mater Contin. 2026;86(3):10

While the risks of information probing have long been recognized in centralized OSNs such as
Facebook and Twitter/X, these platforms retain the advantage of centralized governance. Uniform policies,
platform-wide blacklists, and coordinated access control mechanisms allow them to defend against crawler-
based attacks [11–14] more conveniently. By contrast, online decentralized web services, exemplified by the
decentralized online social networks (DOSNs) [15–18], operate as federations of independently administered
servers (instances), each maintaining only a partial view of the global social graph. This architectural
openness, while empowering for users, also creates unique vulnerabilities. Open registration and distributed
governance reduce the barrier for adversaries to deploy automated accounts across multiple instances,
allowing large-scale cross-instance topology probing [19,20]. Moreover, existing defensive approaches, such
as per-account or per-IP rate limiting, are coarse-grained [21]. They are insufficient against sophisticated
crawlers that can closely mimic legitimate users by posting content, following accounts, and generating
realistic interaction histories [22]. In particular, in DOSNs such as Mastodon [23], the lack of centralized
oversight impedes instances from sharing crawler detection strategies or coordinating blacklists, leaving
decentralized ecosystems exposed to greater probing threats. As decentralized services continue to grow in
scale, the need to defend against topological information probing is increasingly urgent.

This paper takes a defense-oriented perspective on topological information probing by investigating
the behavioral distinctions between legitimate users and crawlers in decentralized web services. We leverage
these distinctions to design a machine learning-based crawler detection framework. Our empirical analysis
highlights two key behavioral properties that differentiate legitimate users from crawlers, i.e., instance
interaction preference and social distance in profile viewing patterns. Legitimate users tend to interact
primarily with proximate neighbors within their home instance, whereas crawlers show no such preference
and often access distant or arbitrary positions in the social graph. Building on these insights, we construct
a labeled dataset by combining real user data with real-trace-driven simulated crawlers, in which actual
Mastodon user behavior traces guided the generation of simulated crawler activity. We then extract both
conventional and federation-aware features and use them to train supervised classifiers for crawler detection.
The key contributions of this paper are as follows.

• We present a comprehensive user behavioral analysis in DOSNs, identifying distinct cross-instance
interaction patterns and profile viewing patterns between legitimate users and crawlers.

• We construct and label a dataset comprising both legitimate user data and crawler activities simulated
based on real traces from Mastodon, enabling empirical evaluation.

• We propose a supervised machine learning-based detection framework for identifying crawlers in
DOSNs based on ActivityPub and evaluate its effectiveness as a practical defense using a labeled
Mastodon dataset.

By addressing the unique challenges of decentralized ecosystems, this work advances the protection of
users and platforms against topological information probing, thereby strengthening the long-term security
and trustworthiness of decentralized web services.

2 Background and Data Analysis

2.1 Decentralized Online Social Networks and Mastodon
DOSNs have increasingly attracted attention as privacy-preserving alternatives to conventional,

corporate-controlled platforms. This trend further accelerated following Twitter’s acquisition and renaming
as X in 2022 [24]. In contrast to single-provider platforms, a DOSN platform is a federation of servers (usually
called instances) that exchange data through open standardized protocols. The ActivityPub Protocol [25] is
currently the dominant standard for DOSNs. It enables users on one instance to follow, mention, and share

Comput Mater Contin. 2026;86(3):10 3

content with users on any other instance. It can preserve the global social graph while leaving each instance
free to design its own moderation policies, data-retention rules, and community norms. People often use
the term Fediverse to describe the ensemble of online social networks that consist of different instances. The
Fediverse encompasses a diverse range of platforms, including microblogging services like Mastodon [26],
image-sharing platforms like Pixelfed [27], and video hosting services like PeerTube [18]. A user enrolls in
the network by choosing an instance as its home instance1, creating an account, and subsequently forming
social ties both within and across instances. Each account maintains a profile page that aggregates account
information, posts, and replies.

Mastodon is one of the most well-known DOSNs. Like Twitter/X, it functions as a microblogging
platform where people can publish original posts and repost other users’ posts. As shown in Fig. 1, Mastodon’s
network consists of multiple instances, in which users can interact across the federated network by following,
liking, reposting, and replying. To assist newcomers in finding a suitable instance, Mastodon provides a
curated list of recommended instances on its official website [28], while also allowing users manually to
search for instances. To balance discoverability, self-governance and privacy, Mastodon offers three feeds:
home, trending, and live feeds. The home feed is personalized, featuring content from the accounts or hashtags
the user follows. The trending feed is sorted according to a “trending score”. The live feeds show the latest
posts from the federated instances. Different feeds make it possible that crawlers can adopt different crawling
strategies. Additionally, Mastodon allows users to configure the visibility of their profiles in multiple ways:

posts

favorties

follows

replies

follows

follows

piaille.fr

ActivityPub

social.vivaldi.net

mastodon.social

Figure 1: Interactions in Mastodon via ActivityPub: examples of follow relationships and content actions (posts,
favorites, replies) occurring across instances

• Public: In this mode, users’ followers and followees are displayed, the platform recommends their
accounts to others, and the accounts are visible in search engines.

• Private: In this mode, users must manually approve follow requests. Their followers and followees are
not displayed to other users, their accounts are not recommended to others and are not visible in
search engines.

• Custom: In this mode, users can manually configure the above settings according to their preferences.

1A user’s home instance is the server where the user’s account is hosted.

4 Comput Mater Contin. 2026;86(3):10

In our work, we focus only on public accounts, assuming that user profiles, along with their follower
and followee lists, can be viewed. Notably, unlike centralized OSNs, Mastodon imposes specific visibility
restrictions: when viewing another user’s follower and followee lists, one can only access users who belong
to the same instance [21]. This limitation affects users’ browsing and interaction behaviors, which will be
further discussed in the following part of this section.

2.2 Targeted Crawlers
The goal of a crawler is to comprehensively collect user profiles and social relationships, and to construct

a relational network among users. The collected data may later be exploited for commercial analytics,
social-graph inference, or large-scale model training. Traditionally, crawlers targeting online social platforms
adopt the breadth-first search (BFS) strategy, expanding and collecting user data layer by layer [29,30]. In
Mastodon-like DOSNs, live feeds timelines continuously push real-time published posts, providing a new
entry for crawlers. As a result, a number of collection methods have emerged that directly crawl active
posting users by monitoring live feeds [19,20]. These two crawler types are the primary drivers of topological
information leakage. Accordingly, we focus on defending against these two crawler types.

BFS Crawlers: The crawlers register accounts across multiple instances to gain access permissions
and then recursively traverse the social graph in a BFS manner under the instance’s rate limit. They start
from several seed users and expand to followers and followees, with a bias toward densely connected
neighborhoods to improve discovery efficiency [29,30]. As a result, BFS crawlers typically produce a higher
volume of profile views than legitimate users, while the hop counts from the initial seed users slowly increase
over time. To better mimic human activity, the crawler also triggers lightweight interactions such as replies
or favorites. Additionally, due to Mastodon’s instance-based architecture, users can only view the users
hosted on the same instance when viewing follower or followee lists. Therefore, profile views and interaction
behaviors generated by one BFS crawler are almost exclusively confined to users within the same instance.

Live Feeds Crawlers: The crawlers register accounts across multiple instances to gain access permis-
sions. They continuously fetch posts from live feeds timelines and subsequently access the profiles of users
who have recently posted [19,20]. They also produce superficial interactions, such as replying to or favoriting
posts. The primary goal of live feeds crawlers is to passively and efficiently collect active users’ data. As this
strategy is driven by live feeds timeline which aggregates the latest posts from all instances, it usually results
in a high volume of cross-instance profile views and interactions. Moreover, the pattern of profile view hops
is highly variable, lacking the smooth, incremental growth seen in BFS.

2.3 User Behavior Analysis
Understanding the behavioral characteristics of users is essential for distinguishing between legitimate

users and crawlers in DOSNs. In this subsection, we analyze activity patterns of legitimate users and crawlers
across multiple dimensions.

2.3.1 Legitimate User Behavior Analysis
Thoroughly modeling legitimate user behavior in DOSNs presents inherent challenges due to lim-

itations in server-side observability. Although Mastodon offers an open API that allows developers and
researchers to access public user information, including follower and followee lists, posts, replies, favorites, it
does not expose detailed browsing behavior such as profile views. This omission is particularly significant, as
profile viewing behavior serves as a key indicator in identifying crawler-like activity [11]. To compensate for
this observability gap, our behavior analysis draws upon (i) established behavioral insights from prior studies

Comput Mater Contin. 2026;86(3):10 5

on centralized OSNs, e.g., RenRen, Facebook, Orkut, and (ii) empirical analysis of Mastodon-specific user
behavior using the dataset collected by FediLive [19] during the period from 22 November to 2 December
2024.

Prior work shows that profile views are heavily skewed: over 90% of users make or receive fewer
than 10 views, while only 0.4% view more than 50 profiles [11]. Profile view activity is also topologically
localized: more than 80% of profile views occur within a two-hop neighborhood [11]. Additionally, a strong
positive correlation exists between the number of social connections and profile view count, with a Pearson
correlation coefficient of approximately 0.75 [31]. Therefore, we synthesize the profile view of users according
to the Pearson correlation with user degree. Let D = (D1 , D2, . . . , Dn) denote the vector of user degrees and
V = (V1 , V2, . . . , Vn) denote the vector of profile view counts.

ρ(D, V) = cov(D, V)
σD σV

= E[(D − μD)(V − μV)]
σD σV

(1)

where E[⋅] is the empirical expectation, μD = 1
n ∑

n
i=1 Di and μV = 1

n ∑
n
i=1 Vi are the respective means, and

σD =
√

1
n ∑

n
i=1(Di − μD)2 and σV =

√
1
n ∑

n
i=1(Vi − μV)2 are the respective standard deviations. Given D, σD ,

μD , ρ(D, V) and set σV , μV , we can construct V.
We further analyzed reply2 interactions. The results reveal a pronounced intra-instance communication

pattern: 85.71% of all replies occurred within the same instance, while only 14.29% occurred across instances.
On a user-level basis, the average intra-instance reply ratio is 93.13%, compared to just 6.87% for cross-
instance replies. Furthermore, to quantify users’ reply preferences more precisely, we computed the ratio
between intra-instance and cross-instance reply probabilities, excluding trivial cases where an instance only
contains a single user. The results show that users in most instances demonstrate a significantly stronger
tendency to reply to users within their home instance.

To establish a reliable baseline for typical legitimate user behavior in Mastodon, we calculated the
average activity metrics of all users over a two-week observation window. This time frame captures stable
patterns of engagement while minimizing the influence of short-term anomalies. Table 1 shows that the
average active Mastodon user posted 6.76 posts, gave 2.29 favorites, received 16.99 likes, and exchanged 2.46
replies. These values reflect the modest engagement levels characteristic of the majority of users in Mastodon.

Table 1: The average value of legitimate user behavior metrics

Metric Average value
Number of posts 6.76

Number of favorites given 2.29
Number of favorites received 16.99

Number of replies given 2.88
Number of replies received 2.46

While average values provide a significant summary, they fail to capture the diversity and imbalance
inherent in user behavior. To better illustrate this, we used complementary cumulative distribution functions
(CCDFs) to visualize user activity features. The distribution of posts (Fig. 2a) per user follows a classic heavy-
tailed pattern: the majority of users contribute only a small number of posts, while a small minority are
responsible for a disproportionately large share of content production.

2A reply denotes a direct response from one user to another user’s post within the platform.

6 Comput Mater Contin. 2026;86(3):10

Figure 2: (a) CCDF of the posts posted by Mastodon users during a two-week period. (b) CCDF of the favorites given
and received by Mastodon users during a two-week period. (c) CCDF of the replies given and received by Mastodon
users during a two-week period

Fig. 2b reveals that while most users give or receive relatively few favorites, a small subset accumulates a
significantly higher number. Notably, the “Favorites Given” curve lies above the “Favorites Received” curve,
indicating that favoriting behavior is slightly more evenly distributed than being favorited.

Fig. 2c reveals that both “Replies Given” and “Replies Received” follow heavy-tailed distributions,
indicating that while most users participate in only a limited number of reply interactions, a small subset
exhibits significantly higher activity. Notably, the two curves are closely aligned across most of the range,
suggesting that replying is almost proportional to being replied to.

2.3.2 Behavior Analysis of Crawlers
To investigate crawling behavior in DOSNs, we simulated crawlers on Mastodon. In contrast to

legitimate users, crawlers are designed to resemble legitimate user accounts in both profile and general
behavioral patterns, with the goal of extracting user data as extensively and unobtrusively as possible.
Although crawlers may attempt to mimic legitimate user behavior, empirical observations of crawling activity
on Mastodon reveal behavioral discrepancies in specific dimensions [19,20]. To better reflect crawler-specific
operating characteristics, features such as profile view, cross-instance interaction, and hop count3 of profile
views are selectively inflated to reflect crawler-specific patterns. It is important to note that Mastodon has a
rate limit for accounts. By default, all endpoints and methods can be called 300 times within 5 min [21]. This
constraint significantly impacts the crawling speed. In practice, crawlers must operate under this limitation
while still attempting to maximize data collection efficiency within allowable requests.

Under the constraints described above, we first synthesized crawler profiles parameterized by empirical
user behavior. Then, as detailed in Section 2.2, we simulated two representative crawling strategies—BFS
and live feeds—crawlers and generated 1000 synthetic crawlers (500 per type). Subsequently, to validate how
well the simulated crawlers reflect real-world strategies, we compared their behavioral patterns with those
of legitimate users, revealing two important differences.

Profile views are highly non-local. Fig. 3 shows the hop count distribution of profile views made by
different types of crawlers and legitimate users. Compared to legitimate users, crawlers generally access
profiles that are farther away in the social graph. This trend is particularly pronounced for live feeds crawlers,
whose hop count distribution is relatively uniform, reflecting the randomness of their browsing behavior.
In contrast, BFS crawlers display a long-tail hop distribution, with almost all profile views occurring within

3Hop count is the number of edges on the shortest path between the viewer and the viewee in the social graph.

Comput Mater Contin. 2026;86(3):10 7

6 hops from the seed users. Overall, legitimate users typically access profiles within a 1-4 hop range, while
crawlers are more likely to perform high-hop, non-local visits.

Figure 3: Cumulative distribution of the hop counts of profile views in Mastodon with different types of users

Cross-instance interaction ratio is different from legitimate users. Table 2 compares the intra-
instance and cross-instance reply ratios of different user types. Legitimate users predominantly interact
within their home instance, with 85.71% of replies directed toward users from the same instance. BFS
crawlers exhibit even stronger intra-instance locality, with over 94% of their replies occurring within the
same instance. In contrast, live feeds crawlers demonstrate a strikingly different pattern: over half (54.17%)
of their replies are directed toward users in other instances. This reflects their timeline-driven browsing
strategy, which is less bound by structural locality and more influenced by activity levels across the federated
network. These differences in cross-instance behavior offer a valuable signal for distinguishing crawlers from
legitimate users.

Table 2: Reply ratio of different user types

User type Intra-instance reply ratio Cross-instance reply ratio
legitimate user 85.71% 14.29%

BFS crawler 94.34% 5.66%
Live feeds crawler 45.28% 54.17%

3 Crawler Detection System Design

3.1 Overview
In this paper, we propose a machine learning-based crawler detection framework from the perspective

of instance administrators, aiming to differentiate legitimate users and crawlers by comparing the profile and
activity characteristics. The framework can be deployed across instances, enabling each administrator to take
action against detected crawlers. The illustration of the framework is shown in Fig. 4, which consists of three
procedures, namely, Data Sources, Feature Extraction and Decision Maker. The data sources are from each
instance’s user profiles, UGC, and web access logs (see Section 3.2). We then extract features from these data.
The features are detailed in Section 3.2. Finally, the decision maker applies the trained classifier to detect
crawlers. Section 3.4 describes the decision maker module.

8 Comput Mater Contin. 2026;86(3):10

Figure 4: Overview of the framework

3.2 Data Sources
The data collection phase involved the following sources: (i) web access logs; (ii) user profiles; (iii) user-

generated content (UGC). The observation window is set to two weeks, and only user behavior and access
records within this period are counted.

From the server logs, timestamped requests for profile views are extracted. For each request, the viewer
and viewee identifiers and their respective home instances are extracted, duplicate records are removed, and
obvious non-human traffic (such as known bots) is filtered. For each user observed during the window, its
user profile can be retrieved via the platform API. From UGC, posts, replies, favorites are collected and
their corresponding counts are calculated. Subsequently, the multi-source data is merged, timestamps are
unified, and accounts that may interfere with cross-instance metrics (such as suspended, deleted, or single-
user instances) are removed. Based on this, user-level aggregate metrics are generated, including the number
of followers and followees, as well as the number of posts, replies, favorites, and profile views within the
observation window, interactions within and across instances, and the average hop count of profile views
based on the social graph.

3.3 Feature Extraction
To extract meaningful features for crawler detection, we combine several conventional features, such as

posts volume, with federation-aware activity features, such as cross-instance interaction ratio. This extraction
process is performed in a manner that captures both the statistical dynamics and interaction patterns,
providing a comprehensive representation of users’ behavior. These features are then used as inputs to the
supervised machine learning model, which is trained to differentiate between legitimate users and crawlers.

For the computation of features, we fix an observation window τ. All counts are aggregated over τ (e.g.,
from 22 November to 2 December 2024). Let inst(u) be user u’s home instance which refers to the instance
registered by the user. The detailed descriptions are as follows:

• follower count: Define u f ol l ow er as the number of accounts following u. In legitimate users, follower
accrual correlates with sustained content production and reciprocal interaction; by contrast, crawlers
attract few genuine followers, producing a distinctive followee-follower imbalance.

Comput Mater Contin. 2026;86(3):10 9

• followee count: Let u f ol l ow ee denote the number of accounts that user u follows. This static snapshot
approximates the outward breadth of the user’s social radius.

• post volume: Pτ
u is the number of original posts authored by u within observation window τ.

• reply volume: Rτ
u counts the replies issued by user u during τ.

• favorite volume: Fτ
u records the number of favorite actions performed by user u.

• profile view count: V τ
u measures how many times user u visits the profile pages of other users with τ.

• mean social hop count: For each profile view vi ∈ V τ
u , we compute the shortest-path length hop(u, vi)

in the daily follower graph snapshot and mean social hop count

Hτ
u =

1
∣V τ

u ∣
∑

vi∈V τ
u

hop(u, vi), (2)

with Hτ
u = 0 if no profile views occur.

• cross-instance interaction ratio: Let Eτ
u denote the set of explicit interaction events—replies and

favorites—initiated by user u during τ. For any event e ∈ Eτ
u , let src(e) and dst(e) denote its initiating

and receiving user, respectively, and let inst(⋅) denote a user’s home instance. We define

CIτ
u =
∣{e ∈ Eτ

u ∣ inst(src(e)) ≠ inst(dst(e))}∣
∣Eτ

u ∣
. (3)

3.4 Decision Maker
Concatenating the hop count, cross-instance ratio and all conventional features together, we introduce

a decision maker module to determine whether an account is a crawler. This module is implemented using a
supervised machine learning classifier, which takes the extracted features as input. A variety of mainstream
supervised learning algorithms can be employed, including Logistic Regression [32], C4.5 [33], Support
Vector Machine (SVM) [34], Random Forest [35], and gradient boosted decision trees (GBDT) such as
XGBoost [36], LightGBM [37] and CatBoost [38]. Once the classifier is selected, its parameters are optimized
using the training and validation datasets. After that, the trained classifier will be able to make a judgment
based on a user’s features. Their basic principles and representative formulas are introduced as follows.

3.4.1 Logistic Regression
Logistic Regression is a linear classifier that estimates the probability of a sample belonging to the

positive class using the logistic (sigmoid) function

P(y = 1∣x) = σ(w⊺x + b) = 1
1 + exp(−(w⊺x + b)) , (4)

where w and b are the model parameters, and σ(⋅) is the sigmoid function. The predicted label is determined
by thresholding this probability.

3.4.2 C4.5 Decision Tree
C4.5 constructs a decision tree by recursively selecting features that maximize the information gain

ratio. For a dataset S, the information gain of feature A is defined as

Gain(S , A) = Entropy(S) − ∑
v∈Values(A)

∣Sv ∣
∣S∣ ⋅ Entropy(Sv), (5)

10 Comput Mater Contin. 2026;86(3):10

with

Entropy(S) = − ∑
c∈C l asses

pc log2(pc). (6)

The gain ratio adjusts for bias toward multi-valued features

GainRatio(S , A) = Gain(S , A)
Spl itIn f o(S , A) . (7)

3.4.3 Support Vector Machine
SVM aims to find a hyperplane that maximizes the margin between two classes. The optimization

problem is formulated as

min
w ,b ,ξ

1
2
∥w∥2 + C

n
∑
i=1

ξi , (8)

subject to

yi(w⊺xi + b) ≥ 1 − ξi , ξi ≥ 0, (9)

where C is the penalty parameter. Kernel functions K(xi , x j) allow SVM to model non-linear deci-
sion boundaries.

3.4.4 Random Forest
Random Forest is an ensemble method that builds multiple decision trees using bootstrap samples and

random feature subsets. Each tree ht(x) outputs a prediction, and the final classification is obtained by
majority voting

ŷ =mode{h1(x), h2(x), . . . , hT(x)}, (10)

where T is the number of trees. This mechanism enhances robustness and reduces overfitting.

3.4.5 Gradient Boosted Decision Trees
GBDT is an additive model where trees are built sequentially, with each new tree fitting the residuals of

the previous ensemble. Its general objective is

L =
n
∑
i=1

l(yi , ŷ(t−1)
i + ft(xi)) +Ω(ft), (11)

where l is the loss function, ŷ(t−1)
i is the prediction from the previous trees, and ft is the newly added tree.

The regularization term Ω(ft) controls model complexity.
Specifically:

• XGBoost applies a second-order Taylor expansion of the loss and introduces explicit regularization to
improve generalization.

• LightGBM improves training efficiency through Gradient-based One-Side Sampling (GOSS) and
Exclusive Feature Bundling (EFB), and adopts a leaf-wise tree growth strategy with depth constraints.

Comput Mater Contin. 2026;86(3):10 11

• CatBoost employs ordered boosting and specialized encoding for categorical features, reducing overfit-
ting and enhancing performance on categorical data.

4 Evaluation
In this section, we conducted experiments on a commodity laptop with an Apple M1 Pro CPU and

16GB of RAM, using the dataset we constructed to evaluate the effectiveness of our framework for crawler
detection in DOSNs. And we addressed the following research questions (RQs):

• RQ1: How do different algorithms compare in their ability to detect crawlers (Section 4.3)?
• RQ2: To what extent does crawler activity level affect detection performance (Section 4.4)?
• RQ3: Does incorporating hop count and cross-instance interaction features improve classification

accuracy (Section 4.5)?

4.1 Dataset
We utilized raw data sourced from FediLive [19], which contains posts, replies, and favorites from

Mastodon users between 22 November and 2 December 2024. For each user, we extracted the counts
of followers, followees, posts, favorites, and replies, and calculated the cross-instance interaction ratio.
Additionally, we computed the hop counts of simulated profile viewing. The simulation details are provided
in Section 2.3. We generated two synthetic crawler types—BFS crawlers and live feeds crawlers—based on
the target outlined in Section 2.2. We then constructed two labeled evaluation datasets, 3000 legitimate
users with 500 BFS crawlers and 500 live feeds crawlers separately. Each dataset was split into train and test
partitions (80/20) using stratified sampling with a fixed random seed of 42.

4.2 Metrics
We evaluate the detection performance of models using F1-score [39] and AUC [40]. For comprehen-

sively understanding the calculation of these two metrics, we firstly give the computation of Precision and
Recall. Precision quantifies the share of predicted positives that are true positives and is pertinent when the
cost of false positives is high. Recall measures the share of true positives that are correctly identified and is
critical when the cost of false negatives is high.

Precision = TP
TP + FP

, (12)

Recall = TP
TP + FN

= TPR, (13)

where TP is True Positive, TN is True Negative, FP is False Positive, and FN is False Negative.
F1-score is the harmonic mean of precision and recall, providing a single metric that summarizes their

trade-off. F1-score could be calculated by

F1-score = 2 × Precision × Recall
Precision + Recall

. (14)

12 Comput Mater Contin. 2026;86(3):10

AUC measures the area under the receiver operating characteristic curve, capturing a model’s threshold-
independent ability to discriminate between positive and negative classes. The AUC is given by

AUC =
K−1
∑
i=1
(FPRi+1 − FPRi)

TPRi+1 + TPRi

2
, (15)

where TPR is calculated as defined in Eq. (13), FPR is given by

FPR = FP
FP + TN

, (16)

and K is the number of points when the ROC curve is approximated using the trapezoidal method: that is,
the number of all points (FPRi , TPRi) on the ROC line obtained by scanning from high to low thresholds,
sorted in increasing order of FPR.

4.3 Performance of Classification Algorithms (RQ1)
We compared seven supervised machine learning methods on two types of crawlers. The parameter

settings for each method are shown in Table 3. The results are shown in Table 4. Overall, GBDT methods
outperform other classifiers.

Table 3: Hyperparameters setting

Model Hyperparameters

Logistic regression max_iter=1000, solver=“lbfg”, class_weight=“balanced”,
random_state=42

C4.5 criterion=“entropy”, splitter=“best”, random_state=42

SVM kernel=“rbf”, C=1.0, gamma=“scale”, probability=True,
class_weight=“balance”, random_state=42

Random forest n_estimators=200, max_depth=6, min_samples_split=2,
min_samples_leaf=1, random_state=42, n_jobs=-1

XGBoost

n_estimators=200, max_depth=6, learning_rate=0.05,
subsample=0.8, colsample_bytree=0.8,

objective=“binary:logistic”, eval_metric=“auc”,
n_jobs=-1, random_state=42

LightGBM
n_estimators=200, learning_rate=0.05, subsample=0.8,
colsample_bytree=0.8, objective“binary”, n_jobs=-1,

random_state=42

CatBoost
iterations=200, depth=6,

learning_rate=0.05,loss_function=“Logloss”,
eval_metric=“auc”, verbose=False, random_seed=42

For the BFS crawlers, GBDT dominates: CatBoost attains F1-score = 0.995 and AUC = 1.000, with
LightGBM and XGBoost close behind (LightGBM: F1-score= 0.991, AUC= 0.999; XGBoost: F1-score= 0.983,
AUC = 0.999). The traditional C4.5 decision tree also performs strongly (F1-score = 0.971, AUC = 0.981). In
comparison, SVM yields F1-score = 0.824 (AUC = 0.969), Random Forest F1-score = 0.663 (AUC = 0.977),
and Logistic Regression is the weakest (F1-score = 0.582, AUC = 0.842).

Comput Mater Contin. 2026;86(3):10 13

Table 4: Performance comparison

Classifier BFS crawlers Live feeds crawlers

F1-score AUC F1-score AUC
Logistic

regression 0.582 0.842 0.601 0.907

C4.5 0.971 0.981 0.911 0.945
SVM 0.824 0.969 0.821 0.979

Random
forest 0.663 0.977 0.794 0.986

XGBoost 0.983 0.999 0.975 0.998
LightGBM 0.991 0.999 0.975 0.999
CatBoost 0.995 1.000 0.966 0.999

For the live feeds crawlers, F1-scores are generally lower than in the BFS setting, yet GBDT retains its
advantage. LightGBM and XGBoost both reach F1-score = 0.975 (with AUC = 0.999 and 0.998, respectively),
followed by CatBoost (F1-score = 0.966, AUC = 0.999). C4.5 records F1-score = 0.911, AUC = 0.945; SVM
and Random Forest achieve F1-score = 0.821, AUC = 0.979 and F1-score = 0.794, AUC = 0.986, respectively;
Logistic Regression remains lowest (F1-score = 0.601, AUC = 0.907).

Additionally, we recorded the time cost of training CatBoost and LightGBM. The results show that Cat-
Boost can process millions of samples per second on a resource-constrained device (1,249,926.8 samples/s)
and LightGBM can process tens of thousands of samples (203,699.6 samples/s).

4.4 Impact of the Activity Level on Detection (RQ2)
We investigated the impact of crawler activity levels on detection performance. The activity level of

each crawler increased from 0% to 100% systematically, representing the intensity of the crawler’s behavior
of browsing profiles.

For each activity level, we evaluated the detection performance across various machine learning models,
including C4.5, SVM, LightGBM, and CatBoost. LightGBM and CatBoost represent GBDT models; SVM
provides a non-tree, margin-based approach; and C4.5 provides interpretable rules and thresholds as a
benchmark. These four models cover ensembles, kernel methods, and single-tree rules.

The experimental results (see Fig. 5) indicate a clear trend where increasing the crawler activity level
generally improves the detection performance, with the F1-score and AUC reaching their highest values
at higher activity levels. Notably, the detection models perform differently depending on the activity level.
For both BFS and live feeds crawlers, models such as LightGBM and CatBoost tend to outperform others
at moderate to high activity levels, exhibiting significant improvements in both precision and recall as the
activity level escalates.

14 Comput Mater Contin. 2026;86(3):10

(a) (b)

(c) (d)

Figure 5: (a) F1-score on the BFS crawlers across different detection models. (b) AUC on the BFS crawlers across
different detection models. (c) F1-score on the live feeds crawlers across different detection models. (d) AUC on the live
feeds crawlers across different detection models

The experiment’s findings suggest that as the activity level increases, the models become more effective
in identifying crawler behavior, although the challenge of false positives remains as activity levels rise. This
experiment highlights the importance of tuning the detection models for various activity intensities to
optimize both detection accuracy and efficiency. Additionally, when crawlers operate at very low activity
levels, they can obtain little data over any given window, making it difficult to reconstruct meaningful
portions of the network topology. Consequently, even if our framework under-performs in this regime, slow
crawlers cannot accumulate enough observations to obtain large-scale topological information.

4.5 The Effectiveness of Hop Count and Cross-Instance (RQ3)
We hypothesized that incorporating hop count and cross-instance interaction features improves classi-

fication accuracy. To test this hypothesis, we conducted a comparative experiment with CatBoost algorithm
using two configurations: one using conventional features alone, the other augmented with hop count and
cross-instance interaction ratio features.

The results of the experiments are shown in Figs. 6 and 7. In both types of crawlers, adding only hop
count and cross-instance interaction ratio improves detection performance. This is because these two features

Comput Mater Contin. 2026;86(3):10 15

help capture the potential behavioral patterns of legitimate users and crawlers, thus improving the model’s
detection performance. The Fig. 7 shows how the hop count (H) and cross-instance interaction ratio (CI)
affect classification across. For BFS crawlers (top row), the baseline already distinguishes crawlers well with
perfect specificity for legitimate users. Adding either H or CI reduces crawler false negatives to 0.008. The
combination H & CI preserves these gains, indicating both features contribute complementary but partly
overlapping signal for BFS behavior. For live feeds crawlers (bottom row), the baseline is weaker. Adding
H substantially improves detection. Using CI alone is less effective here, reflecting that live feeds crawlers’
cross-instance activity can resemble that of active legitimate users. Crucially, combining H & CI yields the
best performance.

(a) (b)

Figure 6: F1-score and AUC on (a) BFS crawlers and (b) live feeds crawlers across four different scenarios: without
hop count and cross-instance (No H & CI), with hop count only (H), with cross-instance only (CI), and with both hop
count and cross-instance (H & CI)

We analyzed the distribution of hop counts across different user types to evaluate the impact of hop
count on detection performance. Fig. 8a shows significant differences in hop count distributions among
legitimate users, BFS crawlers, and live feeds crawlers. BFS crawlers and live feeds crawlers tend to have
shorter hop counts, while legitimate users exhibit more diverse hop counts with a larger proportion of longer
hops. This indicates that hop count can serve as an effective feature for distinguishing between legitimate
user behavior and crawler activity. Next, we assessed the impact of cross-instance interaction features.
Specifically, we calculated the intra-instance and cross-instance interaction ratios for each user type. The
findings from Fig. 8b show that legitimate users have a significantly higher intra-instance interaction ratio
than live feeds crawlers but slightly lower than BFS crawlers. Moreover, BFS and live feeds crawlers differ
markedly in cross-instance interaction ratios. These discrepancies highlight the potential of cross-instance
interaction features to differentiate user behavior.

16 Comput Mater Contin. 2026;86(3):10

L
eg

it
im

at
e

U
se

r

Legitimate User

(a)
L

eg
it

im
at

e
U

se
r

Legitimate User

(b)

L
eg

it
im

at
e

U
se

r

Legitimate User

(c)

L
eg

it
im

at
e

U
se

r

Legitimate User

(d)

L
eg

it
im

at
e

U
se

r

Legitimate User

(e)

L
eg

it
im

at
e

U
se

r

Legitimate User

(f)

L
eg

it
im

at
e

U
se

r
Legitimate User

(g)

L
eg

it
im

at
e

U
se

r

Legitimate User

(h)

Figure 7: Confusion matrices under four feature settings for two types of crawlers. Top row: BFS crawlers; bottom row:
Live-feed crawlers. From left to right: (a) and (e): baseline without federation-aware features (No H & CI); (b) and (f):
adding Hop count (H) only; (c) and (g): adding cross-instance ratio (CI) only; (d) and (h): adding H & CI together

(a) (b)

Figure 8: (a) Hop count distribution of different user types; (b) Comparison of intra-instance and cross-instance
interactions among different types of users

5 Related Work

5.1 Crawler Detection in Online Web Services
Early studies on crawler detection focused on centralized online web services such as Twitter/X and

Facebook, leveraging traffic pattern analysis [12], social graph [11], and analytical learning techniques [13,14].
These approaches evolved from simple rule-based filters to sophisticated multi-dimensional systems. Our

Comput Mater Contin. 2026;86(3):10 17

crawler detection model based on supervised machine learning belongs to the category of analytical learning,
so we focus on the related work of this approach in the following text.

A variety of machine learning algorithms have been applied to crawler detection, including decision
trees, SVM, Random Forests, and deep learning architectures [13,14,41,42]. Prior studies have leveraged
features such as click sequences, page dwell time, referrer chains, and request intervals to train supervised
classifiers. Stevanovic et al. [13] applied data mining classification algorithms to static web server access logs.
Their work effectively classified user sessions as belonging to web crawlers or human visitors and identified
which of the web crawlers’ sessions exhibit malicious behavior. Wan et al. [14] proposed PathMaker to detect
and constrain persistent distributed crawlers. By adding a marker to each Uniform Resource Locator (URL),
it can trace the page that leads to the access of this URL and the user identity who accesses this URL. Ro
et al. [41] presented a method that can detect distributed crawlers by focusing on the property that web traffic
follows the power distribution. Zhao et al. [42] introduced a federated deep learning crawler detection model
that analyzed access behaviors while preserving privacy.

However, these methods are designed for centralized web services and they do not take into account
the characteristics of online decentralized web services.

5.2 Topological Information Probing in Online Decentralized Web Services
Recent studies about online decentralized web services have focused on various aspects of their

topological information [26,43–45].
Cava et al. [43] examined user roles in Mastodon, focusing on information consumption and boundary

spanning behaviors. It identifies how users interact within their instance and across others, providing a
framework to understand user behavior in a decentralized context. These insights are valuable for topological
information probing, as they help in distinguishing between legitimate user interactions and potential
crawler activities based on behavioral patterns and network boundaries. Failla et al. [44] focused on Bluesky,
a decentralized platform similar to Mastodon, it provides valuable lessons for understanding social inter-
actions and user behavior in decentralized networks. By analyzing user activity and content dissemination
patterns, the paper offers insights into how crawlers could exploit network topology and user interactions.
This work highlights the importance of understanding content propagation and user interconnection
patterns to defend against probing attempts. Zignani et al. [26] investigated how Mastodon’s decentralized
architecture impacts the formation of user neighborhoods and networks. The study found that each instance
within the Mastodon network has a unique social footprint, influencing users’ interactions both within and
across instances. This decentralized structure creates new opportunities for topological information probing,
as understanding these neighborhoods and their connectivity patterns can help attackers identify potential
targets and paths for crawling. Jeong et al. [45] presented the BlueTempNet dataset, a novel dataset capturing
the temporal dynamics of user-driven social interactions on the decentralized social media platform Bluesky.
Their findings provide a foundational understanding of the types of data that crawlers might exploit.

These studies highlight the central role of topological information in understanding the structure and
evolution of decentralized social platforms and provide a foundation for modeling and measurement in
the DOSNs.

18 Comput Mater Contin. 2026;86(3):10

6 Discussion

6.1 Applicability to Different Platforms
In this paper, we conducted a study on defending against topological information probing in DOSNs,

using Mastodon as a case study. The proposed framework is also applicable to other ActivityPub-based
platforms, including PeerTube and Pixelfed.

6.2 Practical Deployment
Our framework can be deployed per instance and runs on the instance’s own server. During the training

phase, we believe federated learning is an ideal path forward, as it aims to enable each instance in the federated
network to independently train its local model and achieve collaborative learning by aggregating the local
models of all instances. During the detection phase, it only uses data locally available to that instance, so it
does not aggregate cross-instance information and does not require centralized coordination.

6.3 Unsupervised Methods for Crawler Detection
Unsupervised anomaly detection methods, such as autoencoders and clustering-based approaches, are

especially effective in scenarios where we do not have explicit features for anomalies, and they can uncover
hidden patterns based on the structure of the data itself. Given that the crawlers in DOSNs have fixed
characteristic patterns currently, they can be identified by supervised learning methods. If crawler behavior
evolves to more sophisticated evasion techniques, unsupervised models might be more suitable for detecting
crawlers, as they can discover hidden patterns based on the data’s inherent structure and capture previously
unseen anomalies.

6.4 Alternate Strategies for Misclassified Users
During the crawler detection process, legitimate users might occasionally be misclassified as crawlers.

To minimize harm and support remediation, we suggest graceful failure and appealability such as a
CAPTCHA or a temporary rate limit. Misclassified users can appeal to the instance administrator. Given
our framework’s high classification accuracy, such cases are rare and only impose a minimal burden on
instance administrators.

7 Conclusion and Future Work
Detecting crawlers is a vital and complex task that is necessary for defending against topological

information of DOSNs. This study highlights that, in contrast to centralized OSNs, DOSNs exhibit unique
characteristics, in which legitimate users typically exhibit preferences for intra-instance or cross-instance
interaction, whereas crawlers exhibit behaviors that significantly differ from those of legitimate users.
Building on this insight, this paper introduces a supervised machine learning-based crawler detection
framework that capitalizes on these behavioral distinctions to detect crawlers, thereby mitigating topological
information probing for online decentralized web services. By incorporating features such as hop count and
cross-instance interaction ratios, the proposed framework effectively differentiates between legitimate users
and crawlers, thereby safeguarding the topological information of DOSNs. Additionally, this study finds that
reducing crawler activity levels can negatively impact the classification performance of the framework. When
crawler activity is reduced to levels resembling those of legitimate users, distinguishing between the two
becomes more challenging. However, low activity levels also limit the crawling speed, so our framework can
still mitigate unnecessary crawler traffic, thus reducing the risk of topology information probing on DOSNs.

Comput Mater Contin. 2026;86(3):10 19

While our framework with federation-aware features achieves strong performance on Mastodon, we
see several promising directions to further enhance effectiveness and generalization. For dataset, we plan to
extend the collection beyond the current two-week window to a multi-month window and multiple DOSNs
(e.g., PeerTube, Pixelfed). For features, beyond the current ones, we will develop richer features, such as the
difference between users’ activity level and their home instances’ average activity level, to further improve
crawler detection. For methods, we will explore an ensemble model that combines deep learning models
such as GNN and GBDT models to fully utilize all features and improve detection accuracy.

Acknowledgement: We thank Du Liu from the College of Computer Science and Artificial Intelligence at Fudan
University, for his assistance in proofreading this manuscript.

Funding Statement: This research was funded by the National Key R&D Program of China under Grant (No.
2022YFB3102901), National Natural Science Foundation of China (No. 62072115, No. 62102094), Shanghai Science and
Technology Innovation Action Plan Project (No. 22510713600).

Author Contributions: The authors confirm contribution to the paper as follows: Conceptualization, Yang Chen;
methodology, Yang Chen and Xinli Hao; evaluation, Xinli Hao; data analysis, Xinli Hao; writing—original draft
preparation, Xinli Hao; writing—review and editing, Yang Chen, Qingyuan Gong and Xinli Hao. All authors reviewed
the results and approved the final version of the manuscript.

Availability of Data and Materials: The data that support the findings of this study are available from the Correspond-
ing Author, upon reasonable request.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Jin L, Chen Y, Wang T, Hui P, Vasilakos AV. Understanding user behavior in online social networks: a survey. IEEE

Commun Mag. 2013;51(9):144–50. doi:10.1109/mcom.2013.6588663.
2. Leskovec J, Horvitz E. Geospatial structure of a planetary-scale social network. IEEE Trans Comput Socia Syst.

2014;1(3):156–63. doi:10.1109/tcss.2014.2377789.
3. Chen X, Lui JCS. Mining graphlet counts in online social networks. In: 2016 IEEE 16th International Conference

on Data Mining, ICDM ’16; 2016 Dec 12–15; Barcelona, Spain. p. 71–80.
4. Peel L, Delvenne JC, Lambiotte R. Multiscale mixing patterns in networks. Proc Natl Acad Sci.

2018;115(16):4057–62. doi:10.1073/pnas.1713019115.
5. Chen Y, Hu J, Xiao Y, Li X, Hui P. Understanding the user behavior of Foursquare: a data-driven study on a global

scale. IEEE Trans Comput Soc Syst. 2020;7(4):1019–32. doi:10.1109/tcss.2020.2992294.
6. Li H, Xia C, Wang T, Wen S, Chen C, Xiang Y. Capturing dynamics of information diffusion in SNS: a survey of

methodology and techniques. ACM Comput Surv. 2021;55(1):1–51. doi:10.1145/3485273.
7. Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci. 2006;103(23):8577–82.
8. Yang J, Leskovec J. Defining and evaluating network communities based on ground-truth. In: Proceedings of the

ACM SIGKDD Workshop on Mining Data Semantics, MDS ’12; 2012 Aug 12–16; Beijing, China. p. 1–8.
9. Ahajjam S, El Haddad M, Badir H. A new scalable leader-community detection approach for community detection

in social networks. Soc Netw. 2018;54:41–9. doi:10.1016/j.socnet.2017.11.004.
10. Zhang M, Zhang X, Pedrycz W, Wang S, Wu G. Learning fine-grained user preference for personalized recom-

mendation. Tsinghua Sci Technol. 2025;30(6):2544–56. doi:10.26599/tst.2024.9010216.
11. Mondal M, Viswanath B, Clement A, Druschel P, Gummadi KP, Mislove A, et al. Defending against large-scale

crawls in online social networks. In: Proceedings of the 8th International Conference on Emerging Networking
Experiments and Technologies, CoNEXT ’12; 2012 Dec 10–13; Nice, France. p. 325–36.

https://doi.org/10.1109/mcom.2013.6588663
https://doi.org/10.1109/tcss.2014.2377789
https://doi.org/10.1073/pnas.1713019115
https://doi.org/10.1109/tcss.2020.2992294
https://doi.org/10.1145/3485273
https://doi.org/10.1016/j.socnet.2017.11.004
https://doi.org/10.26599/tst.2024.9010216

20 Comput Mater Contin. 2026;86(3):10

12. Jacob G, Kirda E, Kruegel C, Vigna G. PUBCRAWL: protecting users and businesses from CRAWLers. In:
Proceedings of the 21st USENIX Conference on Security Symposium, Security ’12; 2012 Aug 8–10; Bellevue, WA,
USA.

13. Stevanovic D, An A, Vlajic N. Feature evaluation for web crawler detection with data mining techniques. Expert
Syst Appl. 2012;39(10):8707–17. doi:10.1016/j.eswa.2012.01.210.

14. Wan S, Li Y, Sun K. Protecting web contents against persistent distributed crawlers. In: 2017 IEEE International
Conference on Communications (ICC); 2017 May 21–25; Paris, France. p. 1–6.

15. Jeong U, Ng LHX, Carley KM, Liu H. Navigating decentralized online social networks: an overview of technical
and societal challenges in architectural choices. arXiv:2504.00071. 2025.

16. Balduf L, Sokoto S, Ascigil O, Tyson G, Scheuermann B, Korczyński M, et al. Looking at the blue skies of Bluesky.
In: Proceedings of the 2024 ACM on Internet Measurement Conference, IMC ’24; 2024 Nov 4–6; Madrid, Spain.
p. 76–91.

17. Raman A, Joglekar S, Cristofaro ED, Sastry N, Tyson G. Challenges in the decentralised web: the Mastodon case.
In: Proceedings of the Internet Measurement Conference, IMC ’19; 2019 Oct 21–23; Amsterdam, The Netherlands.
p. 217–29.

18. Polinski M, Jo R, McAfee K, Bustamante FE. The centralization of a decentralized video platform—a first
characterization of PeerTube. ACM SIGCOMM Comput Commun Rev. 2025;54(4):25–35. doi:10.1145/3717512.
3717516.

19. Min S, Wang S, Luo Y, Gao M, Gong Q, Xiao Y, et al. FediLive: a framework for collecting and preprocessing
snapshots of decentralized online social networks. In: Companion Proceedings of the ACM on Web Conference
2025, WWW ’25; 2025 Apr 28; Sydney, NSW, Australia. New York, NY, USA: ACM; 2025. p. 765–8.

20. Zia HB, Castro I, Tyson G. Mastodoner: a command-line tool and python library for public data collection
from Mastodon. In: Proceedings of the 33rd ACM International Conference on Information and Knowledge
Management, CIKM ’24; 2024 Oct 21–25; Boise, ID, USA. New York, NY, USA: ACM; 2024. p. 5314–7.

21. Mastodon (social network). Mastodon documentation; [cited 2025 Sep 10]. Available from: https://docs.
joinmastodon.org/.

22. Yang Z, Wilson C, Wang X, Gao T, Zhao BY, Dai Y. Uncovering social network Sybils in the wild. ACM Trans
Knowl Discov Data. 2014;8(1):1–29. doi:10.1145/2556609.

23. Mastodon (social network). Mastodon. [cited 2025 Sep 10]. Available from: https://mastodon.social/.
24. Jeong U, Sheth P, Tahir A, Alatawi F, Bernard HR, Liu H. Exploring platform migration patterns between Twitter

and Mastodon: A user behavior study. In: Proceedings of the International AAAI Conference on Web and Social
Media, ICWSM ’24. Vol. 18; 2024 Jun 3–6; Buffalo, NY, USA. p. 738–50.

25. The Social Web Working Group. ActivityPub; [cited 2025 Sep 10]. Available from: https://www.w3.org/TR/2018/
REC-activitypub-20180123/.

26. Zignani M, Gaito S, Rossi GP. Follow the “Mastodon”: structure and evolution of a decentralized online social
network. In: Proceedings of the International AAAI Conference on Web and Social Media, ICWSM ’18. Vol. 12;
2018 Jun 25–28; Palo Alto, CA, USA. p. 541–50.

27. PixelFed. PixelFed project: pixelfed (2025). [cited 2025 Sep 10]. Available from: https://pixelfed.org/.
28. Mastodon (social network). Mastodon-social networking that’s not for sale. [cited 2025 Sep 10]. Available from:

https://joinmastodon.org.
29. Catanese SA, De Meo P, Ferrara E, Fiumara G, Provetti A. Crawling Facebook for social network analysis purposes.

In: Proceedings of the International Conference on Web Intelligence, Mining and Semantics, WIMS ’11; 2011 May
25–27; Sogndal, Norway. p. 1–8.

30. Bhat SI, Arif T, Malik MB, Sheikh AA. Browser simulation-based crawler for online social network profile
extraction. Int J Web Based Commun. 2020;16(4):321–42. doi:10.1504/ijwbc.2020.111377.

31. Strufe T. Profile popularity in a business-oriented online social network. In: Proceedings of the 3rd Workshop on
Social Network Systems, SNS ’10; 2010 Apr 13; Paris, France. New York, NY, USA: ACM. p. 1–6.

32. Hosmer DW Jr, Lemeshow S, Sturdivant RX. Applied logistic regression. Hoboken, NJ, USA: John Wiley & Sons,
Inc.; 2013.

https://doi.org/10.1016/j.eswa.2012.01.210
https://doi.org/10.1145/3717512.3717516
https://doi.org/10.1145/3717512.3717516
https://docs.joinmastodon.org/
https://docs.joinmastodon.org/
https://doi.org/10.1145/2556609
https://mastodon.social/
https://www.w3.org/TR/2018/REC-activitypub-20180123/
https://www.w3.org/TR/2018/REC-activitypub-20180123/
https://pixelfed.org/
https://joinmastodon.org
https://doi.org/10.1504/ijwbc.2020.111377

Comput Mater Contin. 2026;86(3):10 21

33. Quinlan JR. C4.5: programs for machine learning. San Francisco, CA, USA: Morgan Kaufmann Publishers; 1993.
34. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–97. doi:10.1023/a:1022627411411.
35. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
36. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD ’16; 2016 Aug 13-17; San Francisco, CA,
USA. New York, NY, USA: ACM; 2016. p. 785–94.

37. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. LightGBM: a highly efficient gradient boosting decision
tree. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17; 2017
Dec 4–9; Long Beach, CA, USA. Red Hook, NY, USA: ACM; 2017. p. 3149–57.

38. Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A. CatBoost: unbiased boosting with categorical
features. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18;
2018 Dec 3–8; Montréal, QC, Canada; Red Hook, NY, USA: ACM; 2018. p. 6639–49.

39. Manning CD. Introduction to information retrieval. Rockland, MA, USA: Syngress Publishing; 2008.
40. Fawcett T. An introduction to ROC analysis. Patt Recogn Lett. 2006;27(8):861–74. doi:10.1016/j.patrec.2005.10.010.
41. Ro I, Han JS, Im EG. Detection method for distributed web-crawlers: a long-tail threshold model. Secur Commun

Netw. 2018;2018(1):9065424. doi:10.1155/2018/9065424.
42. Zhao J, Chen R, Fan P. TS-finder: privacy enhanced web crawler detection model using temporal-spatial access

behaviors. J Supercomput. 2024;80(12):17400–22. doi:10.1007/s11227-024-06133-6.
43. La Cava L, Greco S, Tagarelli A. Information consumption and boundary spanning in decentralized online social

networks: the case of Mastodon users. Online Soc Netw Media. 2022;30(7):100220. doi:10.1016/j.osnem.2022.
100220.

44. Failla A, Rossetti G. “I’m in the Bluesky Tonight”: insights from a year worth of social data. PLoS One.
2024;19(11):e0310330. doi:10.1371/journal.pone.0310330.

45. Jeong U, Jiang B, Tan Z, Bernard HR, Liu H. Descriptor: a temporal multi-network dataset of social interactions
in Bluesky social (BlueTempNet). IEEE Data Descr. 2024;1:71–9. doi:10.1109/ieeedata.2024.3474640.

https://doi.org/10.1023/a:1022627411411
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1155/2018/9065424
https://doi.org/10.1007/s11227-024-06133-6
https://doi.org/10.1016/j.osnem.2022.100220
https://doi.org/10.1016/j.osnem.2022.100220
https://doi.org/10.1371/journal.pone.0310330
https://doi.org/10.1109/ieeedata.2024.3474640

	Defending against Topological Information Probing for Online Decentralized Web Services
	1 Introduction
	2 Background and Data Analysis
	3 Crawler Detection System Design
	4 Evaluation
	5 Related Work
	6 Discussion
	7 Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

