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ABSTRACT: End-to-end Temporal Action Detection (TAD) has achieved remarkable progress in recent years, driven
by innovations in model architectures and the emergence of Video Foundation Models (VEMs). However, existing
TAD methods that perform full fine-tuning of pretrained video models often incur substantial computational costs,
which become particularly pronounced when processing long video sequences. Moreover, the need for precise temporal
boundary annotations makes data labeling extremely expensive. In low-resource settings where annotated samples
are scarce, direct fine-tuning tends to cause overfitting. To address these challenges, we introduce Dynamic Low-
Rank Adapter (DyLoRA), a lightweight fine-tuning framework tailored specifically for the TAD task. Built upon
the Low-Rank Adaptation (LoRA) architecture, DyLoRA adapts only the key layers of the pretrained model via
low-rank decomposition, reducing the number of trainable parameters to less than 5% of full fine-tuning methods.
This significantly lowers memory consumption and mitigates overfitting in low-resource settings. Notably, DyLoRA
enhances the temporal modeling capability of pretrained models by optimizing temporal dimension weights, thereby
alleviating the representation misalignment of temporal features. Experimental results demonstrate that DyLoRA-TAD
achieves impressive performance, with 73.9% mAP on THUMOS14, 39.52% on ActivityNet-1.3, and 28.2% on Charades,
substantially surpassing the best traditional feature-based methods.

KEYWORDS: Temporal action detection; end-to-end training; dynamic low-rank adapter; parameter-efficient fine-
tuning; video understanding

1 Introduction

Temporal Action Detection (TAD) [1-3] is a fundamental yet highly challenging task in the field of
video understanding [4-6]. Its core objective is to identify specific action categories and localize their start
and end times within untrimmed long videos. This task holds significant practical value in various critical
domains, such as surveillance and security [7], educational video analysis [8], healthcare monitoring, and
autonomous driving.

In recent years, TAD models have made significant progress in architectural design. However, recent
studies have highlighted two emerging trends: end-to-end training [9-11] and fine-tuning of vision founda-
tion models [12,13]. End-to-end TAD methods [9,10,14,15] jointly train video encoders and action detectors,
enabling simultaneous modeling of local spatiotemporal features and global temporal dependencies, while
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offering notable advantages over feature-based methods [16-18] by facilitating knowledge transfer from
pretrained models. Fine-tuning pretrained vision models, either fully [19,20] or partially, has shown strong
performance across various downstream vision tasks. In TAD, recent end-to-end methods incorporate such
fine-tuning to further improve performance. For example, Liu et al. [14] proposed the Temporal-Informative
Adapter (TTA), which partially fine-tunes models like VideoMAE-S [21] and achieves notable improvements
over traditional feature-based detection methods.

It is evident that integrating the strengths of end-to-end training with the fine-tuning of large vision
models can significantly enhance the generalization ability and computational efficiency of TAD models,
thereby facilitating progress toward higher accuracy and real-time performance. However, current end-to-
end approaches in TAD predominantly rely on computationally intensive full fine-tuning, which often leads
to issues such as catastrophic forgetting and overfitting during transfer learning—particularly when applied
to downstream datasets with limited annotations, a common scenario in the TAD domain.

In this work, we aim to overcome the aforementioned limitations by enhancing TAD performance
through the integration of vision foundation model fine-tuning and end-to-end training. In recent years,
vision foundation models such as ViT [22] and VideoMAE [21] have demonstrated remarkable transferability
across various video understanding tasks. This has motivated researchers to explore more efficient fine-
tuning strategies that can fully leverage the pretrained knowledge while minimizing interference with the
model’s original parameters. Low-Rank Adaptation (LoRA) [23] introduces learnable low-rank matrices
into pretrained models, allowing efficient adaptation to new tasks with minimal parameter overhead while
mitigating overfitting.

We designed the Dynamic Low-Rank Adapter (DyLoRA) and applied it to the TAD task, forming
the DyLoRA-TAD method. This approach significantly enhances the end-to-end training efficiency of TAD
models through a lightweight architecture design. As shown in Fig. 1, the proposed method (DyLoRA-TAD)
achieves remarkable results in the TAD task by cleverly combining the strengths of end-to-end training and
fine-tuning strategies.
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Figurel: Comparison of different TAD models in terms of mean Average Precision (mAP, %, y-axis) and GPU memory
usage during training (GB, x-axis). In the figure, the blue line represents the performance of a series of end-to-
end trained TAD models, the red line represents the performance of feature-based TAD models, and the green line
corresponds to the proposed DyLoRA-TAD methods
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To achieve these goals, we first constructed an end-to-end baseline based on the efficient TAD frame-
work Actionformer [18]. Experiments revealed that full fine-tuning introduces significant computational
redundancy. To address this, we propose an adaptive rank adjustment mechanism that dynamically controls
the update rank of adaptation parameters, balancing parameter size and performance. Based on this,
we designed DyLoRA, a novel adapter deployed as the only learnable module between backbone layers.
DyLoRA is optimized for TAD tasks and incorporates a temporal dimension weight optimization, effectively
mitigating the loss of temporal feature representation caused by partial fine-tuning. Validated on multiple
TAD datasets, DyLoRA-TAD achieves 73.9% mAP on THUMOSI4, demonstrating the effectiveness of
combining end-to-end training with parameter-efficient fine-tuning in TAD.

Our main contributions are summarized as follows:

1. We propose alightweight Dynamic Low-Rank Adapter. Unlike traditional low-rank adaptation methods
with static rank configuration, DyLoRA dynamically adjusts the update rank of the adaptation parame-
ters, adaptively balancing computational resource consumption and model performance. Additionally,
DyLoRA enables progressive optimization of the temporal dimension weights while freezing the
pretrained spatial feature extractor, thereby enhancing the model’s ability to model complex temporal
dependencies in long video sequences.

2. Based on DyLoRA, we design an efficient end-to-end TAD framework named DyLoRA-TAD. By fine-
tuning only a small subset of parameters in the pretrained model, the framework requires less than
5% of the parameters compared to full fine-tuning methods, yet achieves superior performance. This
parameter-efficient fine-tuning strategy not only consistently boosts performance but also highlights
the significance of vision foundation model fine-tuning in TAD. Furthermore, by adopting partial fine-
tuning under different application scenarios, it effectively mitigates the computational overhead of full
fine-tuning and the overfitting issue in low-resource settings.

3. This paper conducts in-depth research based on the DyLoRA-TAD framework, exploring the potential
value of multi-scale feature aggregation in enhancing model performance. We constructed the Temporal
DyLoRA Fuser module, which fine-tunes the weight allocation between components to achieve effective
integration of multi-source feature information. This strategy not only strengthens the expressive
capability of the original framework but also significantly improves overall performance, leading to the
evolution of a more advanced DyLoRA-TAD*.

2 Related Work
2.1 Temporal Action Detection

Existing TAD methods can be mainly divided into three categories: one-stage methods [6,16,18,24], two-
stage methods [22,25-28], and DETR-based methods [29,30]. One-stage methods refer to approaches that
directly perform action localization and classification within a multi-scale feature pyramid framework. For
example, TriDet [16] improves the pyramid structure to enhance model performance. One-stage methods
are efficient for real-time processing but may lack precise localization of action boundaries in complex
scenarios. Two-stage methods first use one stage for feature extraction and optimization, followed by a second
stage to refine these features for improved accuracy. For instance, BMN [17] jointly optimizes boundary
prediction and boundary matching processes, allowing for more precise localization of action segments and
improving detection accuracy. Two-stage methods are suitable for handling complex action patterns but
tend to have higher computational costs. DETR-based methods use the Transformer [31,32] architecture
for end-to-end action detection. For example, TadTR [29] leverages self-attention mechanisms to capture
long-range dependencies, making it particularly well-suited for multi-scale actions and complex background
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interference, demonstrating strong representational capabilities. MD-TAPN [16] introduces a truncated
attention-aware proposal network with multi-scale dilation to improve action boundary localization and
detection accuracy, especially for complex temporal patterns.

From the perspective of feature learning, TAD methods can be further divided into two categories:
feature-based methods and end-to-end training methods. Feature-based methods [9,33-35] typically sep-
arate feature extraction and action detection into two distinct stages, relying on pre-extracted features
such as RGB or optical flow. This results in a disconnection between feature representation and detection
objectives. In contrast, end-to-end methods [9,11,14,29,36] jointly optimize feature extraction and detection
tasks through deep learning models. For example, PBRNet [36] reduces redundant computation by pre-
dicting action boundaries and categories in parallel. PCL [37] proposes a prototype contrastive learning
framework for point-supervised TAD, enhancing feature representation and action localization under
weak supervision. ActionFormer [18] uses Transformers to encode global temporal context and directly
outputs action segments; TadTR [29] introduces learnable query vectors to locate actions, simplifying the
detection process. Despite the significant progress made by end-to-end methods, most still rely on full fine-
tuning paradigms, which face the challenge of high computational costs, requiring further optimization of
lightweight training strategies.

2.2 Parameter-Efficient Fine-Tuning

In recent years, Parameter-Efficient Fine-Tuning (PEFT) [38-41] has emerged as a research hotspot
in deep learning. Compared to full fine-tuning methods, PEFT introduces a small number of trainable
parameters into the pretrained model, significantly reducing computational costs and memory usage while
preserving the integrity of the pretrained knowledge. In TAD tasks, the high-dimensional spatio-temporal
features of video data often lead to a sharp increase in model parameters, making PEFT particularly
important for reducing computational resource consumption.

Existing studies have explored a variety of PEFT strategies. For example, the early Adapter Tuning [42]
inserts lightweight adaptation modules between Transformer layers to enable parameter-efficient updates.
Subsequent methods like Prompt Tuning [43] and Prefix Tuning [44] introduce learnable prompt tokens
to adapt models to specific scenarios, though their effectiveness is limited in long-sequence tasks. LoRA
perturbs pretrained weights using low-rank decomposition of weight increments, enabling zero inference
latency while preserving the original computational graph structure, offering a new perspective for joint
visual-temporal modeling.

Although PEFT significantly reduces the number of trainable parameters, tasks such as video under-
standing, which are both data-intensive and computationally demanding, still require more efficient
fine-tuning solutions. Our work builds on PEFT methods, particularly drawing inspiration from the LoRA
mechanism, to explore its potential in TAD tasks for the first time, and adopts a more efficient design
framework to enhance performance.

3 Methodology

In this section, we will progressively introduce DyLoRA-TAD. First, we will define some symbols
and explore end-to-end TAD methods to establish an end-to-end baseline model. Next, we will introduce
DyLoRA, a dynamic low-rank adapter designed specifically for efficient TAD. Finally, we propose the
Temporal DyLoRA Fuser module, aimed at enhancing DyLoRA’s ability to model temporal features across
different dimensions, resulting in the formation of DyLoRA-TAD*.
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3.1 Notations

The task definition of TAD is as follows: X € R3>*M*"*! represents an untrimmed video sequence, where
h and w denote the height and width of each frame, respectively, and t is the number of frames. The
action category set is denoted as A = {aj,a,, ---,ax}, which includes all possible action types, with N
representing the total number of action categories. The temporal action annotations are denoted as G = {g; =
(i, €5 ci)}}\fl, where each annotation g; represents an action instance, including the start time, end time,
and action category, and M is the total number of action instances. The predicted candidate proposals are
denoted as P = {p; = (;,¢;, ¢j, Gj)}szl, where each proposal p; includes the predicted start time §;, end time
&;, action category ¢, and confidence score 6;, with K representing the number of predicted action instances.
The goal of TAD is to make P as close as possible to covering G.

3.2 End-to-End Baseline Model

The proposed end-to-end TAD architecture consists of two main components: feature extraction and
action detection. To enable the model to better understand and distinguish action transitions in videos, we
adopt ActionFormer as the action detection module.

In the feature extraction stage, Snippet Representation and Frame Representation are two common
approaches for encoding raw video frames. The snippet representation method divides a video into multiple
short segments (e.g., 16 frames each), with each snippet processed by a backbone network to extract segment-
level features. In contrast, the frame representation method treats the entire video as a single snippet and feeds
it directly into the network, extracting only spatially pooled features. This approach is particularly suitable
for attention-based models, as it effectively reduces the complexity of temporal attention computation.
According to previous studies [14], frame representation not only outperforms snippet representation in
terms of performance but also consumes less memory. Therefore, we adopt frame representation to encode
videos in our experiments.

In Table 1, when extending from the smaller video backbone network VideoMAE-S [21] to a larger-
scale model, the simple end-to-end baseline we constructed experiences a significant surge in computational
resource consumption during training. More importantly, this baseline employs the full fine-tuning
approach, resulting in insufficient transfer learning capability. Furthermore, in low-resource settings, full
fine-tuning is prone to overfitting or catastrophic forgetting. If the downstream task’s dataset lacks sufficient
diversity, it can even undermine the powerful feature representations learned from the pre-trained model.

Table 1: Full fine-tuning experiments of the end-to-end baseline on the THUMOSI14 dataset. The input uses frame
representation with dimensions of 1 x 3 x 768 x 160 x 160

Setting Backbone 0.3 0.4 0.5 0.6 0.7 Avg Mem (GB)

VideoMAE-S 82.60 7748 70.46 60.17 4580 6730 3.0
Endto End VideoMAE-B 85.42 80.77 73.28 62.65 48.18 70.06 8.4
VideoMAE-L 8715 83.83 7705 6779 5152 7347 18.6

3.3 Dynamic Low-Rank Adapter

To address the issues of the end-to-end baseline, this paper adopts a parameter-efficient fine-tuning
mechanism and proposes a fine-tuning module called DyLoRA to achieve efficient transfer learning for end-
to-end TAD.

First, let’s review the structure of the LoRA, which was proposed in research [23]. For a standard pre-
trained Transformer model, its linear transformation is typically represented as:
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Y=Xx*W 1)

here, X € R**9 represents the input data (where b is the batch size and d is the feature dimension), W € R4*¢
is the original weight matrix, and Y € R**¢ is the output.

To avoid directly updating the original weight matrix W, LoRA introduces a low-rank adjustment term
in a parallel branch. This adjustment term consists of two low-rank matrices, A and B, which are used to
learn weight updates. Specifically, the adjustment term AW is formulated as:

AW =B x A (2)

here, matrix A € R¥" and matrix B € R™¢ are low-rank matrices with rank r (r << d).

Finally, the low-rank adjustment term AW is added to W, enabling fine-tuning of the original weight
matrix. The linear transformation with LoRA is updated as:

Y=X#(W+AW) =X (W+BxA) 3)

In LoRA, a scaling factor o/r is used to adjust the magnitude of the low-rank updates. Here, a is
a hyperparameter. Its main purpose is to control the impact of the newly introduced parameters during
the low-rank adaptation process, thereby preventing negative effects on the model caused by overly large
parameter updates.

While LoRA enhances efficiency by fine-tuning low-rank decomposed weights, its fixed-rank constraint
hinders the modeling of task-specific complexities, thus limiting adaptability to diverse scenarios. To
overcome this limitation, we propose the DyLoRA, as shown in Fig. 2b.
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Figure 2: Architecture of (a) LoORA Adapter and our (b) Dynamic Low-Rank Adapter (DyLoRA). We design a Rank
Estimator to enable dynamic rank adjustment

DyLoRA retains the residual design of LoRA, where the input data X € R&>M ">t j5 a four-dimensional
tensor. The specific structure is as follows: First, the input data is dimensionally reduced via a downsampling
layer, and the Gaussian Error Linear Unit (GELU) activation function is inserted. This branch captures spatial
features to provide auxiliary information for the DyLoRA layer. The formula is as follows:

Xdown = GELU(Wdown . X) (4)
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where Waown € R 1s a weight matrix,  is the reduction factor for the intermediate dimension, and > 1.

Then, the DyLoRA layer is used for model parameter updates and low-rank adaptation. In the DyLoRA
layer, we design a rank estimator. The rank estimator consists of three linear layers and ReLU activation
functions, with the final layer using the Sigmoid activation function o to ensure the output value is between
0 and 1. The rank estimator estimates a score based on the dimensionality of the input features (representing
the proportion of the maximum rank), and then converts this score into the actual rank value, ensuring that
the rank is between 1 and a preset maximum rank rp,,x = 32. The computation flow of the rank estimator is
as follows:

1 h w d
pool—h_zzxdljt) poolER Xt (5)
i=1 j=1
r= G(W3 . RCLU(WZ . RCLU(W1 . Xpool + bl) + bz) + b3) (6)
Ie = [f . rmaxJ (7)

here, X;,001 is the two-dimensional vector obtained through average pooling, Wi, W5, W3, by, b, and b; are
the weights and biases of the three linear layers, respectively. t is the probability score predicted by the rank
estimator, and r is the actual rank computed by the rank estimator.

Following this, in DyLoRA, the low-rank matrix operation continues, where the rank r. determined by
the rank estimator is used for the initialization of matrices A, and B,. Based on the two low-rank matrices
A, and B,, the pre-trained model parameters are fine-tuned, and the calculation formula is as follows:

Ar:A[:):re];Br:B[:re>:] (8)
XDyLoRA = X(Br A+ W) (9)

here, Xpy10ra represents the output of the DyLoRA layer, W is the original weight matrix, with a dimension
of d x d.

Finally, the two branches are fused to obtain X, and an upsampling layer is applied to restore the original
dimensions. The computation is as follows:

X = Xdown + XDyLoRA (10)
X' =y -X- Wy +X (1)

here, X" denotes the final output of the Dynamic Low-Rank Adapter, and y is a learnable hyperparameter
initialized to 1.

DyLoRA introduces a dynamic rank adjustment mechanism that adaptively tunes the rank of low-
rank matrices and other key hyperparameters based on the characteristics of the input data. This allows the
model to effectively address varying task demands and complexity. By leveraging the benefits of adaptive
parameter modulation, DyLoRA flexibly optimizes the model during training to fully unleash the potential
of large-scale pre-trained models, while overcoming the performance bottlenecks encountered by traditional
LoRA in handling highly complex tasks. In particular, DyLoRA mitigates performance degradation caused
by increasing rank through optimized update scaling, ensuring efficient and stable fine-tuning across diverse
application scenarios. As a result, DyLoRA is especially well-suited for applications that seek optimal
performance in resource-constrained environments, enhancing both model efficiency and expressiveness.

The overall architecture of our end-to-end training model is shown in Fig. 3. The architecture mainly
consists of four parts: First, the feature embedding layer, which converts the input video into feature vectors;
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Next, the frozen Transformer layers, which use pre-trained parameters and remain fixed during training,
aimed at leveraging their powerful feature extraction capabilities to provide stable foundational feature
representations; Then, the Dynamic Low-Rank Adapter module, which fine-tunes and adapts to different
application scenarios; Finally, the detection head, which detects and locates action instances in the video
from the refined feature representations.
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Figure 3: The overall architecture of DyLoRA-TAD for temporal action detection, including the feature embedding
layer, frozen Transformer layers, learnable DyLoRA layers, and detection head

3.4 DyLoRA-TAD*

To further investigate the impact of multi-scale temporal feature fusion [45] on the optimization of the
DyLoRA-TAD, we designed a simple yet effective module named Temporal DyLoRA Fuser. As illustrated
in Fig. 4, this module is primarily integrated between each DyLoRA layer and the detection head, serving to
enhance temporal feature representation across different scales.

o
Detector Head
4
| Temporal DyLoRA Fuser
> @D &
T ~
~
~
X,
DyLoRA, DyLoRA, ... DyLoRA;

Figure 4: The Temporal DyLoRA Fuser. This module processes multi-scale temporal features through multiple
DyLoRA layers and enhances the DyLoRA-TAD model’s capability to understand and handle complex temporal
sequences by fusing the outputs of these layers

First, we initialize a weight vector matrix W = [w;, wy, - -+, wr] based on the number of adapters T.
Then, we compute the Softmax values of the weight vector W, and expand them to match the shape of the
DyLoRA layer outputs X'. The core implementation is as follows:

W' = Softmax(W) (12)
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W' = Expand(W') (13)

Finally, a weighted summation is applied to fuse the temporal features extracted from different adapters,
resulting in the fused representation Xpyser, Which is then fed into the detection head for action category
classification. The detailed implementation is as follows:

XFuser = Z X" w” (14)

X = Detector(Xgyser ) (15)

In this process, we introduce the concept of multi-scale temporal feature fusion, which captures dynamic
changes in video sequences across different temporal scales. This approach not only enables the model to
better understand the video content but also improves the accuracy of complex action recognition. Moreover,
by applying the Softmax function to the weight vector, the relative importance of each adapter is effectively
quantified, thus guiding the subsequent feature fusion process more precisely. Ultimately, the fused features
generated through this method provide the detection head with richer and more representative information,
contributing to the overall performance improvement of the model.

4 Experiments
4.1 Datasets and Evaluation Metrics

To validate the effectiveness of our proposed method, we conduct experiments on three widely used
action detection datasets: THUMOSI4 [46], ActivityNet-1.3 [47], and Charades [48]. THUMOSI4 consists
of 20 action categories and 413 untrimmed third-person videos, and it is widely adopted in action detection
tasks. ActivityNet-1.3 covers a diverse range of daily activity categories, containing over 10,000 YouTube
videos, making it a large-scale benchmark for video understanding. Charades focuses on multi-label action
detection in everyday indoor scenarios and is particularly suitable for studying complex video understanding
and action interaction.

Based on common evaluation standards, we use mean average precision (mAP) at different Temporal
Intersection over Union (tIoU) thresholds and the average mAP as performance evaluation metrics.
Specifically, for the ActivityNet-1.3 dataset, the tloU thresholds are {0.5, 0.75, 0.95}; for the THUMOS14
dataset, the tloU thresholds are {0.3, 0.4, 0.5, 0.6, 0.7}; and for the Charades dataset, we primarily evaluate
the average mAP at different tloU thresholds.

4.2 Implementation Details

The experiments were conducted using PyTorch 2.0 [49] and the MMAction2 [50] framework, with
training performed on two NVIDIA GeForce RTX 4090 GPUs. The model’s detection head utilizes the
Actionformer architecture, and only the adapter parameters in the backbone network are trained, while the
other parameters are frozen. The hyperparameter configurations for different datasets are detailed in Table 2.
For data preprocessing, we followed previous research [14]. Considering the variation in action durations
in the ActivityNet-1.3 dataset, we resized the videos to a fixed length of 768 frames. For the THUMOS14
and Charades datasets, as the videos are generally longer, we randomly cropped fixed-length segments for
processing. To demonstrate the statistical reliability of the experimental results, we report the average and
standard deviation (mean =+ std) over three independent runs under the same settings.
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Table 2: Experimental settings on different TAD datasets

Datasets THUMOS14  ActivityNet-1.3 Charades
Preprocessing Sliding window Resize Resize
Frame number 768 192 x 4 512
Adapter learning rate 2e—4 le—4 4e—4
Frame resolution 160 x 160
Warmup epoch 5 5 5
Total epoch 65 15 14

4.3 Comparison and Analysis with State-of-the-Art Methods

Table 3 shows a performance comparison of our proposed DyLoRA-TAD with other state-of-the-
art methods on the THUMOSI4 dataset. In the preliminary experiments, we used the VideoMAE-S
version as the backbone network, which was previously applied in [14]. In contrast, our DyLoRA adapter
outperforms its design based on deep convolution TIA adapters, achieving better performance with lower
memory consumption. This comparison further highlights the advantages of LoRA fine-tuning and end-
to-end training. The experimental results show that after applying DyLoRA for low-rank adaptation, the
DyLoRA-TAD model achieves a 73.9% performance improvement on the THUMOSI14 dataset.

Table 3: Results on the THUMOSI14 and ActivityNet-1.3 datasets under different tIoU thresholds. “E2E” indicates end-
to-end training, and “Mem” refers to the memory usage (in GB) during training. The best results are highlighted in
bold, and the previous best results are underlined. To ensure a fair comparison, the baseline experiments from [14] in
this table use the same backbone network as in our experiments

Method Backbone E2E Flow Mem (GB) THUMOS14 ActivityNet-1.3
0.3 0.5 0.7 Avg. 0.5 0.75 0.95 Avg.
BMN [17] TSN X v - 56.0 388 205 38.5 50.1 34.8 8.3 33.9
TadTR [29] 13D X v - 625 492 263 46.6 491 326 8.5 32.3
ActionFormer [18] SlowFast-R50 X X - 78.7 652 39.7 62.3 54.3 370 8.1 36.0
ActionFormer [18] 13D X v - 821 710 439 66.8 53.5 36.2 8.2 35.6
ASL [51] 13D X v - 831 717 458 67.9 54.1 374 8.0 36.2
DyFaDet [52] 13D X v - 84.0 727 479 69.2 - - - -
DyFaDet [52] R(2+1)D X v - - - - - 581 39.6 8.4 38.5
TriDet [16] 13D X v - 83.6 729 474 69.3 54.7 38.0 8.4 36.8
FDDet [53] 13D X v - 835 728 482 69.4 - - - -
FDDet [53] R(2+1)D X v - - - - - 57.8 393 8.7 38.2
AFSD [33] 13D v v 12 673 555 311 52.0 524 353 6.5 34.4
E2E-TAD [35] SlowFast-R50 v X 12 69.4 56.0 349 54.2 50.5 36.0 10.3 35.1
BasicTAD [15] SlowOnly-R50 v X 12 755 635 374 59.6 512 334 7.6 331
TALLFormer [10] VideoSwin-B v X 29 76.0 632 345 59.2 541 36.2 79 35.6
Re2TAL [11] Re2VideoSwin-T v X 24 770 624 36.3 59.4 54.8 378 9.0 36.8
AdaTAD [14] SlowFast-R50 v X 4.3 8L.0 694 445 66.0 55.3 381 8.9 371
AdaTAD [14] VideoMAE-S v X 2.5 845 716 469 68.8 56.2  39.0 9.1 37.9
AdaTAD [14] VideoMAE-B v X 4.9 870 753 49.2 715 56.8 394 9.7 38.4
AdaTAD [14] VideoMAE-L v X 1 877 76.7 524 73.5 577 40.6 10.1 39.2
DyLoRA-TAD VideoMAE-S v X 2.4 84.7 725 46.7 693+03 564 388 9.3 379 £ 0.1
DyLoRA-TAD* VideoMAE-S v X 4.1 842 724 484 695+01 564 391 9.4 382+0.2
DyLoRA-TAD VideoMAE-B v X 4.7 86.1 737 50.7 71.7+0.2 570 394 9.6 38.6 £0.2
DyLoRA-TAD* VideoMAE-B v X 7.6 858 74.6 512 719+02 573 39.7 9.7 38.9+0.1
DyLoRA-TAD VideoMAE-L v X 10.9 885 773 518 73901 579 40.8 103 39.5+0.2
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In addition, we conducted exploratory experiments with the DyLoRA-TAD* variant on the THUMOS14
dataset. The results show that, whether using VideoMAE-S [21] or VideoMAE-B [21] as the backbone
network, DyLoRA-TAD* consistently outperforms the original DyLoRA-TAD model. However, when
training the DyLoRA-TAD* model with the VideoMAE-L [21] backbone in an end-to-end manner, we
encountered GPU memory overflow due to the large model size and limited GPU resources. To mitigate
memory limitations, future work could adopt gradient checkpointing, mixed-precision training, or smaller
backbone variants. Experiments with smaller VideoMAE backbones show that DyLoRA significantly reduces
memory usage and remains scalable for long videos under standard hardware. Nevertheless, based on the
completed experimental results, we can confirm that the Temporal DyLoRA Fuser module provides a clear
performance boost to the DyLoRA-TAD.

Meanwhile, Table 3 presents the mAP performance of different methods on the ActivityNet-1.3 dataset
under various tloU thresholds. The experimental results demonstrate that our proposed DyLoRA-TAD
method significantly outperforms other approaches across all evaluation metrics. As the scale of the
backbone network increases, DyLoRA-TAD shows a clear upward trend in performance. Notably, DyLoRA-
TAD excels under higher tloU thresholds, highlighting its strong capability for precise temporal localization.
Moreover, compared to state-of-the-art methods such as AdaTAD [14] and TriDet [16], DyLoRA-TAD
achieves an average mAP of 39.52% across the entire tloU range, surpassing all baselines and further
emphasizing its superior performance.

We also present the performance of DyLoRA-TAD on the Charades dataset (see Table 4). When using
VideoMAE-L [21] as the backbone network, the model achieved an average mAP of 27.8%, demonstrating its
efficient performance in action detection. Additionally, we conducted experiments with the DyLoRA-TAD*
variant on the Charades dataset. The results showed that the model achieved an average mAP of 28.4%,
further confirming that the Temporal DyLoRA Fuser effectively optimizes the DyLoRA-TAD model.

Table 4: Average mAP (%) results of DyLoRA-TAD on the Charades dataset. This table primarily discusses the average
performance of various models under different tIoU thresholds, based on findings from previous research

Method Backbone Charades (Avg.)

MLAD [3] 13D 18.4
SuperEvent [54] 13D 18.6
TGM [55] 13D 20.6
PointTAD [2] 13D 22.1
DualDETR [1] 13D 23.2
PDAN [56] 13D 23.7
CoarseFine [57] X3D 25.1
MS-Temba [4] 13D 25.3
CTRN [11] 13D 25.3
MS-TCT [6] 13D 25.4

DyLoRA-TAD VideoMAE-S 20.2+0.2
DyLoRA-TAD VideoMAE-B 23.9+0.2
DyLoRA-TAD  VideoMAE-L 278 £ 0.1
DyLoRA-TAD* VideoMAE-S 214 +£0.2
DyLoRA-TAD* VideoMAE-B 24.6 £0.3
DyLoRA-TAD* VideoMAE-L 28.4+ 0.1
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Overall, as model complexity and video processing improve, average mAP increases, highlighting
the importance of choosing suitable architectures and backbones for TAD. While DyLoRA-TAD performs
strongly, it still has limitations: on THUMOSI4, short-duration actions are hard to localize precisely; on
ActivityNet-1.3, distinguishing long, semantically similar actions is challenging, causing drops at high
tloU; and on Charades, overlapping actions and complex scenes lead to category confusion and missed
detections. Future work should enhance temporal modeling and context awareness to improve robustness
in complex scenarios.

4.4 Ablation Study

In this section, we further evaluate the proposed DyLoRA-TAD method through ablation studies
and validate the advantages of LoRA fine-tuning in improving TAD performance and reducing memory
consumption. All of our ablation experiments are conducted on the THUMOSI14 dataset.

The ablation study on adapter design (see Table 5) compares different architecture designs. The baseline
model with a frozen backbone achieved a mAP of 58.4%, while our DyLoRA-TAD method reached 69.2%,
representing a 10.8% improvement. Compared to TIA [14], DyLoRA achieves higher mAP with similar
memory consumption, highlighting its significance in TAD tasks. Additionally, RaRA [58] and the Wavelet
transform [59] achieve performance close to DyLoRA but with significantly higher memory usage. Removing
the rank estimator in DyLoRA results in a 0.3% performance drop and increased memory consumption,
indicating the critical role of the rank estimator in maintaining both performance and efficiency. Regarding
the computational overhead of dynamic rank prediction, our quantitative experiments show that the extra
cost is negligible: memory usage slightly decreases (2.8 G — 2.5 G) while mAP improves (68.9 — 69.2). This
indicates that dynamic rank prediction does not offset DyLoRA’s lightweight advantage, and its initialization
and update strategies further optimize both performance and memory efficiency.

Table 5: Ablation study showing different adapter architecture designs, with the backbone network using the
VideoMAE-S version. When the rank estimator is removed, we set the rank to 8 for the experiment

Setting Mem. mAP Gains
Frozen 20G 584
+Full Fine-Tuning 30G 673  +89
+TIA [14] 25G 686 +10.2
+RoRA [58] 29G 690 +10.6
+Wavelet transform [59] 41G 691  +10.7
+DyLoRA (w/o Rank Estimator) 28G 689  +10.5
+DyLoRA 25G  69.2 +10.8

4.5 Experiments on Parameters

Based on the ablation study of the Rank Estimator in Section 4.4, we further investigate the impact of
setting a fixed rank value on model performance. Detailed experimental data can be found in Table 6, where
the rank value is set in the range of 8 to 32 with a step size of 4. The results show that when using VideoMAE-
B as the backbone network, setting the rank to 28 yields the best model performance with an accuracy of
71.9%. When the backbone network is extended from the VideoMAE-B version to the VideoMAE-L version,
setting the rank to 20 achieves performance comparable to that of the original DyLoRA-TAD.
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Table 6: The experimental results for the static rank parameter are presented, where the DyLoRA-TAD’ model refers
to the version with the Rank Estimator removed, characterized by fixing the rank to a specific value

THUMOS14

03 04 05 06 0.7 Avg

8 848 802 728 624 489 698
12 8.0 805 731 63.0 496 70.2
16 847 801 729 622 470 694
DyLoRA-TAD' VideoMAE-B 20 8.3 813 734 635 483 704
24 847 80.2 739 630 489 701
28 85.9 829 747 64.8 510 719
32 8.5 803 735 63.6 487 701

8 870 829 76.0 662 514 727
12 86.7 831 763 66.6 522 73.0
16 864 828 758 661 513 725
DyLoRA-TAD' VideoMAE-L 20 882 845 770 66.6 515 739
24 870 829 76.0 662 514 727
28 86.7 837 767 667 52.0 732
32 870 83.0 767 665 511 728

Method Backbone Rank

Although setting a fixed rank can achieve performance close to that of dynamic rank adaptation,
we observe that this approach significantly increases memory overhead. For example, the ablation study
in Table 5 shows that using the Rank Estimator reduces GPU memory usage from 2.8 GB to 2.5 GB, sig-
nificantly alleviating the resource consumption issue. This also demonstrates from another perspective that
DyLoRA not only effectively improves model performance but also makes more efficient use of resources.

5 Conclusion

This study proposes the DyLoRA-TAD framework to address the high computational cost and small-
sample overfitting issues faced during fine-tuning large-scale pre-trained video models for TAD. We design
a dynamic low-rank adaptive adapter, DyLoRA, which introduces low-rank matrix decomposition tech-
niques to efficiently fine-tune the critical layers of pre-trained models. This approach significantly reduces
training parameters and memory consumption while effectively alleviating overfitting. Specifically, DyLoRA
enhances the model’s ability to capture temporal dependencies, addressing the inadequacies of traditional
pre-trained models in temporal feature representation. Furthermore, we explore the performance improve-
ment brought by the multi-scale temporal feature fusion module, Temporal DyLoRA Fuser. DyLoRA-TAD,
through end-to-end training and task-oriented efficient fine-tuning, enhances the model’s generalization
ability and stability, achieving breakthroughs in detection accuracy and providing a lightweight, efficient,
and practical solution for real-world applications such as video anomaly detection. We believe that DyLoRA,
as a lightweight and efficient fine-tuning solution, demonstrates significant potential in the field of temporal
action detection and offers important insights and references for the future development of TAD methods.
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