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ABSTRACT: Test case prioritization and ranking play a crucial role in software testing by improving fault detection
efficiency and ensuring software reliability. While prioritization selects the most relevant test cases for optimal coverage,
ranking further refines their execution order to detect critical faults earlier. This study investigates machine learning
techniques to enhance both prioritization and ranking, contributing to more effective and efficient testing processes.
We first employ advanced feature engineering alongside ensemble models, including Gradient Boosted, Support Vector
Machines, Random Forests, and Naive Bayes classifiers to optimize test case prioritization, achieving an accuracy score
of 0.98847 and significantly improving the Average Percentage of Fault Detection (APFD). Subsequently, we introduce
a deep Q-learning framework combined with a Genetic Algorithm (GA) to refine test case ranking within priority
levels. This approach achieves a rank accuracy of 0.9172, demonstrating robust performance despite the increasing
computational demands of specialized variation operators. Our findings highlight the effectiveness of stacked ensemble
learning and reinforcement learning in optimizing test case prioritization and ranking. This integrated approach
improves testing efficiency, reduces late-stage defects, and improves overall software stability. The study provides
valuable information for AI-driven testing frameworks, paving the way for more intelligent and adaptive software
quality assurance methodologies.

KEYWORDS: Software testing; test case prioritization; test case ranking; machine learning; reinforcement learning;
deep Q-learning

1 Introduction
In today’s digital age, software covers almost every aspect of daily life, having a significant impact

on industries such as communication, entertainment, healthcare, and finance. As software is increasingly
integrated into these key domains, the importance of ensuring its quality and stability grows [1]. To maintain
a competitive edge in the dynamic and frequently changing market landscape, software companies ranging
from small-scale application developers to large-scale industrial software manufacturers must constantly
innovate. This innovation aims to improve the quality and stability of their software products, which are
increasingly becoming the foundation of their value proposition. This paper delves into the exploration of
strategies and methodologies specifically designed to augment the ranking and prioritization of test cases.
Test case ranking refers to assigning scores or relative importance values to test cases based on criteria such
as risk, fault proneness, or criticality. By contrast, test case prioritization uses this information to determine
the execution order of test cases, aiming to maximize early fault detection or optimize limited testing

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.072768
https://www.techscience.com/doi/10.32604/cmc.2025.072768
mailto:jjemai@hct.ac.ae


2 Comput Mater Contin. 2026;86(3):74

resources. In short, ranking is about evaluation, while prioritization is about action. In the context of this
study, we develop and implement a hybrid approach to software testing using stacked ensemble learners and
deep Q-learning models for test case prioritization and ranking. The overarching objective is to streamline
testing processes, thereby catalyzing the delivery of superior-quality software solutions to end-users. This
focus underscores the commitment to continuous improvement and the pursuit of excellence in software
development, reflecting the industry’s response to the escalating demands of the digital age.

Software development teams frequently face time and financial restrictions [2,3]. To ensure that software
systems continue to function after each modification, a complete set of tests is required. However, not
all tests are equally successful at detecting errors early in the process [4]. As a result, it is critical to
develop and run tests that have the best chance of detecting errors early on. Effective test case selection can
considerably improve testing process efficiency and efficacy by prioritising key tests from the start. Research
in software testing has explored various aspects of test case prioritization and defect detection. Studies have
investigated techniques such as regression testing minimization, selection, and prioritization [5], defect
prioritization [6], and the impact of test ownership and team structure on test reliability and effectiveness [7].
Furthermore, recent studies have addressed various aspects of test case prioritization in software engineering.
These include prioritization methodologies tailored for object-oriented software systems [8], strategies for
continuous regression testing [9], and prioritization frameworks that incorporate requirements and risk
analysis. Moreover, there has been notable investigation into the application of machine learning techniques
to enhance test case prioritization strategies [10].

Effective test case prioritization provides tremendous benefits. Prioritizing and performing essential
tests early can enhance fault detection, decrease the likelihood of major issues later in the development cycle,
and expedite issue resolution [11]. This approach optimizes resource allocation, provides early feedback on
potential problems, and improves overall test coverage. Kajo Meçe et al. [10] explore the use of machine
learning (ML) approaches for test case prioritization (TCP) in software testing. The review provides a
comprehensive survey, highlighting the various ML techniques that have been employed to enhance TCP’s
efficiency and effectiveness. Clearly, the effectiveness of machine learning based TCP heavily depends on the
quality and relevance of the data used to train the models. Inaccurate or biased data can negatively impact
the prioritization process, potentially causing essential test cases to be overlooked [12]. To address these
limitations, we incorporate a smart feature engineering approach that significantly enhances the robustness
and accuracy of ML-based TCP. Additionally, we employ ensemble learning methods, including voting,
to refine the models, making them more resilient to data quality issues and better at identifying high-risk
areas. This proposed approach increases the models’ predictive performance as well as their capacity to
generalise across different and complicated testing contexts, resulting in more reliable and efficient software
testing processes.

Reinforcement Learning (RL) has recently emerged as a powerful technique in the context of ranking
items. Studies such as [13] have demonstrated the feasibility of deep reinforcement learning in solving
combinatorial optimization problems, showcasing the algorithm’s potential in addressing complex ranking
tasks. Additionally, research by [14] has highlighted the application of RL in interactive recommender
systems, emphasizing its ability to learn from dynamic interactions and plan for long-term performance.
These studies collectively underscore the growing significance of RL in enhancing item ranking processes,
particularly in dynamic and interactive settings. Inspired by initial efforts to apply reinforcement learning
(RL) to various ranking scenarios, we conducted a comprehensive investigation into RL-based test case
ranking. We approached test case prioritization as a ranking problem, modeling the sequential interactions
between cycles and a test case prioritization agent as an RL problem. Our investigation was guided by
three ranking models from information retrieval: listwise, pairwise, and pairwise verdict. To enhance the
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ranking accuracy, we also deployed a genetic algorithm, which optimizes the parameters and selection
process through evolutionary techniques. The state represents the test case chosen by the RL model to have
the highest priority. A reward is given if the selected test case has a verdict of 1 or if the selected test case
has a shorter duration in cases where both tests have the same verdict. We combine our proposed RL model
with genetic algorithms to continually adapt and enhance the ranking strategy, ensuring that critical test
cases are identified and executed efficiently. This hybrid approach leverages the strengths of both techniques
to optimize test case ranking and improve overall testing effectiveness. The key contributions of this work
include:

• Hybrid methodology: Introduces a novel integration of stacked-ensemble learning for test case rank-
ing with Deep Q-Learning for dynamic prioritization, combining predictive accuracy with adaptive
decision-making.

• Comprehensive evaluation: Demonstrates the effectiveness of the approach on a benchmark dataset
through comparative experiments, showing improvements in early fault detection and cost-aware
efficiency metrics.

• Actionable framework: Provides a scalable and practical testing framework that can be adapted
to continuous integration environments, bridging the gap between research prototypes and indus-
trial applications.

2 Literature Review
Prioritizing and ranking test cases is vital in software testing since these actions are essential for ensuring

software system quality and dependability. Developers can significantly enhance testing productivity by
carefully prioritizing and sequencing test cases based on certain factors, resulting in the early detection and
rectification of faults. The works discussed in this section are classified into two main streams: test case
prioritization and test case ranking.

2.1 Test Case Prioritization
The pioneering work in software testing [15] suggests that testing code before deployment via test

selection, test case minimization, and test case prioritization is advantageous for the quality of the tested
software. However, these techniques are largely similar, and there is a trend towards the use of test
case prioritization over other techniques. Numerous works have detailed various test case prioritization
techniques, such risk-based prioritization and code coverage-based prioritization [16] and average faults per
minute [9]. They conclude that test case prioritization significantly enhances fault detection compared to
a retest-all approach and improves fault detection rate, budget adherence, and time effectiveness. This is
further validated by the findings of [10], and [11]. Further dimensions in test case prioritization have been
highlighted, such as time budgets [17] and the size of the test suite [18].

Adaptive prioritization involves dynamic methods, requiring significant computational resources and
time. In [19], the authors proposed an approach focusing on prioritizing test cases based on requirements
and risk factors, showcasing the relevance of context-specific prioritization methodologies. To overcome
this computation time limitation, the authors in [20] presented a cost-cognizant combinatorial test case
prioritization technique, contributing to the Pure Prioritization Strategy in software testing. Similarly,
reference [21] presented ensemble methodologies for prioritizing test cases in UI testing. As stated in [22],
the use of value-based test case prioritization techniques has been shown to outperform other regression test
optimization methods. Additionally, dynamic environments like continuous integration require adaptive test
case prioritization approaches that can adjust to changing test budgets and frequent additions or removals
of test cases [23].
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In later work, the use of machine learning models increased the efficiency and enabled the automation
of test case prioritization systems [10,24,25]. Several ML models have been implemented, including genetic
algorithms, support vector machines, Bayesian networks, and decision trees. Despite this, these methods
require a large dataset to train effectively and achieve the desired accurate results. ML techniques with
gradient boosted methods showed superior results compared to non-ML approaches and untreated data.
Reinforcement Learning (RL) algorithms have been also developed for test case prioritization [26,27]. They
exhibit a Time to First Prioritization (TTFP) of 0, as they can immediately begin predicting, unlike non-RL
methods, which require training to be completed. They are also proposed to be more adaptive to change than
other non-RL techniques.

On the other hand, genetic algorithms have demonstrated significant improvements in test case pri-
oritization performance, although they typically incur higher computational costs due to the incorporation
of specialized variation operators [28,29]. This highlights the importance of exploring hybrid approaches
that combine multiple machine learning algorithms to enhance both the speed and effectiveness of test case
prioritization. These techniques aim to accelerate software testing processes and improve defect detection
rates. Elbaum et al. [11] conducted seminal empirical research on test case prioritization, demonstrating the
effectiveness of a greedy algorithm to optimize test case ordering, thereby maximizing early fault detection
and enhancing overall software quality.

2.2 Test Case Ranking
Test case ranking is essential in software testing as it allows for the optimization of the test case

sequence, thereby increasing fault detection rates and improving product quality. Test case ranking ensures
that critical tests are executed early in the testing process, leading to the early detection of issues and prompt
resolution. In this section, we review the recent advancements in the field, focusing on various methodologies
and their impact on test case ranking. This success extends to software engineering, where reference [30]
introduced the application of Markov Chain Monte Carlo Random Testing (MCMCRT) for test case ranking
in regression testing. The effectiveness of MCMCRT is examined against ordinary random testing and
adaptive random testing and shows a competitive advantage. In [31], the authors proposed a learn-to-rank
technique to prioritize test cases. This technique uses the multidimensional features of an Extended Finite
State Machine (EFSM) to improve the fault detection rate. The performance evaluation of the proposed
method in terms of the APFD reached 0.884 for five subject EFSMs.

The authors in [32] developed a technique named DeepOrder to rank test cases based on historical test
execution records. This method leverages past data to make informed decisions on the order of test cases.
Similarly, reference [21] focused on ranking test cases as a critical practice in software engineering using some
existing techniques that are time and resource-intensive, making them unsuitable for use within CI cycles.
Reference [33] proposed RL for the online learn-to-rank model for test case ranking. This approach aims to
minimize testing overhead and continuously adapt to the changing environment as new code and new test
cases are added in each CI cycle. Similarly, in [23], the authors evaluated two learning-based approaches:
RETECS (based on Reinforcement Learning) and COLEMAN (based on Multi-Armed Bandit). The study
found that these approaches are applicable in real scenarios and produce near-optimal solutions. However,
they have some limitations to generalize on large test case set when learning from small sets.

These studies collectively underscore the critical role of test case ranking in software testing. They
demonstrate the application of diverse machine learning algorithms and genetic algorithms to optimize
test case ranking, ensuring that the most crucial tests are executed early, leading to quicker detection and
resolution of issues. Several related works fail to address the scalability of ranking-to-learn approaches for
large-scale software systems. Many approaches depend on the comprehensiveness and representativeness



Comput Mater Contin. 2026;86(3):74 5

of historical data. If the historical data does not accurately reflect future test cases, the performance and
effectiveness of these approaches may be compromised. Additionally, these methods may require significant
computational resources and time. This oversight could significantly impact the effectiveness of these
methods in prioritizing test cases within complex and extensive software applications.

The integration of diverse methodologies, such as ensemble approaches, learn-to-rank methods, and
time-aware prioritization techniques, showcases the evolution of test case prioritization and ranking towards
more efficient and effective software testing processes.

3 Proposed Approach for Test Case Prioritization
Our proposed approach utilizes advanced machine learning techniques and sophisticated feature

engineering methods to streamline and enhance the testing process. By integrating these diverse method-
ologies, we aim to add additional significance to our dataset and record the dynamic behavior of test cases,
significantly improving software quality and reducing the risk of critical issues emerging in the later stages
of development.

3.1 Dataset and Feature Engineering
The initial data used for this paper includes results from a year-long testing process, during which

89 individual test cases were utilized, resulting in a total of 25,594 tests being conducted. The dataset [26]
contains the execution logs of 352 CI cycles, each comprising at least six test cases. The features of each test
set are ID, Name, Duration, CalcPrio, Last Run, Last Results, Verdict, Cycle, Quarter, and Month.

We employed advanced feature engineering techniques to significantly enrich our dataset. This included
the incorporation of methods such as temporal aggregation and interaction terms, which are designed to
capture non-linear relationships. Specifically, we introduced the following features as defined in [10]:

• Gap in Run Time: This feature calculates the time difference between the last two runs of each test case,
using the ‘last run’ feature.

• Gap Cats: This feature calculates the difference in days, capped at a maximum value of 3, between the
most recent and the second-most recent executions of a test case.

• Same Cycle Run: This feature assigns a value of 1 if the previous execution of a test case occurred within
the same cycle as the current test case record. If the previous execution took place in a different cycle, it
assigns a value of 0.

• cycle_Run: This feature tracks the cumulative count of a test case’s executions within the same cycle.
• Last Run This feature captures the results of the most recent execution of the previous test case in

the dataset.
• Failure Percentage FP: The array of last results cannot be directly utilized by the algorithm, as it only

accepts numeric inputs. When determining whether a test case will fail or not, the historical failure rate
becomes an invaluable indicator.

• Test Case Maturity: Test case maturity refers to the degree of evolution and refinement a test case has
undergone through successive testing cycles. After conducting over 50 trials of test maturity feature
combinations and measuring their mutual information, the contributing features to test case maturity
were identified.

3.2 Test Case Prioritization
This section delves into the test case prioritization process employed in this study, with a particular

emphasis on the training of the ensemble and the voting approach.
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3.2.1 Ensemble Models Training
We employed a variety of supervised learning techniques to classify test cases into three distinct

categories. After engineering the features as discussed in the previous section, we identified the top six
features to be used in the classification algorithm. These features were selected based on their relevance
and impact on the classification outcome. The selected features are as follows: my_maturity, last_run,
Cycle, failure_percentage, Month, times_ran. Fig. 1 presents the mutual information after the application
of advanced feature engineering techniques to enhance the dataset. Features in Fig. 1 exhibit significantly
higher mutual information values, signifying a more robust and informative correlation between the features
and the target variable.

Figure 1: Final feature selection with labeled mutual
information

Figure 2: Classification using feature engineering

The models chosen for test case prioritization were selected based on their unique strengths and
suitability for the task. Our selection includes Random Forest classifier (RF), Bayesian Networks (BN),
Support Vector Machines (SVM), and Gradient Boosted regression model (GB). Lastly, the Voting Classifier
was chosen based on the conclusion from ensemble methods in TCP, which states that ensemble-based
methods can outperform their base algorithms in test case prioritization [21].

The evaluation of these models is based on two performance metrics: running time and prediction
accuracy. Fig. 2 displays the accuracy scores and running times, measured in seconds. The GB regression
model and the RF classifier have exhibited notable improvement in performance. In contrast, the SVM and
NB classifiers have consistently demonstrated stable performance levels.

3.2.2 Voting Mechanism
It’s crucial to note that our framework employs two voting classifiers. During the evaluation phase, we

observed that the ensemble classifier, which combines all models, performed less effectively than some of the
individual “child” classifiers. Therefore, we conducted a comparison of two ensembles within our proposed
voting approach. Ensemble 1 combines Gradient Boosted, SVM, Random Forest, and Naive Bayes classifiers.
Ensemble 2 comprises gradient boosted, random forest, and naive bayes classifiers

As shown in Fig. 2, the voting approach with three models outperforms the voting approach that
includes all models. This improvement is likely due to the inclusion of models that are more complementary
and less correlated in Ensemble 2, which enhances the overall decision-making process.
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3.2.3 Performance Evaluation of Ensemble Models
Among the individual classifiers, the GB and RF classifiers demonstrate high accuracy with scores

of 0.9716 and 0.9664, respectively, though they differ significantly in computation time, with the GB
taking 844.1722 s and the RF taking 385.2831 s. The SVM Classifier, despite its long computation time of
1478.1122 s, has the lowest score of 0.5691, indicating poor performance. In contrast, the NB classifier, while
having a moderate score of 0.6146, excels in computational efficiency with a time of just 0.1289 s. The
ensemble methods, which utilize the voting technique to combine the strengths of individual classifiers,
show notable improvements. Ensemble 1 achieves a balanced score of 0.8265 with a significantly reduced
computation time of 26.3217 s. Ensemble 2 outperforms all others with the highest score of 0.9836 and
an impressively low computation time of 8.9017 s. This highlights the importance of the voting technique
in ensemble methods, as it effectively leverages the diverse strengths of individual classifiers to enhance
overall performance while maintaining computational efficiency. By excluding the underperforming SVM
classifier, Ensemble 2 demonstrates that careful selection of classifiers within an ensemble can lead to
superior accuracy and efficiency, making it highly suitable for real-time applications where both accuracy
and speed are critical. Using fewer but more reliable classifiers, Ensemble 2 likely reduces noise and bias
in the predictions. The inclusion of only high-performing models ensures that the ensemble’s decisions are
based on consistently strong.

The outcomes yielded by this approach were notably promising. The accuracy of our test case prioriti-
zation exhibited a significant improvement, averaging around 98%. This marks a considerable enhancement
over our initial baseline accuracy without feature engineering, which was approximately 80%. The substantial
improvement in accuracy underscores the effectiveness of combining strong machine learning approaches
with feature engineering. By employing a voting mechanism among multiple ML models, we capitalized on
the strengths of each algorithm to achieve enhanced predictive performance.

Importantly, there is no evidence of overfitting in our results. This conclusion is supported by consistent
performance across both training and validation datasets, indicating that the model generalizes well to
unseen data. The use of robust cross-validation techniques and regularization methods helped ensure that
the model did not simply memorize the training data, but rather learned to identify and prioritize test cases
effectively. This balanced approach allowed us to harness the power of feature engineering and ensemble
learning without compromising the model’s ability to perform reliably on new data.

Furthermore, the proposed model was evaluated against the APFD metric defined below, a standard for
measuring the effectiveness of test case prioritization. APFD is calculated by taking the weighted average of
the number of faults detected during the run of the test suite. This comprehensive evaluation allowed us to
assess the practical impact of our approach on real-world software testing scenarios.

APFD = 1 − TF1 + TF2 + ... + TFm

nm
−

1
2n

(1)

where T is the test suite in evaluation, m is the number of faults in the subset of the test case being tested, n
is the total number of test cases and TFi is the first position in T which exposes fault i.

The average APFD across all priority levels was 91%, compared to 89% as reported in previous
studies [34]. An important observation to mention is that our model, particularly for high-priority test cases
(level 3), we achieved an optimal value of APFD equal to 83%, which is significantly higher than the 74%
reported in the same studies [34] using the same Paint-Control dataset. This advancement not only elevates
the overall quality of the software but also streamlines resource allocation during the testing phase, thereby
reducing the time and costs associated with defect identification and resolution.
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4 Test Case Ranking Approach
In this section, we introduce our methodology for ranking test cases to optimize the efficiency and

effectiveness of software testing. Our approach leverages a combination of reinforcement learning with
genetic algorithms to rank test cases based on their predicted likelihood of uncovering defects.

4.1 Deep Q-Network
In this work, we used the Deep Q-Network (DQN) as the RL algorithm. As the dimensionality of the

problem increases, storing the Q values of all possible states and actions will quickly become infeasible.
However, as a neural network is a universal function approximator, here we use a neural network to predict
the Q function. A Q value is defined as the Q value of the next state plus the reward achieved in the current
state. The components of the DQN are defined below:

• Temporal difference learning
We can specify the error used in the loss function for gradient descent in the neural network as follows:

δ = Rt+1 + γmax
a

Q(St+1 , a)
tar ge t

− Q(st , at)
pred ic t ion

(2)

This is referred to as the Temporal Difference (TD) error, as cited in [21]. The TD error is a crucial concept
in Reinforcement Learning (RL), particularly in Q-Learning, where it serves as the driving force behind
the learning process. The TD error represents the difference between the estimated value of a state-action
pair (Q value) and the updated estimate obtained after observing a new reward and the next state.

• Loss function
The Huber loss function [23] exhibits high robustness to noise. It combines favorable characteristics of
L1 and L2 loss functions by being less sensitive to outliers in data than Mean Squared Error loss. To the
Huber loss function, we add a protective layer to our network against the adverse effects of noisy data.
This choice ensures that the network learns efficiently and effectively even in the presence of noise.

• Algorithm
The Deep Q-Learning technique used in this paper is described, with an overview shown in Fig. 3. In
our technique, we strengthen the stability of the training process by deploying two neural networks.
Every C iterations (a hyperparameter), the parameters of the Prediction Network are copied to the Target
Network. This method ensures steadier training, as the target function remains fixed for a certain period.

We used reinforcement learning to dynamically adjust the ranking strategy based on continuous
feedback from the testing process. This adaptive approach allows the model to learn from new data and
improve its ranking criteria over time.

4.2 Learning Environments
An RL environment E dictates how an agent learns as it contains these three concepts: action space

A, reward space R and state space S. Three learning environments applied in this paper utilise the below
methods as in [34].
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Figure 3: Deep Q learning networks flow

4.2.1 Listwise Environment
The listwise environment can see the entire test case execution history at once. The algorithm will predict

the highest rank element from that list and place it in a final ranked array Lout .

• State Space. As the listwise ranking predicts rank, the input features will be the features engineered.
Let Fd = Dummy feature of record F

Fd

⎧⎪⎪
⎨
⎪⎪⎩

Fd = 1 if the record has been previously selected and placed into the final list
Fd = 0 otherwise

Fd is an essential part of the design, such that the agent will learn to not pick the test case more than
once. With a sequence L of test case execution records, of length n -
L = [F1 , F2, ..., Fn] where F = one test execution record. The feature names are thus as follows:
∀ f ∈ F , f ∈ R, fname = [Cycl e , time , l ast_run, times_ran, Failure_Pctg , maturity, Month,
Dummy].

• Action Space. The agent selects one record F from L each step to place in the output list: Lout . Therefore
the action is the index of the selected record F from L-a ∈ [0, n − 1].

• Reward Space. The optimal ranking of L is known: Lo pt . The agent will be rewarded the closer the Lout
is to Lo pt . For this metric, and following [34], the agent is rewarded based on the mean squared error
of the predicted rank, to the optimal rank. Furthermore, in order to be able to compare with differing
datasets with differing sized lists, like ones used by [34], the ranks must first be normalised.

rt = 1 − (at − Lo pt[Sel ected Feature]rank)
2 (3)
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4.2.2 Pairwise Verdict Environment
The pairwise environment’s aim is to directly compare two test case execution records and perform a

sorting procedure on which test case is more likely to fail, with the verdict estimated by the deep Q network
utilising the input features discussed below. The components of this environment are defined below:

• State Space. An overview of the state space is as follows: Features of record1, Features of record2. Let
F = [ f0, f1 , ..., f8] where F is the set of features for one record.
Let Fname = {Cycl e , maturity, Month, Failure_Pctg , GapInRun, l ast_run, l ast_res, times_ran,
Duration} ∀ f ∈ F , f ∈ R.
The state space is then S ∈ {record1 ∈ F , record2 ∈ F}.

• Action Space. Action a is defined like so:

a
⎧⎪⎪
⎨
⎪⎪⎩

a = 1 if the two test execution records should be swapped when sorting
a = 0 otherwise

• Reward Space. The reward space is designed with the intention to reward the agent if the decision is to
swap the test case with the predicted failing verdict; or if the verdicts are the same, then predict the test
case with the shortest duration. Hence:
let f0 = the record placed higher after the agent completes one step of the sort
let f1 = the lower ranked record
let gv = predicted verdict of g where g ∈ { f0, f1}

r

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

r = 1 if f0v > f1v and f0v ≠ f1v

r = 1 if f0v = f1v and f0Duration < f1Duration

r = 0 otherwise

4.2.3 Pairwise Environment
Very similar to the pairwise verdict approach as mentioned above, but this environment predicts and

directly compares the ranks of two test case execution records. The records are sorted in order of lowest rank.
This Environment was included as a potential supplement to the listwise ranking approach, due to results
discussed below.
State Space

As the Pairwise Ranking approach is also predicting the rank of test case execution record, the state
space is the very similar to listwise. The feature names are thus as follows
∀ f ∈ F , f ∈ R, fname = [Cycl e , Duration, l ast_run, times_ran, Failure_Percentage , my_maturity,
Month]
Action Space

Action a is defined like so:

a
⎧⎪⎪
⎨
⎪⎪⎩

a = 1 if the two test execution records should be swapped when sorting
a = 0 otherwise
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Reward Space
In the pairwise environment, the reward space is designed to reward the agent agent if, after the

swapping has taken place, the test case execution records are ordered correctly in ascending order of
ranks Hence:

let f0 = the record placed higher after the agent completes one step of the sort
let f1 = the lower ranked record
let gr = predicted rank of g where g ∈ { f0, f1}

r

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

r = 1 if f0v > f1v and f0v ≠ f1v

r = 1 if f0v = f1v and f0Duration < f1Duration

r = 0 otherwise

To ensure that the models received enough training time, each appearance of a training instance must
have at least 50 training episodes for pairwise, corresponding to 50nlog2n training steps for pairwise.
Listwise was decided to have at least 1000n steps. The training stops once the model has not improved
for 10 testing procedures. For pairwise and listwise testing, the procedure occurred every 1000 and 2000
steps, respectively.

5 Genetic Improvement
To enhance test case ranking, a genetic algorithm is used in conjunction with reinforcement learning.

The proposed solution uses a genetic algorithm to evolve a population of policy networks utilized in the RL
algorithm. The networks are evaluated based on their average reward return on a shared input. Depending
on their return, they will be selected by the genetic algorithm to produce offspring and be included in the
next generation of solutions.

The genetic algorithm (Algorithm 1) implemented in this paper uses an elitist strategy to preserve
the best individuals from each generation. The reproduction function is modified to include the elites in
the next generation, and a new elitism function is added to select the elites from the current population. The
components of the GA are detailed below:

• Initial Population
First the population of RL agents is initialised which consists of randomly initialising the networks
weights and biases. Next the population is to be sorted in terms of how “good” each solution agent is.

• Fitness Function
In this paper we use the average test reward after a set input of shared training states in order to gauge
the fitness. The proposed fitness calculation is a costly one O(nlogn) for pairwise and O(n) for listwise.

• Selection
The tournament selection scheme, with a configurable tournament size, is chosen for selecting models
for genetic variation. In the literature, strategies such as Fitness Proportion Selection, Linear Ranking,
Truncation Selection, μ + λ selection, genitor selection, and tournament selection are introduced.

• Mutation
In our investigation, we use the simple random mutation and the availability mutation, a straightforward
yet effective methods for introducing random changes to the weights and biases in the RL agent’s
policy network.
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• Crossover
Crossover is fundamental to the evolution of the population in genetic algorithms, as it allows for the
exploration of new points in the solution space. In the algorithm proposed in this work, an individual
in the population is represented as a Reinforcement Learning (RL) agent. Each RL agent comprises two
neural networks, which encapsulate the agent’s policy and value functions. These networks are the “traits”
that are subject to crossover. We employed three different types of crossover methods in our work:
1. Naive Cut Crossover: This is a simple form of crossover where one point on the parent chromo-

somes is selected. All data beyond that point in the two parental chromosomes is swapped between
the two parents. The resulting chromosomes are the offspring.

2. Arithmetic Crossover: This method generates offspring by taking a weighted average of the
parent chromosomes. It allows for a smoother transition between generations and can help in
fine-tuning solutions.

Each of these crossover methods brings a unique approach to the generation of new offspring and con-
tributes to the diversity and evolution of the population. By using these methods, we aim to enhance the
performance of the RL agents and achieve more effective solutions in our genetic algorithm framework.

Algorithm 1: Improved genetic algorithm
1: procedure RUN
2: initialise population of RL as Population
3: initialise Elite as empty list
4: for i ← 1 to max_generations do
5: run each RL agent for s training steps
6: parents ← SELECTION ⊳ select the best q parents to be used for selection
7: children ← VARIATION(parents) ⊳ perform mutation and crossover operations to

produce offspring
8: popul ation ← REPRODUCTION(children, El ite) ⊳ Select best offspring and

elites to be included in next generation
9: El ite ← ELITISM(popul ation) ⊳ preserve the best individuals for the next generation
10: end for
11: Return best RL agent in population
12: end procedure

The computational complexity of the improved genetic algorithm (Algorithm 1) is determined by the
population size n, the number of generations G, and the cost of evaluating the fitness function, which is
O(nlogn). As we set the number of generations in our experiments at G = 100, the complexity of GA
is then O(100n2 logn). In standard big-O notation, which ignores constant factors, this simplifies to a
super-quadratic complexity O(n2 logn), indicating that the dominant computational cost arises from fitness
evaluations across the population over all generations.

6 Results, Evaluation, and Insights
In this section, we will answer the main research question: Can a hybrid approach that combines

stacked-ensemble supervised learning for test-case ranking with a Deep Q-Learning agent for run-time
prioritization produce statistically and practically significant improvements in testing efficiency? To do so,
we implemented first a feature selection process on the dataset as detailed in Section 3.1 to choose the
main training attributes of the test cases. Then, we fitted ensemble models (see Section 3.2.1) with a voting
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mechanism for test case prioritization. Test cases ranking is next completed using deep Q-Learning system
optimized with a genetic algorithm, as reported respectively in Sections 4.1 and 5.

Firstly, we analyze the results of our proposed reinforcement learning approach designed for ranking
test cases. Subsequently, we examine the results of integrating genetic algorithms as an enhancement strategy
on top of reinforcement learning. This analysis aims to assess the combined effectiveness of these approaches
in optimizing test case ranking.

6.1 Reinforcement Learning Performance
NRPA score is used to predict how closely the predicted rank of Lout matches Lo pt . It serves to compare

features that predict rank but is not applicable to pairwise verdict comparisons. However, an adapted NRPA
can be utilized to compare correctness verdicts and rank-based methods. For pairwise verdicts, Lo pt is
defined as a sorted input list based on the first verdict and then by duration. When calculating NRPA using
this definition, it allows direct comparison of predictive accuracy in desired order, whether predicting rank
or verdict. The metric is defined as follows:

NRPA = RPA(E)
RPA(Eo)

where Eo is the optimal order of a sequence E (4)

RPA(E) =
∑e∈E ∑

k
i=id(E ,e) ∣E∣ − id(Eo , e) + 1

j ∗ ∗2( j + 1)/2
where id(E , e) returns the position of e in E (5)

The APFD metric measures the area under the curve of a plot of the percentage of total faults detected
vs. the percentage of total test cases executed. A higher APFD value indicates a more effective test case
prioritization, as it means that a larger percentage of faults are detected early in the testing process. On the
other hand, NRPA is a measure of how well a prioritization algorithm ranks test cases compared to an ideal
ranking. While NRPA is certainly useful, it does not directly measure the effectiveness of the prioritization
in terms of fault detection, which is the primary goal of test case prioritization.

When running the listwise environment with a large number of input features, the model’s performance
deteriorates. Training time, improvement in NRPA, APFD, and average reward return are notably poorer
compared to other models and benchmarks.

From Fig. 4, it is evident that the listwise approach performs well with an input size of 10, achieving
a high average episode reward of 0.95 after only 500 steps or 40 s. The model’s performance is comparable
to NRPA and APFD; however, with such a small input size, this high performance is not particularly
advantageous. Fig. 5 illustrates the average performance of the listwise environment with an input size of 100.
Here, the environment performs poorly across all metrics. As the model is applied to larger learning spaces,
such as with an increased number of inputs, the problem becomes more pronounced, resulting in an average
reward of only 0.091 after 83,600 steps.

Table 1 directly compares all environments with an input size of 100, with performance visualized in the
graphs above.

The difference between the models is a stark one. Firstly there is a gulf in performance accuracy between
listwise and pairwise for the use case of 100 inputs as shown in Figs. 6–8. Taking the average episode
reward each test as a metric for the speed of learning of the model, the listwise agent begins with a random
initialisation, and a correctness of 0.12, and progresses only by 0.08 points. The listwise agent has the worst
metric scores in all categories. As of the original RL algorithm, a listwise approach is not recommended;
however, the genetic improvement may boost the performance and will be analyzed in the next section.

Below is the performance of both pairwise approaches for an input dataset of 1000.
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Figure 4: Listwise steps for 10 inputs Figure 5: Listwise steps for 100 inputs

Table 1: Models selected for test case prioritisation

Environment Average episiode
reward NRPA APFD

Total
environment

steps
Listwise 0.18802480000000002 0.09834726201722319 0.0.17622597810133955 35,310.0

Pairwise rank 0.781756976744186 0.98006714494251 0.6027431144797216 210,000
Pairwise verdict 0.7732197499999999 0.982015516031241 0.7986743296107621 210,000

Figure 6: Reward comparison Figure 7: APFD comparison Figure 8: NRPA comparison

Over 125,000 environment steps, pairwise rank performs considerably better in all metrics, in which
the models can be directly compared. The average reward can serve as a metric for how quickly the agent can
train in comparison to its opponent, with an average reward of 7.723 and a final value of 0.780. In comparison,
The pairwise verdicts reward is converges at an average of 0.614 and a final value of 0.618 (see Fig. 9).
Unsurprisingly, the verdict agent received a higher score for APFD (0.627, compared to 0.7910) due to
the failure-focused learning characteristic as shown in Fig. 10. However, this is a an impressive result, [34]
achieved an average of 0.53 ± 0.13 and 0.67 ± 0.2 across two listwise DQN datasets. Be that as is may,
both models score highly in the NRPA metric (Fig. 11), converging at a final value of 0.989858599484348,
0.9978615247028421 for rank and verdict, respectively. The boost in performance in the pairwise rank runner
is likely attributed to the greater mutual information scores the input features had with the target rank, and
would be an interesting topic for future work to continue feature engineering with the intent to boost the
Pairwise verdict reward score.
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Figure 9: Pairwise rank and pair-
wise verdict rewards for 1000 inputs

Figure 10: Pairwise rank and pair-
wise verdict APFD for 1000 inputs

Figure 11: Pairwise rank and pair-
wise verdict NRPA for 1000 inputs

Our experimental results demonstrate the advantages of applying reinforcement learning to tempo-
ral datasets. The approach proved effective in optimizing sequential decision-making, as it consistently
improved long-term fault detection outcomes compared to static methods. We observed that the RL agent
adapted dynamically to evolving test states, maintained a balanced strategy between re-executing historically
effective tests and exploring new ones, and successfully learned from delayed rewards across the testing
process. These strengths translated into measurable gains in efficiency, as reflected in temporal metrics such
as higher APFD values over time and improved NRPA. Together, these findings confirm that reinforcement
learning leverages temporal structure in ways that traditional ranking and supervised models cannot.

6.2 Evolutionary Improvement Performance
For each test, we will run a total of 100 generations. During these runs, we will keep track of key

metrics for every individual in the population. These metrics include the running fitness, which gives us
an indication of the suitability of each solution, as well as the APFD and the NRPA, which provide insights
into the effectiveness of our test case ranking strategy. By monitoring these metrics, we can gain a deeper
understanding of the performance and evolution of our population over time.

As discussed, the issue of competing conventions needed to be addressed. The concept of naive crossover
is explored and will be analysed here for comparative purposes. This analysis will provide insights into the
effectiveness of naive crossover in mitigating the problem of competing conventions and enhancing the
performance of the evolutionary algorithm.

The next model here is the Availability Mutation. The children produced are on average much worse
than their parents and are rarely better, as shown in Figs. 12 and 13. This is speculated to do with the unstable
“best” individual in the population. Due to training time being minimal at the start of the learning process,
the “best” individual is put there based on pure stochasticity, forming a flawed architecture target that the
other agents are aiming towards. However, the variability of the availability mutation is to be noted. For
example, for there to be 3 better children with an average of just under a 0.2 fitness units, the children that are
improving on the solution must have a very large fitness value. This variation suggests that the operator can
achieve these performances more often with the correct tuning. For future work, an approach with differing
probability functions or varying hyperparameters can be trialled to attempt to offset this problem to yield
stronger results.
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Figure 12: Parents and child fitness using random muta-
tion

Figure 13: Parents and child fitness using availability
mutation

Figs. 14 and 15 display the results from the use of the cut crossover. It is interesting to note that the
cut crossover performs much worse than its arithmetical counterpart, as discussed below. As above, the
produced children are much weaker individuals than their parents. Arithmetic crossover performing better
at this stage indicates that the operator is less destructive. The PCC correlation is likely to correlate some
nodes that are less similar to each other as a result of the stochastic nature of the training process, and the
competing conventions process, and the operator can be concluded to be much less compliant with error.

Figure 14: Parents and child fitness using cut crossover Figure 15: Parents and child fitness using arithmetic
crossover

Other results, such as the similar performance of the naive cut and the cut operator, suggest that current
attempts to improve crossover using PCC have failed. Authors in [35] presented another form of correlation
metric, CCA, which performs well with noisy data, suggesting a potential direction for future work. PCC
does not report such an ability. The models that produced viable children are then analyzed in terms of their
performance in the prioritization and ranking context.

Tables 2–4 contain the evaluation of each evolutionary model for each RL environment. Each table
includes the original RL agent performance metrics, as well as the performance when a genetic algorithm
is applied. The values in the tables are collected from the point at which each agent terminates, either when
reaching the maximum number of steps or when the agent plateaus, when the fittest individual shows
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no improvement in fitness values for 10 generations. For genetic agents, the minimum execution time is
100 generations.
Listwise Rank Data

Table 2: Listwise genetic improvement results

NRPA APFD Plateau time
Original 0.7696418171228887 0.40349999999999997 1563.4554607868195

Arithmetic crossover 0.7372859638905067 0.4875531914893617 6952.407241821289
Naive arithmetic crossover 0.7390302853814793 0.491 9123.587044715881

Cut crossover 0.7492312172393709 0.5190476190476191 5596.867602109909
Naive cut crossover 0.7502329644729179 0.49913043478260866 9294.866579055786
Random mutation 0.7747815958066394 0.51225 4750.12050485611

Pairwise Rank Data

Table 3: Pairwise verdict genetic improvement results

NRPA APFD Plateau time
Original 0.9978615247028421 0.6266095100864553 940.7619524002075

Arithmetic crossover 0.9980735940706 0.6369119496855346 7127.7047238349915
Naive arithmetic crossover 0.9972104990817564 0.606466360856269 9550.755471467972

Cut crossover 0.9882493614170261 0.6003493975903613 10,353.793496608734
Naive cut crossover 0.9961822399157728 0.6074674556213018 13,793.953528642654
Random mutation 0.9901641544084657 0.618668168168168 5552.218576431274

Availability mutation 0.9967399038087661 0.611414373088685 7148.6632125377655

Pairwise Verdict Data

Table 4: Pairwise rank genetic improvement results

NRPA APFD Plateau time
Original 0.989858599484348 0.7910449101796406 1563.4554607868195

Arithmetic crossover 0.9882261690405402 0.7846957831325301 5240.971687555313
Naive arithmetic crossover 0.986741836008303 0.7803967551622418 10,381.851953268051

Cut crossover 0.97305168421039 0.7947424242424241 10,688.156397819519
Naive cut crossover 0.9853732794151955 0.7851089552238806 14,889.111254692078
Random mutation 0.9887370802849844 0.7859104046242774 5671.776670694351

Availability mutation 0.998021777623574 0.7883724637681159 7768.417682170868

The listwise agent, as observed in Table 2, benefits from the genetic algorithm, experiencing an
enhancement in the APFD. The NRPA also improves with the application of random mutation across all
genetic algorithms. Concurrently, the pairwise agent demonstrates some improvement in both the NRPA
and APFD metrics when using the arithmetic crossover (Table 4). Furthermore, Table 3 shows that pairwise
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verdict sees an improvement in NRPA when employing cut crossover and availability mutation. Notably, cut
crossover emerges as the sole source of improvement in the APFD metric.

Upon analyzing the data, it becomes evident that there is no single superior genetic operator. However,
both metrics (APFD and NRPA) show improvements with the availability mutation and cut crossover. This
can be attributed to the fact that even with low-performing variation operators, offspring with better fitness
are being produced, which in turn boosts the agent’s performance. The plateau time, despite indicating the
superior complexity of the genetic improvement algorithm, suggests that the agent continues to learn for a
longer duration than the base reinforcement learning agent. This observation presents an interesting topic
for future exploration.

However, it’s important to note that despite these improvements, the running time of all the genetic
improvement agents is significantly longer—339%, 850%, and 680% respectively compared to the base RL
agent. This implies that a substantial cost must be incurred to achieve higher performance. When applying
test case prioritization to a set of test suites, the goal is to optimize the time and budget of the testing process.
If the ranking process consumes a significant portion of the budget, the solution may not be viable. Therefore,
a balance must be struck between performance improvement and computational cost, making this a key
consideration in the design and implementation of the genetic improvement agents.

7 Conclusions and Research Perspectives
Given the paramount importance of software testing in development, reducing the time and resource

requirements for regression testing is a critical area of research.
In this paper, we investigated the application of reinforcement learning to test case prioritization and

ranking, incorporating genetic improvements. Initially, we analyzed the dataset for mutual information,
selecting features most correlated with the target values: prioritization group, rank, and verdict features.
Classification was performed using machine learning techniques, with the dataset distributed into three
priority groups. The random forest classifier emerged as the top-performing algorithm for classification,
achieving an accuracy score of 0.98847.

For test case ranking, we proposed an RL approach using a Deep Q-Network. After researching this
novel paradigm, we applied it to three well-known test environments: listwise, pairwise verdict, and pairwise
applied for ranking. The pairwise ranking algorithm demonstrated the highest effectiveness, with an NRPA
score of 0.9989902373076025 on a test size of 1000 test cases. To enhance these results, we combined RL with
a genetic algorithm, creating a novel integration of GA and RL in this context. Adapted variation operators
from previous works were integrated into the DQN environment. Although the genetic operators provided
slight improvements in NRPA and APFD, they resulted in a substantial increase in runtime, up to 850%.

While the proposed hybrid approach demonstrates promising improvements in test case prioritization
and ranking, several avenues remain open for future research. Future research should extend evaluation
to larger and more diverse datasets to test the robustness of the models, benchmark the approach against
techniques such as MCMCRT for deeper comparative insights, and validate its practical applicability
within real-world continuous integration pipelines. This would strengthen both the generalizability and the
industrial relevance of the proposed method.

In conclusion, the combination of the random forest classifier and the pairwise ranking approach proved
most effective for test case prioritization and ranking compared to other methods. However, while genetic
improvement shows potential for further enhancement, it requires significantly greater processing power. As
such, the current implementation of genetic operators cannot be recommended for industrial environments.
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