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ABSTRACT: Activation pruning reduces neural network complexity by eliminating low-importance neuron acti-
vations, yet identifying the critical pruning threshold—beyond which accuracy rapidly deteriorates—remains
computationally expensive and typically requires exhaustive search. We introduce a thermodynamics-inspired frame-
work that treats activation distributions as energy-filtered physical systems and employs the free energy of activations as
a principled evaluation metric. Phase-transition–like phenomena in the free-energy profile—such as extrema, inflection
points, and curvature changes—yield reliable estimates of the critical pruning threshold, providing a theoretically
grounded means of predicting sharp accuracy degradation. To further enhance efficiency, we propose a renormalized
free energy technique that approximates full-evaluation free energy using only the activation distribution of the
unpruned network. This eliminates repeated forward passes, dramatically reducing computational overhead and
achieving speedups of up to 550× for MLPs. Extensive experiments across diverse vision architectures (MLP, CNN,
ResNet, MobileNet, Vision Transformer) and text models (LSTM, BERT, ELECTRA, T5, GPT-2) on multiple datasets
validate the generality, robustness, and computational efficiency of our approach. Overall, this work establishes a
theoretically grounded and practically effective framework for activation pruning, bridging the gap between analytical
understanding and efficient deployment of sparse neural networks.
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1 Introduction
Deep neural networks (DNNs) have achieved remarkable success across computer vision, natural

language processing, and reinforcement learning. However, their increasing complexity and over-
parameterization raise growing concerns regarding computational efficiency, energy consumption, and
deployment in resource-constrained environments. Consequently, network pruning—the process of reduc-
ing model complexity by removing redundant components—has become a key strategy for compressing
models while preserving accuracy [1].

Most existing pruning approaches focus on weight magnitudes or structural heuristics, often over-
looking the dynamic behavior of activations during inference. In contrast, activation pruning selectively
suppresses neuron activations based on their estimated importance, offering a complementary and adaptable
mechanism for runtime sparsification [2]. Despite its promise, activation pruning faces a fundamental
challenge: reliably identifying the critical pruning threshold, the point at which accuracy begins to degrade
sharply. Determining this threshold typically depends on exhaustive trial-and-error procedures, which are
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computationally costly and yield inconsistent results across architectures and datasets. The lack of a unified
theoretical framework therefore limits both the practicality and widespread adoption of activation pruning.

To address this challenge, we introduce a thermodynamics-inspired framework that interprets acti-
vation distributions as physical systems subject to energy filtering. Within this formulation, we employ
the free energy of activations as a principled metric for characterizing network behavior under varying
pruning thresholds. Salient features of the resulting free-energy curve—such as extrema, inflection points,
or curvature changes—serve as indicators of critical pruning thresholds, providing a theoretically grounded
alternative to exhaustive empirical search. Moreover, we develop a renormalized free energy that approx-
imates the full free-energy profile using only the activation statistics of the unpruned network (τ = 0).
This approach eliminates the need for repeated inference, delivers substantial computational speedups, and
maintains high fidelity in estimating optimal pruning thresholds.

Our main contributions are summarized as follows:

• We introduce a thermodynamics-based theoretical framework for activation pruning, in which free
energy provides a principled estimator of critical pruning thresholds and corresponding sparsity levels.

• We propose a renormalized free energy approximation that accurately tracks the full-evaluation free
energy curve, eliminates repeated inference, and substantially reduces computational cost.

• We conduct an extensive experimental evaluation on both vision and text classification tasks, cov-
ering pretrained and non-pretrained models, and demonstrate the efficiency, robustness, and broad
applicability of the proposed approach.

The remainder of the paper is organized as follows: Section 2 reviews related work and outlines
the motivation for adopting a thermodynamic perspective. Section 3 formalizes the framework, presents
the phase transition analysis, and introduces the renormalized free energy method. Section 4 describes the
datasets, models, and experimental setup, while Section 5 reports the empirical results. Finally, Section 6
summarizes the main findings, discusses limitations, and outlines directions for future work.

2 Related Work

2.1 Magnitude Pruning: Weight and Activation Pruning
Magnitude pruning is a widely used technique for compressing deep neural networks (DNNs) by

removing low-magnitude elements under the assumption that they exert minimal influence on overall per-
formance. Existing methods largely fall into two categories: weight pruning, which operates on static model
parameters, and activation pruning, which dynamically sparsifies neuron outputs during inference. Fig. 1
provides a visual comparison of these two approaches.

2.1.1 Weight Pruning
Weight pruning reduces model size and computational cost by removing weights deemed unim-

portant, typically based on their magnitudes. Han et al. [3] demonstrated that unstructured pruning
can compress models such as AlexNet and VGG-16 by more than 90% with minimal loss in accuracy.
While unstructured pruning, which removes individual weights, achieves high compression ratios, it yields
irregular sparsity patterns that are difficult to exploit efficiently on standard hardware. In contrast, structured
pruning removes entire filters, channels, or layers, resulting in more hardware-friendly sparsity. Recent
advances incorporate group-wise dependency preservation, gradient-based saliency metrics, and second-
order sensitivity analyses to enable more precise and reliable pruning decisions [4–6]. Despite its effectiveness
across domains—including reinforcement learning and edge deployment—weight pruning remains a static,
input-independent approach.
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(a) Weight Pruning: Left—Before pruning. Right
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Figure 1: Visualization of weight and activation pruning

2.1.2 Activation Pruning
Activation pruning dynamically zeros neuron activations during inference based on a threshold τ,

introducing input-dependent sparsity that can substantially reduce computation, particularly on hardware
optimized for sparse operations [2]. Early work showed that many neurons become functionally dormant
and can be removed using activation statistics [7]. Activation statistics have also been employed to guide
structural pruning during training, as in activation-density–based methods [8]. More recent findings [9]
reveal that large neural networks exhibit strong intrinsic activation sparsity: transformer layers naturally
produce highly sparse activation maps, with only a small fraction of non-zero entries. Enforcing additional
sparsity through Top-k thresholding—explicitly zeroing all but the largest k activations—has been shown to
improve computational efficiency and, in some cases, enhance robustness.

A variety of activation pruning methods have been proposed, including spatially adaptive sparsifica-
tion [10], ReLU pruning [11,12], iterative pruning based on activation statistics [13], Wanda pruning [2],
attention-guided structured pruning [14], and semi-structured activation sparsity [15]. Recent work [16]
introduces WAS, a training-free method that computes weight-aware activation importance and uses con-
strained Bayesian optimization to allocate sparsity across transformer blocks. Another study [17] proposes
R-Sparse, a training-free activation pruning technique for large language models that applies a rank-aware
thresholding rule to eliminate low-magnitude activations and reduce unnecessary weight computations.
The authors of work [18] present TEAL, a training-free magnitude-based activation pruning method that
zeros low-magnitude activations across transformer blocks, achieving substantial sparsity and meaningful
inference speedups with limited impact on model quality. Finally, the authors of work [19] introduce Amber
Pruner, a training-free N:M activation pruning method that applies structured top-k sparsification to input
activations in LLM linear layers during the prefill phase, achieving a reduction of more than 55% of the
computation with minimal accuracy loss.

Unlike weight pruning, activation pruning produces dynamic, input-dependent sparsity patterns,
which complicates theoretical analysis. Although such techniques leverage activation behavior to improve
computational efficiency, they typically depend on empirically tuned thresholds [20], and the underlying
theory remains underdeveloped. Concepts such as the activation blind range provide partial insight into
zero-output regions [11], yet no unified framework currently exists for predicting critical pruning thresholds
or determining optimal sparsity levels.

Beyond classical structured and unstructured pruning approaches, recent years have seen the devel-
opment of adaptive and one-shot methods capable of achieving high sparsity without retraining [21–23].
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These techniques primarily aim to reduce computational cost and accelerate inference. In contrast, our
work focuses on analyzing the thermodynamic behavior of neural representations and exploiting the free-
energy profile to identify the phase-like transition at which the model begins to lose functional stability. The
proposed criterion is therefore not intended to replace existing pruning strategies, but rather to complement
them by offering an interpretable, architecture-agnostic means of determining reliable sparsity levels.

2.2 Thermodynamic Perspective on Activation Pruning
Given the heuristic nature of existing activation pruning approaches, a principled theoretical framework

is required to estimate when pruning begins to degrade performance and to guide the selection of effective
pruning thresholds. To address this need, we introduce a thermodynamics-inspired perspective in which
neuron activations are treated analogously to energy states in physical systems.

Within this framework, pruning is interpreted as imposing an energy cutoff, where removing low-
activation neurons corresponds to filtering out low-energy states. This analogy enables the definition of
thermodynamic quantities such as entropy, internal energy, and free energy over activation distributions,
providing a quantitative basis for analyzing how pruning influences model behavior. Notably, we observe that
model performance remains stable over a broad range of pruning thresholds but deteriorates sharply beyond
a critical point, resembling a phase transition. This transition manifests in distinct features of the free-energy
curve, which serve as reliable indicators of critical thresholds without requiring exhaustive empirical tuning.

The proposed formulation offers theoretical insight into the trade-off between pruning intensity and
predictive accuracy, while enhancing interpretability and robustness across architectures and datasets. In
the following section, we formalize these concepts, introduce precise definitions, and derive the free-energy
criterion used to approximate critical pruning thresholds.

3 Formal Thermodynamic Framework and Phase Transition Analysis
Building on the thermodynamic perspective introduced in Section 2.2, we now develop a formal

framework that models activation pruning using concepts from statistical physics. Specifically, we define
entropy, internal energy, and free energy over activation distributions, and show how these quantities expose
critical thresholds at which model behavior undergoes abrupt transitions. This formulation establishes a
unified and interpretable connection between sparsity, thresholding, and accuracy degradation.

3.1 Activation Pruning as Energy-Based Filtering
We model the neural network as a statistical system characterized by the distribution of neuron

activations during inference. Activation pruning is implemented by applying a threshold τ such that
activations ai with magnitudes below τ are set to zero, effectively filtering out low-energy microstates. Eq. (1)
formalizes this operation, where a′i denotes the post-pruning activation values and 1{⋅} is the indicator
function:

a′i = ai ⋅ 1{∣ai ∣≥τ}. (1)

The pruning process is applied layer-wise, and for each threshold τ we compute two key quantities: (1)
the number of nonzero activations M, and (2) the sum of their absolute values Σ. These values are aggregated
across all layers to characterize the state of the system. In practice, activations are collected selectively from
nonlinear and fully connected layers, as these dominate the activation distribution relevant to pruning.
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3.2 Shannon Entropy of Activations
Let M denote the number of nonzero activations after pruning and N the total number of activations

before pruning (i.e., at τ = 0). We define the density of nonzero activations as ρ = M/N . To quantify the
diversity or uncertainty of the retained activations, we introduce the Shannon entropy S in terms of the
activation density, as given in Eq. (2):

S = − ln ρ. (2)

As the threshold τ increases, the density ρ decreases, resulting in a corresponding reduction in entropy.

3.3 System Temperature
We define an effective temperature T in terms of the pruning threshold τ to quantify the intensity of

pruning, as shown in Eq. (3):

T = 1
τ

. (3)

Here, T serves as a formal parameter that reflects system “hotness” (low τ, high T, dense activations)
vs. “coldness” (high τ, low T, sparse activations). This analogy provides an intuitive interpretation of how
thresholding governs information retention and controls network complexity.

3.4 Internal Energy
Let Σ denote the sum of absolute activation values after pruning, and let Σ0 be the corresponding sum

at τ = 0. The internal energy E, defined in Eq. (4), captures the relative amount of information retained in
the pruned network:

E = ln ( Σ
Σ0
) . (4)

This logarithmic ratio quantifies the remaining “energy” of the system and reflects how aggressively
pruning suppresses the activation magnitude distribution.

3.5 Free Energy
The free energy F balances internal energy (E) and entropy (S), scaled by temperature (T), as given

in Eq. (5):

F = E + T ⋅ S . (5)

Using the definitions above, we obtain the equivalent expression in Eq. (6):

F = E − T ⋅ ln (M
N
) . (6)

Free energy serves as the central metric in our framework. Its extrema and curvature encode charac-
teristic signatures of phase transitions—points at which pruning shifts from benign sparsification to rapid
accuracy degradation. These dynamics and the associated critical thresholds are examined in detail in the
following section.
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3.6 Phase Transitions and Critical Threshold Identification via Free Energy Analysis
The free energy function F(τ) provides a principled mechanism for detecting phase transitions during

activation pruning. In analogy to statistical physics—where phase transitions correspond to non-analytic
behavior in thermodynamic potentials—we treat the pruning threshold τ as a control parameter and examine
how F(τ) evolves as τ increases. Empirically, we observe that network accuracy remains stable over a
substantial range of thresholds but declines sharply beyond a critical point τ∗. This transition consistently
coincides with characteristic features of the free-energy curve, typically an extremum, an inflection point,
or a pronounced change in curvature. In practice, we identify τ∗ by locating such features in F(τ), often
corroborated by a zero-crossing or peak in the first derivative d F

d τ .
Because extrema, inflection points, and curvature changes all signal the onset of thermodynamic insta-

bility, we select the earliest such feature encountered as τ increases, yielding a consistent and conservative
estimate of the critical threshold τ∗.

This thermodynamic instability reflects a phase transition from a dense, information-rich activation
regime to a sparse, degraded one. The critical threshold τ∗ marks the point at which accuracy begins
to deteriorate and thus provides an approximate indication of the safe pruning range. Importantly, τ∗ is
not defined by a predetermined accuracy tolerance; instead, it is inferred directly from the onset of the
free-energy transition, offering a model-agnostic and architecture-independent criterion for determining
pruning limits.

The associated critical sparsity β∗—defined as 1 − ρ evaluated at τ∗—indicates the maximum safe
sparsity level before performance degradation becomes severe. Thus, free-energy analysis provides a robust
and theoretically grounded method for approximating pruning thresholds, reducing the dependence on
exhaustive empirical tuning. The observed correspondence between accuracy loss and characteristic changes
in F(τ) generalizes across architectures and datasets, thus enhancing the interpretability of pruning
dynamics through the framework of phase transition theory.

3.7 Renormalized Free Energy for Efficient Threshold Selection
Building on the free-energy analysis used to identify critical thresholds, we now introduce a renor-

malization procedure that enables fast, architecture-agnostic estimation of pruning thresholds. This method
operates on a fixed activation array—collected from the trained model and a representative dataset prior
to pruning—and simulates the pruning process by applying magnitude thresholds directly to this array,
treating activations as an unstructured distribution. Thermodynamic quantities, including density, Shannon
entropy, internal energy, and free energy, are then computed using the same definitions introduced earlier,
but without requiring repeated model inference. This strategy can substantially reduce computational cost
while preserving the characteristic shapes and derivative patterns of the free-energy curves obtained from
full evaluation.

Although the activation array depends on the specific model and dataset, the renormalized analysis
abstracts away architectural details and eliminates the need for retraining, providing a general and efficient
approach for approximating critical pruning thresholds. As demonstrated in Section 5, the renormalized
free-energy curves closely match those derived from the full evaluation, confirming both their accuracy
and reliability. This method thus elevates pruning-threshold selection from heuristic tuning to a principled,
physics-inspired procedure.
Procedure for Determining the Critical Pruning Threshold

Since the renormalized free energy F(τ) reliably reproduces the characteristic shape and stability
regions observed under full pruning, we determine the critical pruning threshold τ∗ directly from the
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renormalized curve. For a given model, we specify a step size Δτ and evaluate the renormalized free energy
over a grid of thresholds τ ∈ [τmin, τmax]. The resulting free-energy profile F(τ) is then analyzed together
with its first discrete derivative ΔF(τ) = F(τ + Δτ) − F(τ).

The critical threshold τ∗ is identified as the earliest point at which the curve exhibits a qualitative
transition, such as an extremum or a pronounced change in slope. This point corresponds to the onset of
accuracy degradation observed during full pruning, and the associated sparsity level is reported as β∗ = 1 −
ρ(τ∗). Because this procedure relies on renormalized free energy, it avoids the repeated inference required
in full-evaluation experiments and thus provides a substantially faster and architecture-agnostic method for
locating the critical pruning threshold.

4 Experimental Setup

4.1 Datasets and Preprocessing
To evaluate our proposed method, we conducted experiments on both image and text classification

tasks. For image classification, we used CIFAR-10 (50,000 training images, 10,000 test images, 10 classes)
and the Oxford-102 Flowers dataset (8189 images, 102 classes; split into 1020 training, 1020 validation, and
6149 test samples). For text classification, we used AG News (120,000 training samples, 7600 test samples, 4
classes) and Yelp Review Full (650,000 training samples, 50,000 test samples, 5 sentiment categories).

CIFAR-10 images were normalized to the range [−1, 1] using a channel-wise mean and standard
deviation of 0.5, with a batch size of 64. Oxford-102 images were resized to 64 × 64 pixels and normalized
using ImageNet statistics, with a batch size of 32.

Text datasets were tokenized, padded, and truncated to fixed maximum sequence lengths deter-
mined from training-data percentiles. Transformer-based models used their pretrained subword tokenizers,
whereas the LSTM employed an NLTK-based word-level tokenizer. Text was converted to lowercase when
appropriate, and special tokens (padding, unknown) were inserted as required. For GPT-2, the end-of-
sequence token was used as padding. Tokenized inputs (IDs and attention masks) were processed using a
batch size of 32.

4.2 Model Architectures
We evaluated a range of architectures spanning both non-pretrained and pretrained models. For image

classification, the non-pretrained models include an MLP, implemented as a fully connected network with
three hidden layers and pruning applied after ReLU activations, and a CNN consisting of three convolutional
layers with batch normalization, ReLU, and max-pooling, followed by fully connected layers, with pruning
applied after the convolutional layers and the first two fully connected layers. The pretrained models include
ResNet-18 [24], with pruning applied after ReLU activations in the residual blocks; MobileNetV2 [25],
which uses inverted residual blocks and pruning applied after ReLU6 activations; and a lightweight Vision
Transformer (ViT) [26], with pruning applied after linear layers and GELU activations in the MLP blocks,
while the last four transformer blocks and the classification head are fine-tuned.

For text classification, we evaluated one non-pretrained LSTM model and four pretrained transformer
models covering encoder-only, encoder–decoder, and decoder-only architectures. The LSTM includes
an embedding layer, a unidirectional LSTM, and a three-layer classifier, with pruning applied after the
intermediate classifier layers. BERT [27] and ELECTRA [28] are encoder-only models, with pruning applied
to the intermediate fully connected layers within the encoder blocks and to the classifier, using hooks on the
encoder layers. T5 [29], an encoder–decoder model, is pruned after the fully connected layers in both encoder
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and decoder blocks and in the classifier, using the pooled mean of the final decoder states. GPT-2 [30], a
decoder-only model, is pruned after the fully connected layers in the decoder blocks and in the classifier.

4.3 Pruning Procedure and Parameter Settings
All models were trained using the Adam optimizer with a learning rate of 0.001 and cross-entropy loss.

Dropout with a rate of 0.3 was applied to fully connected layers. Early stopping based on validation accuracy,
with a patience of three epochs, was used across all models to mitigate overfitting. Training was conducted
on a single GPU with CUDA support, and a fixed random seed was used to ensure reproducibility. No
fine-tuning or additional optimization techniques were employed, as our objective was to analyze pruning
behavior rather than to maximize accuracy.

After training, activation pruning was applied over a range of thresholds. For each threshold, test
accuracy and activation statistics were recorded to compute the thermodynamic quantities (density, entropy,
internal energy, and free energy) defined in Section 3. The implementation of our pruning framework, along
with scripts for reproducing all experiments and free-energy analyses, is available at https://github.com/
hse-scila/Activation_Pruning (accessed on 12 November 2025).

5 Results and Analysis
For each model–dataset pair, we present six plots that show test accuracy, free energy, and its derivative

as functions of the pruning threshold (τ) and sparsity (β). Subfigures (a)–(c) display these metrics with
respect to τ, while subfigures (d)–(f) present the same quantities as functions of β, the fraction of pruned
activations. On the free-energy and derivative plots, we overlay the curves produced by the renormalized
free-energy method (Sections 3.6 and 3.7) together with the full-evaluation results. Throughout the figures,
blue curves correspond to full evaluation (empirical free energy), and pink curves correspond to the
renormalized method (statistical free energy). This comparison shows that the renormalized curves preserve
the characteristic phase-transition patterns, with critical thresholds closely matching those obtained by full
evaluation. In some models, the curves nearly coincide; in others, they exhibit a small vertical offset, yet the
estimated critical values remain well aligned.

When comparing free-energy curves across methods, we emphasize the shape of the curve rather than
its absolute magnitude. Vertical shifts may arise from renormalization constants and do not influence the
derivative-based transition detection. We therefore define a “match” as the agreement of the first qualitative
transition (extremum or inflection point) at the same sparsity level β∗. Under this criterion, the renormalized
and full-evaluation free-energy curves consistently match across all examined architectures.

Furthermore, for all results reported below, the critical thresholds and sparsity levels are stable across
random seeds, with variability typically within 3%–5%. Representative mean values are shown for clarity
and conciseness.

5.1 Vision Models
We begin by analyzing our framework on vision models and datasets. On CIFAR-10 (Fig. 2), the MLP

maintains an accuracy of approximately 58% under moderate pruning thresholds (τ ≈ 0.36–0.40, β ≈ 0.32–
0.40), after which accuracy declines steadily. The full-evaluation free energy reaches its peak earlier (τ ≈
0.12, β ≈ 0.15), providing an early indication of impending instability well before the accuracy drop becomes
pronounced. Although the free-energy extremum does not coincide exactly with the point where accuracy
begins to fall, it provides a principled approximation of the critical region, as clearly visible from the plotted
curves. This transition is further supported by the derivative curves (dF/dτ and dF/dβ), and the sparsity

https://github.com/hse-scila/Activation_Pruning
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curves exhibit consistent patterns. On Flowers-102 (Fig. 3), a similar trend emerges: accuracy remains largely
stable (around 31%) up to moderate thresholds, while peaks and curvature changes in the free-energy curves
signal the onset of instability. The renormalized free-energy curves follow the same qualitative behavior, with
only a slight vertical shift, and accurately capture the critical region for both datasets.

Figure 2: MLP model on CIFAR-10 dataset

Figure 3: MLP model on Flowers-102 dataset

For the convolutional network, trends similar to those observed for the MLP arise across both datasets.
On CIFAR-10 (Fig. 4), accuracy remains near 76% for moderate pruning thresholds (τ ≈ 0.06–0.08, β ≈
0.23–0.29) before gradually declining to about 70%. The full-evaluation free energy again reaches its peak
slightly earlier, and the derivative curves highlight a clear phase transition within this region. On Flowers-102
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(Fig. 5), accuracy remains stable at approximately 43%–44% up to thresholds of τ ≈ 0.24–0.30 (β ≈ 0.18–
0.23), after which it declines more sharply. The renormalized free-energy curves mirror the behavior of the
full-evaluation curves, capturing the same critical trends with consistent qualitative alignment.

Figure 4: CNN model on CIFAR-10 dataset

Figure 5: CNN model on Flower-102 dataset

Compared to shallow MLP and CNN, ResNet-18 exhibits a noticeably sharper transition. On CIFAR-10
(Fig. 6), accuracy remains close to 79% before declining markedly between τ ≈ 0.20–0.30. The full-evaluation
free energy increases steadily and reaches a peak around τ ≈ 0.30–0.33 (β ≈ 0.50–0.55), with the derivative
curves clearly indicating the transition. On Flowers-102 (Fig. 7), accuracy remains stable at roughly 65%
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initially and begins to decline between τ ≈ 0.20–0.30, while the free energy peaks near τ ≈ 0.42 (β ≈ 0.59).
The sharpness of the transition is also reflected in the sparsity curves. In contrast to the earlier MLP and
CNN results, the free-energy peaks for ResNet-18 occur closer to the thresholds at which accuracy begins to
deteriorate, providing a more precise indication of the critical region. The renormalized free-energy curves
closely follow the full-evaluation trends, accurately capturing the transition behavior.

Figure 6: Resnet-18 model on CIFAR-10 dataset

Figure 7: Resnet-18 model on Flower-102 dataset

For MobileNetV2, the results exhibit clearer dataset-dependent variation compared to the previous
convolutional models. Moreover, unlike the earlier architectures that display a distinct peak in the free-
energy curve, MobileNetV2 shows a bend on CIFAR-10 (Fig. 8) and a local minimum on Flowers-102 (Fig. 9).
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On CIFAR-10, accuracy remains near 73% at low thresholds and begins to decline around τ ≈ 0.12 (β ≈
0.21), while the free energy shows a bend at τ ≈ 0.06 (β ≈ 0.12), a feature confirmed by derivative analysis.
On Flowers-102, accuracy stays around 74% up to τ ≈ 0.10 before decreasing sharply at τ ≈ 0.22 (β ≈ 0.35).
The free energy reaches a local minimum at τ ≈ 0.12 (β ≈ 0.19), corroborated by a zero-crossing in the
derivative. The renormalized free-energy curves reproduce these behaviors effectively, with only minor
dataset-dependent deviations.

Figure 8: MobileNet model on CIFAR-10 dataset

Figure 9: MobileNet model on Flower-102 dataset

Analysis of the Vision Transformer reveals qualitatively distinct behavior, characterized by a free-energy
valley rather than a peak or bend. On CIFAR-10 (Fig. 10), accuracy remains near 97% at low thresholds and
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begins to decline around τ ≈ 0.13 (β ≈ 0.66), while the free-energy curve exhibits a clear valley at τ ≈ 0.09
(β ≈ 0.52), accompanied by zero-crossings in the derivative. On Flowers-102 (Fig. 11), a similar valley appears
at τ ≈ 0.09 (β ≈ 0.50), preceding the onset of accuracy degradation. Notably, the renormalized free-energy
curves show near-perfect overlap with the full-evaluation curves for both datasets, accurately tracking the
critical region without significant shift.

Figure 10: ViT model on CIFAR-10 dataset

Figure 11: ViT model on Flower-102 dataset

Across the vision models, free energy tends to precede the onset of accuracy degradation for
scratch-trained architectures (MLP, CNN) and roughly coincides with it for pretrained models (ResNet-
18, MobileNetV2, ViT). Transitions in pretrained models appear smoother and more predictable, whereas
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the MLP and CNN exhibit sharper accuracy drops and slightly noisier free-energy curves. Characteristic
patterns—such as the bends in MobileNetV2 and the valley-shaped curve of the Vision Transformer—
highlight the diversity of pruning dynamics across architectures. The renormalized free-energy curves
generally track the full-evaluation trends, capturing the critical regions with only minor vertical offsets.

The differences in the shapes of the free-energy curves across architectures may be related to how
information is distributed within each model. In CNNs and ResNets, activations within a channel tend to
be spatially correlated, and a single channel often encodes a coherent local feature. Consequently, removing
a channel during pruning can cause a sharp disruption in the learned representation, which manifests as a
pronounced peak in the free-energy curve.

In MobileNetV2, the use of depthwise-separable convolutions and inverted residual blocks leads to
more evenly distributed information and weaker inter-channel correlations. As a result, the loss of individual
channels produces a smoother degradation of representation, reflected in a flatter free-energy curve.

In Vision Transformers, the self-attention mechanism enables global information flow across tokens,
allowing the model to compensate for suppressed activations during the early stages of pruning. This
flexibility gives rise to a broader free-energy valley that precedes the accuracy drop.

Table 1 summarizes the critical thresholds (τ∗) and sparsities (β∗) derived from accuracy degradation
(ground truth) and from the full-evaluation free-energy analysis (thermodynamic prediction). Additional
rows indicate whether the free-energy curve exhibits an extremum and whether a derivative sign change
occurs at the critical point. The renormalized free energy is not included in the table, as its behavior is already
clearly illustrated in the figures and discussed earlier, and its omission avoids unnecessary expansion of
the table.

Table 1: Critical thresholds and sparsities from accuracy degradation and full evaluation free energy across vision models

Metric MLP CNN ResNet MobileNet ViT

Acc.Based FE.Based Acc.Based FE.Based FAcc.Based FE.Based FAcc.Based FE.Based Acc.Based FE.Based

CIFAR-10

τ∗ ≈ 0.36–
0.40 ≈ 0.12 0.06–

0.08
0.02–
0.04

0.20–
0.30

0.30–
0.33 0.12 0.06 0.13 0.09

β∗ ≈ 0.32–
0.40 ≈ 0.15 0.23–

0.29 0.04 0.50–
0.55

0.05–
0.10 0.21 0.12 ≈ 0.66 ≈ 0.52

Derivative = 0/Extr. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
FE Extr. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Flowers-102

τ∗ 0.40–
0.44 0.28 0.24–

0.30
0.18–
0.24

0.20–
0.30 0.42 0.22 0.12 ≈ 0.13 ≈ 0.09

β∗ 0.32–
0.35 0.23 0.18–

0.23
0.14–
0.19 0.35 0.59 0.35 0.19 0.69 0.56

Derivative = 0/Extr. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
FE Extr. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Time Efficiency Analysis
We evaluated the computational gains of the renormalized free energy (RFE) method relative to the

full-evaluation free energy (FE) across all architectures. RFE provides substantial speedups: over 550× for the
MLP on Flowers-102, between 4–19× for the CNN and MobileNet, and approximately 4× (CIFAR-10) to 8×
(Flowers-102) for ResNet-18. The Vision Transformer exhibits mixed behavior—slightly slower on CIFAR-10
but nearly 2× faster on Flowers-102—reflecting dataset- and model-dependent computational characteristics.
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Overall, these results show that RFE can significantly accelerate pruning analysis across a wide range of
architectures while still reliably capturing the critical phase transition. Detailed timings and speedup factors
are reported in Table 2.

Table 2: Computation time (seconds) and speedup factors for renormalized free energy compared to full evaluation
across all vision models and datasets

CIFAR-10 Flowers-102

MLP CNN ResNet MobileNet ViT MLP CNN ResNet MobileNet ViT
Full Evaluation

Time (s) 113.24 37.23 143.14 247.79 358.70 66.06 96.70 109.04 82.22 1122.09

Renormalized
Time (s) 1.22 5.24 37.84 63.92 812.23 0.12 5.21 13.61 11.23 611.96

Speedup (×) 92.81 7.11 3.78 3.88 – 550.50 18.56 8.01 7.32 1.80

5.2 Text Models
Extending our analysis to text models, we observe that for non-pretrained LSTMs, the free-energy peaks

align closely with the accuracy drop, in contrast to the scratch-trained vision models where the peak typically
appears earlier. On AG News (Fig. 12), accuracy remains stable up to approximately τ ≈ 0.42 (β ≈ 0.32),
after which it declines sharply, defining the accuracy-based critical threshold. The full-evaluation free energy
exhibits a peak near this point, with its derivative clearly indicating the transition, while the renormalized
free-energy curve closely overlaps and slightly precedes the peak, providing an approximate estimate of τ∗ ≈
0.42 (β∗ ≈ 0.32).

Figure 12: LSTM model on AG_News dataset

On Yelp (Fig. 13), a similarly abrupt transition is observed: accuracy remains near 62.9% before dropping
between τ ≈ 0.24–0.30 (β ≈ 0.24), with both the full and renormalized free-energy curves offering consistent
guidance toward a critical threshold around τ∗ ≈ 0.30. These findings indicate that non-pretrained text
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models exhibit sharp pruning-induced transitions, reflecting limited robustness and a strong correspondence
between free-energy indicators and accuracy degradation.

Figure 13: LSTM model on yelp full review dataset

In contrast, pretrained encoder-only transformers exhibit more structured and predictable behavior.
On AG News (Fig. 14), BERT maintains approximately 93%–94% accuracy up to τ ≈ 0.10 (β ≈ 0.68), during
which the free energy decreases steadily toward a minimum. Between τ ≈ 0.12–0.18, accuracy collapses
sharply as free energy rises, marking the transition. Interestingly, beyond τ ≈ 0.20 (β ≳ 0.97), accuracy
begins to recover slightly (from 42% to 47%), accompanied by a second decline in free energy, suggesting
a secondary stabilization regime. The derivative curves highlight the sharp changes around τ ≈ 0.10–0.12 as
the onset of the critical region, in agreement with the renormalized free-energy evaluation.

Figure 14: BERT model on AG_News dataset
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On Yelp (Fig. 15), a similar accuracy drop occurs between τ ≈ 0.12–0.16, with free-energy minima
approximately coinciding with the critical threshold. Both derivative and renormalized analyses support
these points, underscoring the stabilizing effect of pretraining.

Figure 15: BERT model on yelp full review dataset

ELECTRA (Figs. 16 and 17) exhibits analogous behavior, with clear stable, transition, and collapsed
regimes across both datasets. The full and renormalized free-energy curves yield consistent estimates of
the critical threshold near τ∗ ≈ 0.10 (β∗ ≈ 0.55), demonstrating reproducible phase-transition patterns in
pretrained encoder-only models.

Figure 16: Electra model on AG_News dataset
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Figure 17: Electra model on yelp full review dataset

The results for T5, a sequence-to-sequence transformer, exhibit comparatively smoother pruning
behavior. On AG News (Fig. 18), accuracy remains stable (approximately 91%–92%) up to τ ≈ 0.8 (β ≈ 0.045),
after which it begins to decline gradually. The corresponding free-energy curve displays a gentle maximum
near these thresholds rather than the sharp extrema observed in other models. On Yelp (Fig. 19), a similar
pattern appears, with a mild maximum around τ ≈ 0.6–0.8 (β ≈ 0.04–0.06). These results highlight a model-
dependent variation: sequence-to-sequence transformers tend to degrade more gradually under pruning,
forming soft critical regions rather than abrupt phase-transition points.

Figure 18: T5 model on AG_News dataset
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Figure 19: T5 model on yelp full review dataset

In GPT-2, the pruning dynamics vary noticeably across datasets. On AG News (Fig. 20), accuracy
remains high (approximately 92%–94%) until a sharp decline at τ ≈ 1.6 (β ≈ 0.75). The free-energy curve
first exhibits a local minimum near τ ≈ 1.0 (β ≈ 0.46), which does not correspond to the onset of accuracy
degradation. Instead, the subsequent local maximum around τ ≈ 1.6 aligns closely with the abrupt accuracy
drop, providing an approximate indication of the critical region beyond which the model can no longer
maintain performance.

Figure 20: GPT_2 model on AG_News dataset

On Yelp (Fig. 21), accuracy declines earlier, at τ ≈ 1.0 (β ≈ 0.46), with the free-energy minimum
occurring near τ ≈ 0.8–1.0. The renormalized free-energy curves confirm these patterns, showing that
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although the overall free-energy shapes are nearly identical across datasets, the relevant extremum depends
on the dataset. This contrasts with the more consistent behavior observed in encoder-based models, where
the same free-energy feature typically marks the transition.

Figure 21: GPT_2 model on yelp full review dataset

Across the text models, free energy offers a reliable estimate of critical thresholds near the onset of
accuracy degradation, with derivative curves marking the corresponding phase transitions. Non-pretrained
LSTMs exhibit abrupt and largely dataset-independent transitions, whereas pretrained transformers display
smoother and more predictable behavior. Encoder-only models (BERT, ELECTRA) show sharp minima that
provide clear approximations of the critical threshold; T5 degrades gradually, forming soft critical regions;
and GPT-2 demonstrates dataset-dependent extrema. In all cases, the renormalized free-energy curves
closely follow the full-evaluation trends across architectures and datasets.

Table 3 summarizes the critical thresholds (τ∗) and sparsities (β∗) for all text models and datasets,
extending the applicability of our framework beyond vision tasks and demonstrating its generality across
modalities and model families.

Table 3: Critical thresholds and sparsities from accuracy degradation and full evaluation free energy across text models

Metric LSTM BERT ELECTRA T5 GPT-2

Acc.Based FE Based Acc.Based FE Based Acc.Based FE Based Acc.Based FE Based Acc.Based FE Based

AG news

τ∗ 0.42 0.42 0.10–0.12 0.10–0.12 0.10 0.10 0.80 0.80 1.60 1.60
β∗ 0.32 0.32 0.68–0.71 0.68–0.71 0.55 0.55 0.45 0.45 0.75 0.75

Derivative
= 0/Peak Yes Yes Yes Yes Yes Yes Soft Soft Yes Yes

Free
Energy

Peak
Yes Yes Yes Yes Yes Yes Soft Soft Yes Yes

Yelp review full

τ∗ 0.24–0.30 0.30 0.12 0.12 0.10 0.10 0.60 0.60–
0.80 1.0 0.80–1.0

(Continued)
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Table 3 (continued)

Metric LSTM BERT ELECTRA T5 GPT-2

Acc.Based FE Based Acc.Based FE Based Acc.Based FE Based Acc.Based FE Based Acc.Based FE Based

β∗ 0.24 0.23–0.24 0.76 0.76 0.55 0.55 0.04 0.04–
0.06 0.46 0.38–

0.46
Derivative
= 0/Extr. Yes Yes Yes Yes Yes Yes Soft Soft Yes Yes

FE Extr. Yes Yes Yes Yes Yes Yes Soft Soft Yes Yes

Empirically, we observe that accuracy remains stable before the free-energy transition, typically varying
by only 3%–5%. Once this transition is crossed, however, performance drops sharply (by at least 30% in our
experiments). This behavior confirms that the free-energy transition corresponds to a phase-like boundary
rather than a gradual degradation.
Time Efficiency Analysis

For text models as well, RFE provides substantial computational gains for simpler architectures. The
LSTM achieves dramatic speedups—over 460× on AG News and 1700× on Yelp Review Full. Moderate
improvements of 1.1–2.5× are observed for ELECTRA and T5, indicating consistent runtime reductions even
for larger architectures. In contrast, BERT is slower than full evaluation on both datasets, while GPT-2 shows
negligible speedup on Yelp and none on AG News. These results suggest that RFE can greatly accelerate
pruning analysis for smaller or moderately sized text models, whereas its benefits are limited or absent for
some larger pretrained transformers due to activation-processing overhead. Detailed timings and speedup
factors are reported in Table 4.

Table 4: Computation time (seconds) and speedup factors for renormalized free energy compared to full evaluation
across all text models and datasets

AG news Yelp review full

LSTM BERT T5 ELECTRA GPT-2 LSTM BERT T5 ELECTRA GPT-2
Full-

Evaluation
Time (s)

28.07 64.05 31.93 53.07 42.14 503.00 173.73 142.90 229.98 723.13

Renormalized
Time (s) 0.06 98.61 16.04 47.87 110.01 0.29 448.92 56.92 189.96 649.55

Speedup
(×) 468 — 1.99 1.11 — 1734 — 2.51 1.21 1.11

6 Conclusion
We presented a thermodynamics-inspired framework for activation pruning, using free-energy dynam-

ics as a proxy for approximating critical pruning thresholds. Across both vision and language models,
extrema and inflection points in the free-energy curve typically precede or closely coincide with the onset
of accuracy degradation, revealing architecture- and dataset-dependent behavior: non-pretrained networks
(MLP, CNN, LSTM) exhibit sharp, abrupt transitions, pretrained models such as ResNet-18, MobileNetV2,
and ViT display smoother and more gradual dynamics, and transformer architectures show model- and
dataset-specific extrema.

To improve efficiency, we introduced a renormalized free-energy method that reconstructs the same
diagnostic curves using only unpruned activations, thereby eliminating the need for repeated inference.
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This renormalized evaluation yields substantial speedups for fully connected, convolutional, and residual
architectures, achieving up to a 500× reduction in computational cost. For transformer-based text models
(e.g., BERT and GPT-2) and ViT, the speedup is more moderate—and in some cases negligible—due to
the higher cost of activation collection and the reduced redundancy in channel structure. Nonetheless, the
free-energy transition consistently provides a reliable indicator of the critical sparsity threshold across all
model families.

This work bridges theoretical insight and practical application, demonstrating that free energy offers a
principled and generalizable perspective on pruning behavior. While our experiments focus on classification
tasks, extending this framework to generative models, reinforcement learning settings, and finer-grained
layerwise analyses represents a promising direction for future research.
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