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ABSTRACT: The critical components of gas turbines suffer from prolonged exposure to factors such as thermal
oxidation, mechanical wear, and airflow disturbances during prolonged operation. These conditions can lead to a
series of issues, including mechanical faults, air path malfunctions, and combustion irregularities. Traditional model-
based approaches face inherent limitations due to their inability to handle nonlinear problems, natural factors,
measurement uncertainties, fault coupling, and implementation challenges. The development of artificial intelligence
algorithms has provided an effective solution to these issues, sparking extensive research into data-driven fault diagnosis
methodologies. The review mechanism involved searching IEEE Xplore, ScienceDirect, and Web of Science for peer-
reviewed articles published between 2019 and 2025, focusing on multi-fault diagnosis techniques. A total of 220 papers
were identified, with 123 meeting the inclusion criteria. This paper provides a comprehensive review of diagnostic
methodologies, detailing their operational principles and distinctive features. It analyzes current research hotspots
and challenges while forecasting future trends. The study systematically evaluates the strengths and limitations of
various fault diagnosis techniques, revealing their practical applicability and constraints through comparative analysis.
Furthermore, this paper looks forward to the future development direction of this field and provides a valuable reference
for the optimization and development of gas turbine fault diagnosis technology in the future.
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1 Introduction

The expanding natural power generation capacity has become an effective solution to address the
stability shortcomings of renewable energy while meeting increasingly frequent grid peak-shaving needs,
under the goals of ‘carbon peak and carbon neutrality’ [1]. With mature natural gas transportation technol-
ogy, these turbines require minimal space and can be flexibly deployed in urban areas with limited space.
The gas turbine generators play a crucial role in grid peak-shaving operations, which are characterized by
short start-stop cycles, rapid load response, and high flexibility [2]. However, frequent start-stop cycles and
load fluctuations subject gas turbines to variable operating conditions, significantly increasing the risk of
equipment faults over time. In recent years, the construction of digital power plants, smart power generation,
and intelligent power plants has gradually become a trend in the power industry. Intelligent diagnosis
serves as a vital component of smart power plants, utilizing next-generation information technologies to
deeply analyze operational parameters [3]. This approach aims to identify underlying correlations, enable
rapid automated diagnostics when equipment anomalies occur, provide maintenance recommendations to
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operators, and prevent further fault propagation that could compromise generator reliability, safety, and
economic efficiency [4].

With the growing adoption of Al algorithms in industrial applications, intelligent turbine diagnostics
has entered a new era. Given the inherent challenges of turbines—complex structures, intricate mechanisms,
coupled faults, and dynamic excitation patterns—the selection of appropriate algorithms or models to
process fragmented knowledge, identity latent fault indicators, and enable reliable predictive analysis has
become a crucial approach for achieving intelligent and effective fault diagnosis [5-7]. It is imperative to
carry out research on the intelligent diagnosis of gas turbines. The intelligent diagnosis system can provide
expert advice for the power plant from the perspective of operation and maintenance, to ensure the reliable,
safe, and efficient operation of the power plant [8,9].

The common fault types mainly include three categories: mechanical faults, gas path faults, and
combustion faults in gas turbine fault diagnosis [10-12]. Each category is further subdivided into different
specific faults, which are shown in Table 1 [13,14].

Table 1: Specific fault type of gas turbine [13,15-19]

Combusti
Mechanical faults ombustion Gas path faults
faults
I 1 ;
R(?tor. mbalance Ro.t o Combustion Compressor Fouling;
Misalignment; Rubbing L
between Rotatine and Oscillation; Flame Compressor Wear;
. 8 Flicker; Soot Blade Crack; Turbine
Stationary Parts; Rotor . .
Crack: Bearine Wear: Formation; Blade Corrosion;
Loosej Bearing' Poor’ Unburned Fuel Turbine Blade Wear:;
& Emission Blade Crack

Bearing Lubrication

The rest of this paper is organized as follows. In Section 2, the specific fault of the gas turbine, main
characteristics, and primary causes were presented. Section 3 illustrated that the method of low-dimensional
features with discriminative, robust, and interpretable characteristics was extracted from high-dimensional
and redundant original signals. The data-based fault diagnosis, model-based fault diagnosis, and knowledge-
based fault diagnosis are compared and analyzed in Section 4.

2 Fault Types of Gas Turbine
2.1 Working Principle of Gas Turbine

The schematic diagram of a gas turbine is shown in Fig. 1. In the atmospheric environment, air first
enters the intake duct. After undergoing filtration and noise reduction treatment, the streamlined air is
directed to the inlet of the low-pressure compressor. Following compression by both low-pressure and high-
pressure compressors, the air enters the combustion chamber where it mixes with fuel for combustion,
generating high-temperature, high-pressure gas [20,21]. Ventilation systems are installed at the outlets of
both low-pressure and high-pressure compressors to cool the stationary and rotating blades of the turbines.
Moreover, we analyze the fault of rotor imbalance, rotor collision, and blade crack in a gas turbine [22-24].
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Figure 1: Schematic diagram of gas turbine

The compressor continuously draws air from the surrounding environment, compresses it, and delivers
it to the adjacent combustion chamber. Structurally, it consists of two main components: a rotor with a
rotating shaft as its core, featuring moving blades arranged in specific patterns; and a stator with stationary
components mounted on the casing, containing stationary blades following identical alignment principles.
The compressor’s fundamental working unit is a stage, comprising a row of adjacent moving blades and a
row of stationary blades. Multiple interconnected stages form the compressor’s flow path. Within each stage,
moving blades are driven by external forces to rotate continuously, imparting kinetic energy to the gas flow
through increasing its absolute velocity. The stationary blades act as diffuser channels, converting the kinetic
energy of high-speed gas into pressure energy to supply the combustion chamber with high-pressure gas. A
set of inlet guide vanes precedes the first stage, directing airflow into it, while a set of rectifying vanes follows
the last stage to regulate the exit gas flow.

The flow direction is changed to the axial direction, which is more conducive to the expansion of air flow
in the annular diffuser. The combustion chamber serves three primary functions: First, it mixes compressed
gas from the compressor with fuel for efficient combustion; Second, it ensures uniform mixing of compressed
gas from another compressor section with combustion products, reducing the temperature from 1800°C
to the turbine inlet’s initial temperature for power generation; Third, it controls nitrogen oxide emissions
to meet regulatory standards. Its structure consists of key components, including the fuel injector, front
cylinder, igniter, flame tube, transition section, flue gas pipe, and flow guide sleeve.

The turbine converts energy from high-temperature, high-pressure gases in the combustion chamber
into mechanical energy, with most of it used for the gas turbine’s effective output power while a small portion
drives the compressor. Its structure resembles that of a compressor, primarily consisting of a stator and an
impeller with moving blades. In a converging-diverging flow path, the stator accelerates the high-temperature
gas flow. During this process, both temperature and pressure gradually decrease, converting part of the gas’s
thermal and pressure energy into kinetic energy. The kinetic energy-rich gas then rushes toward the moving
blade grid in a specific direction, driving the impeller to rotate and transforming its kinetic energy into
mechanical energy.

Throughout the operation of a gas turbine, the exhaust state of the compressor significantly impacts
its performance. Variations in this state alter the compression ratio, which subsequently affects fuel con-
sumption and combustion processes within the combustor. Unstable exhaust pressure and temperature
levels reduce combustion efficiency, thereby compromising both the overall operational quality and energy
conversion efficiency of the gas turbine. The exhaust state of the gas turbine’s turbine critically influences the
performance of the entire gas-steam combined cycle. The residual heat from turbine exhaust serves as a key
indicator of steam turbine efficiency in this system. When the gas path of the gas turbine deteriorates, these
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parameters undergo corresponding changes, which can be used to characterize the performance status of
the gas turbine’s gas path.

Therefore, the prediction model will be constructed for three state parameters of compressor exhaust
temperature, exhaust pressure, and turbine exhaust temperature, so as to master the health status and
performance decline of the gas turbine.

2.2 Mechanical Faults
2.2.1 Rotor Faults

Rotor imbalance, misalignment, rubbing between rotating and stationary components, and cracks are
common rotor failures in gas turbines [25]. Rotor imbalance is one of the most frequent failures, primarily
caused by manufacturing errors, component wear, and uneven deposits [26]. These factors exacerbate rotor
vibrations, adversely affecting operational stability and safety [27]. Rotor misalignment occurs when the
rotor’s axis line deviates from the bearing’s axis line, generating additional forces and torques that cause
vibration, accelerate bearing wear, and shorten turbine lifespan [28]. Rotating-stationary friction arises from
collisions between rotating components and stationary parts, often due to rotor warping, insufficient bearing
clearance, or damaged seals [29]. This intensifies vibrations, generates noise and heat, and may ultimately
damage both components. Rotor cracks manifest as surface or internal fissures, typically resulting from
material fatigue, excessive stress, or manufacturing defects. Such cracks weaken rotor strength and rigidity,
compromising operational safety [30,31].

Rotor Imbalance

Rotor imbalance is the most common fault in heavy-duty gas turbines, accounting for over half of all
rotational faults. This imbalance can stem from various causes, including manufacturing and installation
errors, foreign objects on the rotor, loose components, as well as deformation and fatigue during opera-
tion [32,33]. The additional load caused by rotor imbalance leads to gradually increasing vibration amplitude
over time, significantly raising the risk of equipment damage [33-35].

Rotor imbalance can be categorized into two types: mass distribution imbalance and component defects.
Mass distribution imbalance in rotors is typically caused by design flaws or improper assembly. Component
defects in rotors refer to phenomena such as corrosion, material loss, and structural damage [33,36]. Rotor
imbalance generates additional centrifugal forces during operation, which are transmitted to bearings and
supports. This causes bearing wear and increases overall machine vibration, with the amplitude of vibrations
generated by rotor imbalance superimposing on the rotor’s power frequency. Such conditions heighten
equipment wear and fault risks, making timely diagnosis and correction of rotor balance status crucial for
maintenance [34-36].

The differential equation of motion of the rotor axis is as follows when the rotor is unbalanced:

Mx" + cx’ + kx = mew? coswt (1)

My" +cy' + ky = mew® sinwt (2)

where, x is rotor axial displacement, y is radial displacement of rotor, M is rotor mass, m is rotor eccentricity
mass, e is eccentricity, w is palstance, F is centrifugal force. Because of the eccentricity, the formula for the
centrifugal force F is:

F = mew? (3)
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Rotor Rubbing

Rotor rubbing is a critical mechanical fault, typically referring to unintended contact between the rotor
and stator. This wear can be caused by multiple factors, including rotor dynamic instability, bearing damage,
excessive axial displacement of the rotor, or mechanical imbalance [37,38]. Friction primarily manifests in
radial and axial forms. Radial friction mainly affects the radial movement of heavy-duty gas turbine lever-
type rotors with minimal impact. Axial friction includes full circumferential rubbing and localized friction.
Such axial wear causes rotor displacement and vibration along the axis. Severe axial wear alters inter-rotor
pressure distribution, disrupts normal unit operation, and significantly impacts rotor performance [39,40].
Rotor rubbing fault can lead to local wear, free vibration of the pull rod rotor, which may lead to component
deformation and rotor imbalance fault, and may also change the speed of the rotor [41]. During the operation
of a gas turbine, the rotation speed of the rotor is very fast, and changing the speed of the rotor is very
dangerous, which may damage the entire unit [42].

The motion differential equation for rotor radial wear is as follows:

x" 4 2nx" + wuplx +vx — uvy = ew” cos Ot (4)

V' +2ny + wup’y + uvx + vy = ew’ sin Qt (5)
The motion differential equation for axial radial wear is as follows:

X+ px + Wy x = eQ? cos Ot (6)

V' +uy + 0’y = eQ*sin Qt (7)

where, p is friction factor.

2.2.2 Bearings Faults

Bearings wear, loosen, and lubrication failures are common issues in gas turbines. Bearing wear refers to
material degradation on or within the bearing surfaces, primarily caused by inadequate lubrication, excessive
loads, or material defects. This leads to increased clearance between bearings, compromising rotor rotation
precision and stability. Loose bearings occur when components aren't securely mounted on shafts, often
due to improper installation, deformed bearing housings, or loose bolts. Such misalignment intensifies
vibrations and negatively impacts turbine operation stability. Poor lubrication results from insufficient oil
supply, substandard lubricants, or clogged filters, accelerating wear and reducing the turbine’s operational
lifespan [43,44].

Moreover, the single point faults (e.g., cracks, spalls), distributed faults (e.g., wear, corrosion), and
compound faults (e.g., a combination of single-point and distributed faults) are research hotspot. Bearing
faults are a primary cause of failures in rotating machinery. Single point faults, such as cracks or spalls, often
result from localized stress concentrations, while distributed faults, like wear or corrosion, develop gradually
over time. Compound faults, which involve multiple fault types, pose significant challenges for diagnosis due
to their complex signatures [45].

Single point faults are confined to a single component and do not spread to other parts. When rolling
elements pass over the defect site, short-duration sharp impulse excitations are generated, leading to an
increase in high-frequency components in the vibration signal. Time-domain parameters such as amplitude,
variance, and kurtosis significantly deviate from their normal values. As shownin Fig. 2, A, B, and C represent
three types of single faults, while AB, AC, BC, and ABC denote four categories of compound faults, and
N stands for the normal operating condition. When detecting a specific fault type, the feature set used for
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training should be divided into a positive sample set that includes the fault type and a negative sample set
that excludes it. By enabling the classifier to handle a binary classification problem, the complexity of the
classifier can be reduced [46].

-
: A : : A AB AC ABC Pipeline-1 | Classifier
Classifier-1 | for fault
! B ! | BCBCN ‘ A
I I I
\ C \ I :
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I

Figure 2: The principle of training for single fault classier. Reprinted with permission from reference [46]. © 2021
Published by Elsevier Ltd.

A distributed fault refers to the degradation of multiple components or the overall performance
of a bearing, typically caused by manufacturing errors, improper installation, or prolonged operation.
Distributed faults affect multiple components or the bearing as a whole, such as wear, corrosion, or
scuffing [47]. These faults develop gradually over time and are difficult to detect in their early stages. Fault
characteristic frequencies and their harmonics appear in the low-frequency band, while energy increases
in the high-frequency band. The comparison between Single point faults and distributed faults is shown
in Table 2.

Table 2: Comparison between Single point faults and distributed faults

Characteristics Single point faults Distributed faults
Localized defects in a single Degradation of multiple components or
Fault scope
component overall performance
High-frequency impact pulses, Low-frequency harmonics, changes in
Signal characteristics & q yimpactp Worequency > Chang
increased kurtosis value high-frequency energy distribution
Gradual progression (e.g., wear,

Development speed ~ Sudden onset (e.g., cracks, spalling) corrosion)

Difficult to detect in early stages (requires

Easily identifiable in early stages combined analysis of multiple

Diagnostic difficulty (obvious vibration signals)

parameters)
High-speed, heavy-duty equipment Long-running equipment (e.g., wind

Typical i
ypical scenarios (e.g., wind turbines) power)

In summary, Single point faults and distributed faults may coexist, necessitating the development
of multi-feature fusion diagnostic methods. Therefore, further research on compound fault diagnosis is
required. Given the massive volume of vibration data involved in compound faults, leveraging deep learning
to enhance fault classification accuracy is of paramount importance.
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2.3 Combustion Faults
2.3.1 Unstable Combustion

Combustion oscillation and flame flickering are abnormal phenomena that may occur during gas tur-
bine combustion. Combustion oscillation refers to the occurrence of oscillations in the combustion chamber,
primarily caused by uneven fuel-air mixing, improper burner design, and unstable combustion control
systems. These factors intensify turbine vibrations and adversely affect operational stability. Flame flickering
manifests as intermittent flickering of the combustion flame in the chamber, resulting from unstable fuel-air
ratios, blocked burner nozzles, or malfunctioning combustion control systems. This phenomenon reduces
combustion efficiency and increases pollutant emissions.

2.3.2 Incomplete Combustion

In gas turbine combustion processes, carbon soot formation and unburned fuel emissions are critical
concerns. Carbon soot accumulation occurs when carbon particles from combustion build up in the
combustion chamber, primarily due to high carbon content in fuel, insufficient combustion temperatures,
and inadequate burning duration. This negatively impacts thermal efficiency while increasing pollutant
emissions. Unburned fuel emissions refer to residual unburned fuel expelled from the combustion chamber,
mainly caused by uneven fuel-air mixing, improper burner design, and malfunctioning combustion control
systems. Such emissions not only waste fuel resources but also contribute to elevated pollutant levels [48,49].

2.4 Gas Path Faults
2.4.1 Compressor Faults

Air compressor failures primarily involve three factors: fouling, wear, and blade failure. Fouling occurs
when contaminants accumulate internally, including dust and impurities from the air supply and fuel,
which reduce airflow efficiency and pressure output. Wear refers to wear on components like blades and
vanes, caused by erosion from airborne particles and corrosion from fuel residues, ultimately compro-
mising performance and lifespan. Blade failures manifest as cracks, deformation, or fractures, typically
resulting from material fatigue, excessive stress, or manufacturing defects that negatively impact operational
reliability [50-52].

2.4.2 Turbine Faults

Turbine blade failures primarily involve three types: corrosion, wear, and cracks. Corrosion occurs
when corrosive components in combustion gases and cooling water erode the blade surface, compromising
structural integrity and reducing turbine efficiency. Wear refers to material abrasion on both surfaces and
interiors, caused by dust erosion from combustion gases and impurities in fuel, which adversely affects
turbine performance and service life [53,54]. Cracks manifest as fissures on blades’ surfaces or internal
structures, resulting from material fatigue, excessive stress, or manufacturing defects, ultimately impairing
turbine reliability and operational effectiveness [55,56].

2.4.3 Blade Crack

Blades are critical components in gas turbines, and blade Cracks reduce strength, decrease efficiency and
power output, which compromise durability and reliability, and may even lead to fractures [57-59]. Blade
cracks severely impact turbine performance and safety, increase maintenance costs, and potentially damage
internal components, thereby reducing operational efficiency and reliability while raising both running and
maintenance expenses [50,60]. The primary causes of blade cracks include:
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(1) Thermal Fatigue. Thermal fatigue occurs due to rapid temperature changes in the blades during the
varying operating conditions of a gas turbine. It arises because different sections of the blade experience
varying degrees of thermal expansion or cooling effects. These uneven thermal changes induce cyclic thermal
stresses, and over extended periods of cycling, thermal cracks develop in the blade material. These cracks
typically propagate along the direction of thermal stress in the blade, gradually increasing its fragility and
ultimately potentially leading to fracture.

(2) Fatigue Load. The blades continuously endure vibrations and pressure variations from the engine
during high-speed rotation, and these repetitive fatigue loads can cause material fatigue and the formation
of cracks. Fatigue can be categorized into high-cycle fatigue, low-cycle fatigue, and thermal fatigue. High-
cycle fatigue is typically associated with vibration cycles experienced by the blades at high frequencies. This
type of fatigue often occurs when the blade’s vibration frequency matches the external excitation frequency,
causing a sharp increase in the amplitude of blade failure and leading to material fatigue. Low-cycle fatigue
is related to fatigue cycles experienced by the blades at lower frequencies, which are usually associated with
large strain amplitudes, such as thermal stress variations during startup and operation.

(3) Overstress. Blades typically consist of three parts: the blade root, blade body, and blade tip
(or shroud). Stress concentration tends to occur in the regions of the blade root and blade tip. Stress
concentration refers to an abnormal increase in stress caused by geometric irregularities or dimensional
changes in local areas, making the blades more prone to cracking in these regions and potentially leading
to fracture.

(4) Creep. Creep is a critical issue faced by gas turbine blades during prolonged operation in high-
temperature environments. The creep rate initially progresses slowly, but accelerates as the materials
internal structure undergoes gradual changes. This creep-induced deformation can cause blade deformation,
including bending, twisting, or length variations. As plastic deformation intensifies, cracks may develop and
eventually lead to fracture.

(5) Corrosion. Corrosion is a prevalent failure mode for gas turbine blades during operation, particularly
when exposed to prolonged exposure to high-temperature environments containing corrosive compounds.
This corrosion reduces blade mechanical strength and thermal resistance, leading to deformation, cracks,
or even fracture. Persistent corrosion accelerates material degradation rates. Modern gas turbine blades
typically employ anti-corrosion coatings and thermal coatings that provide physical and chemical protection
against accelerated corrosion.

2.5 Analysis of Typical Fault Characteristics

We have analyzed mechanical fault, combustion fault, and gas path fault in gas turbines, and provided
detailed introductions to faults such as rotor imbalance, bearing wear, and compressor fouling. Through
the analysis of these faults, the importance and necessity of gas turbine fault diagnosis have been fully
demonstrated. Table 3 presents the main characteristics and causal factors of different types of faults
summarized through a literature review.

Table 3: The fault characteristics of the gas turbine

Fault type Specific fault Main characteristics Primary causes Reference
. . . Manufacturing errors,

Mechanical . Increased vibration during &

Rotor imbalance . . . component wear, uneven [26]

faults operation, affecting stability .
deposits
Lo Additional torque, bearing Non-coincident centerlines, .
Rotor misalignment . . . [36]
wear, shortened lifespan installation errors

(Continued)
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Table 3 (continued)

Fault type Specific fault Main characteristics Primary causes Reference
. . - L Excessively small bearin
Rubbing between rotating Collision noise, increased Y 5 e
. o . . clearance, bent rotor, damaged [55]
and stationary parts vibration, localized heating seals
Decreased structural strength, Material fatigue, excessive
Rotor crack . . [61]
potential for fracture stress, manufacturing defects
. Increased clearance, affecting Insufficient lubrication,
Bearing wear . . . [62]
rotational accuracy excessive load, material issues
0. . Deformed bearing seat,
. Increased vibration, affecting . . 18 R
Loose bearing . . improper installation, loose [63]
operational stability .
fixing bolts
Elevated bearing temperature, Insufficient oil supply, oil
Poor bearing lubrication . & P . PPy [64]
increased wear quality issues, clogged filters
Combustion . oy Enhanced vibration, unstable =~ Uneven combustion, unstable ~
Combustion oscillation . [26,35]
faults operation control system
Unstable flame state, increased  Disproportionate fuel mixture,
Flame flicker prop [36,65]
pollutants clogged nozzles
Decreased combustion . .
. 1 High carbon content in fuel, I
Soot formation efficiency, severe smoke . [39,65]
. low combustion temperature
pollution
Incomplete combustion,
Unburned fuel emission Fuel waste, excessive emissions P . [55,66]
unreasonable burner design
. Increased airflow resistance, Accumulation of air and fuel
Gas path faults Compressor fouling . ) " [20,29]
decreased efficiency impurities
Surface damage to blades, Airflow erosion, corrosion
Compressor wear ; " [41,46]
decreased flow performance from dust and impurities
Structural fatigue, crack . .
. . Excessive stress, material oo
Blade crack propagation, potential for . . [67,68]
fatigue, manufacturing defects
fracture
Material degradation, High-temperature airflow,
Turbine blade corrosion & 8 P [69-71]

Turbine blade wear

Blade crack (Repeated)

decreased efficiency
Altered blade shape, affecting
power output
Crack propagation, potential
for fracture

corrosive components in fuel

Gas erosion, particle corrosion

Material fatigue, stress overload

[1,3,17,18]

The key to gas turbine performance monitoring and fault diagnosis lies in analyzing changes in

parameters related to the health status of gas circuit components, such as temperature, pressure, air, and

fuel flow rates, to accurately determine whether faults have occurred. As critical power equipment, gas

turbines require monitoring of multiple types of operational parameters. Common monitoring signals
include mechanical, gas circuit, and combustion-related performance parameters. Mechanical parameter
signals encompass vibration, rotational speed, and power output, primarily indicating mechanical failure
conditions [51,54]. Gas circuit performance parameters mainly consist of pressure, temperature, flow rate,
and efficiency, which reflect operational status and can detect abnormalities like gas line blockages or
combustion oscillations [57]. The correlation between common faults and performance parameter changes

is detailed in Fig. 3.
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Figure 3: Correlation between fault mode and performance parameter variation

3 Feature Extraction

With the advancement of data acquisition technologies, data-driven fault diagnosis methods have
gained widespread application. These approaches eliminate the need for precise physical models, enabling
accurate health status assessment through operational data alone. As a critical component of fault diagnosis,
the effectiveness of fault feature extraction directly impacts diagnostic outcomes [58,59]. Among various sig-
nal types, vibration signals-rich in fault information-are extensively utilized in feature extraction. However,
noise and interference during signal acquisition often introduce deviations from ideal signals, necessitating
proper signal analysis and feature extraction techniques to mitigate these errors [60,75]. Current mainstream
feature extraction methodologies include linear analysis, nonlinear analysis, and deep learning approaches,
as illustrated in Table 4.

Table 4: Method of feature extraction

Time domain analysis
Linear analysis Time frequency domain analysis
Frequency domain analysis

Entropy analysis
Nonlinear analysis Chaos theory
Fractal dimension method

Feature extraction

autoencoder
Deep learning analysis Convolutional neural network
method
Long and short term memory
network method

3.1 Linear Analysis
3.1.1 Time Domain Analysis

Time-domain characteristics possess strong physical concepts, intuitive expressions, and computational
simplicity, enabling both qualitative and quantitative analysis of gas turbine fault signals. These features can
generally be categorized into two types [67,68,76]. Among them, dimensional characteristics demonstrate
heightened sensitivity to operational condition variations in gas turbines, allowing them to better reflect the
turbine’s operational status. In contrast, dimensionless characteristics remain largely unaffected by external
disturbances such as turbine operating conditions and environmental factors, thus providing a more stable
representation of operational status information. To enhance fault diagnosis accuracy, we typically employ a
combination of dimensional and dimensionless characteristic values, achieving a balance between stability
and adaptability.
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The time-domain analysis method directly examines the waveform of the original signal, utilizing its
time-domain characteristics for fault detection. Commonly used time-domain features include mean, stan-
dard deviation, peak-to-peak value, kurtosis, waveform factor, and margin factor. This approach primarily
employs statistical principles to characterize the relationship between signals and time [69,77]. Let a discrete-
time sequence signal be defined as, where N represents the number of sampling points. The commonly used
time-domain feature indicators are listed in Table 5.

Table 5: Time domain characteristic index and its calculation formula

Feature name Calculation formula
N
Mean Ti=Y x;i/N
i=1
N 2
Root Mean Square T=1/2 (xi)"/N
i=1
N 2
Root mean amplitude T; = (Z |x;|/N )
i=1
N
Absolute Mean Ty =Y \/|xi|/N
i=1
. X 4 2
Kurtosis Ts=Y(xi-T) [/(N-1)T,4
i=1

3.1.2 Frequency Domain Analysis

Frequency domain analysis involves examining a signal’s frequency spectrum. When equipment such as
gas turbines experiences faults, their signal frequency patterns undergo changes. To extract fault information
from the frequency domain, engineers can analyze spectral parameters like frequency and peak values for
equipment diagnostics. Key methods in domain analysis include Fourier transform analysis, refined spectral
analysis, power spectrum analysis, and Hilbert envelope spectrum analysis [62,78].

Domain analysis converts time-domain signals into the frequency domain using frequency as the refer-
ence, with the Fourier transform being the primary analytical method [79,80]. By applying the fast Fourier
transform to gas turbine fault signals, we can obtain fault characteristics containing frequency-domain
information. The commonly used frequency-domain feature indicators and their calculation formulas are
listed in Table 6.

3.1.3 Time-Frequency Analysis

Traditional time-domain and frequency-domain analysis methods are inadequate for processing non-
stationary signals, while conventional approaches demonstrate limitations in handling complex dynamic
signals, failing to meet fault diagnosis requirements. In contrast, the time-frequency domain analysis method
effectively addresses unstable and nonlinear signals, making it widely adopted in feature extraction for fault
diagnosis [81,82].
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Table 6: Frequency domain characteristic index and its calculation formula

Feature name Calculation formula
K K
Mean Square Frequency Ts = kZ szS (k)/ kZ s (k)
=1 =1
K K
Centroid Frequency T =% fis(k)] ¥ s(k)
k=1 k=1
K K
Frequency Variance Ty = Y (fk - )% s(k) 3 s(k)
k=1 k=1
Root Mean Square
To =/ T
Frequency ’ 6
Frequency Standard e
Deviation o = VT

3.2 Deep Learning Analysis

Deep learning demonstrates exceptional capability in feature extraction, making it ideal for analyzing
operational data from monitoring equipment [83,84]. Compared to other methods, deep learning approaches
can extract deeper-level features from data, significantly boosting efficiency. Self-encoders excel at processing
nonlinear data and are widely used in feature reduction applications.

Deep learning models, particularly convolutional neural networks (CNNs), recurrent neural networks
(RNNs), and their variants (such as LSTM, GRU), construct deep architectures by stacking multiple layers
(e.g., convolutional layers, pooling layers, fully connected layers). Each layer is responsible for learning
features at different levels of the data. Low-level features: These typically capture local and fundamental
characteristics of the data, such as edges, textures, colors (in image processing), or temporal patterns, local
dependencies (in sequence data processing). High-level features: Formed by combining low-level features,
these create more abstract and global representations, capturing semantic information or complex patterns
in the data.

CNNs excel in feature extraction and have been widely adopted in fault diagnosis applications. Long
Short-Term Memory Networks (LSTM) are particularly suited for classifying and predicting time-series
data. Traditional feature extraction methods demonstrate limitations when handling complex coupled
systems, often resulting in biased features due to human experience and subjective factors. Deep learning-
based feature extraction approaches minimize human influence through hierarchical architectures, enabling
direct identification of relevant features from raw data [84,85]. With advancements in computing power,
deep learning models can now extract high-quality features from complex datasets, which is crucial for
cutting-edge research and practical applications in feature extraction [65,86].

4 Fault Diagnosis Methods of Gas Turbine

In real-world industrial settings, turbine data are often incomplete, noisy, or unbalanced, which
degrades diagnostic accuracy. To mitigate this, researchers have explored data augmentation techniques (e.g.,
adding synthetic noise) and semi-supervised learning approaches that leverage both labeled and unlabeled
data. These methods show promise in improving model robustness under non-ideal conditions.

Gas turbine health status diagnosis serves as one of the most critical approaches for maintenance,
while advancements in fault diagnosis technology play a vital role in enhancing operational safety and
economic efficiency [87,88]. The emergence of artificial intelligence and machine learning algorithms has
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provided new perspectives for researchers worldwide in gas turbine fault diagnosis. To improve operational
safety and maintenance cost-effectiveness, scholars have increasingly focused on three major component
failures and airflow path degradation in gas turbines [63,66]. These diagnostic studies are categorized into
three methodologies: data-based fault diagnosis, model-based fault diagnosis, and knowledge-based fault
diagnosis, which are shown in Fig. 4.

Data-based fault Artificial intelligence-based fault diagnosis
diagnosis Signal statistical analysis-based fault diagnosis

Linear model-based fault diagnosis

_——» Mode!—base(.l fault Kalman filter-based fault diagnosis
diagnosis

Nonlinear model-based fault diagnosis

Knowledge-based Expert systems-based fault diagnosis
fault diagnosis Graph theory-based fault diagnosis

Figure 4: Fault diagnosis methods of a gas turbine

4.1 Data-Based Fault Diagnosis

Data-based fault diagnosis employs machine learning algorithms to analyze operational data, identi-
tying discrepancies between malfunctioning and healthy datasets. The flow chart of the data-driven fault
diagnosis method of the gas turbine is shown in Fig. 5 and the standard workflow involves:

1) Collecting both fault and health datasets, then proportionally dividing them into training and test sets.

2) Extracting features through preprocessing.

3) Training the model iteratively until optimal performance is achieved.

4) Conducting cross-validation using test set data [89-91].

Machine learning enables computer systems to extract patterns and correlations from large datasets,
allowing them to make predictions and classifications. Current machine learning approaches include Support
Vector Machines (SVM), Random Forests (RF), Markov Chains (MC), Artificial Neural Networks (ANN),

and Deep Learning (DL) [64,70,92-94]. The application details of those methods for gas turbine fault
diagnosis are summarized in Table 7.

e feature extraction

e feature selection

* Dimensionality
reduction

* model selection
e cross validation
¢ performance

. index
sampling
L Data Model construction Fault diagnosis and
Data acquisition » . » .. .. . »

preprocessing and training decision making
Sensor data, ¥ Dk SndEr iz Gm > Final model :
historical ' & normalization l :
maintenance records, ! L Leamni leorithm i
Temperature, : Training data set » Learning algori Classify i

V1brat10nt, current, Test data set ‘
etc. i i

Figure 5: Flow chart of data-driven fault diagnosis method of gas turbine
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Table 7: The application details of those methods for gas turbine fault diagnosis

Advantages

Disadvantages

Methods References
SVM [95]

RF [11,96]
ANN  [57,97-99]
MC [68,100]

DL [50,88,101]

Effectively process high-dimensional
space data, accurately classify fault
types, and good scalability.

Good robustness to noise, not prone
to overfitting and high-dimensional
feature data.

Powerful nonlinear fitting ability,
basis of existing learning experience,
automatically learn new knowledge
and modify existing knowledge.
Strong modeling ability, indicate the
reasoning process, deal with missing
data.

Simplifies model complexity to
prevent overfitting, enables
high-dimensional and nonlinear data
processing, self-adjusts and trains for
feature extraction with strong
generalization capabilities.

Sensitive to noise and outliers, and

needs to preprocess the data, depends

heavily on parameter selection.
Requires a lot of computing
resources and time, the decision
process is complex, difficult to
intuitively explain the prediction
process of the model.

The convergence speed is slow, easy
to converge to local optimal value,
and poor interpretability.

Not make full use of historical data,
high calculation complexity.

Requires massive data, involves high
computational complexity, demands
long training periods, and lacks clear
specifications for hidden neuron
quantities.

SVM is a widely-applied supervised learning algorithm primarily utilized for classification and regres-

sion analysis. SVM operates by identifying an optimal hyperplane that effectively separates samples of
different classes, while simultaneously maximizing the margin between the two classes. This hyperplane is
referred to as the decision boundary, and the support vectors are the sample points that are closest to this
decision boundary. A newly proposed Sparrow Search Algorithm (SSA) was employed to optimize the SVM
model, aiming to search for the optimal combination of penalty factor and kernel function parameters [87].
The comparative experimental results of different optimized SVM models are presented in Table 8 with
evaluation metrics including confusion matrices, among others.

Table 8: Indicators of different optimized SVM models [37]

Precision (%) Fl-score (%) Accuracy (%)
SVM 93.98% 92.36% 92.5%
GA-SVM 96.23% 95.48% 95.6%
PSO-SVM 98.03% 97.76% 97.8%
SSA-SVM 99.20% 99.15% 99.2%

Artificial Neural Networks (ANN) are mathematical models inspired by biological neural net-
works [102,103]. They simulate the brains neural systems and its response mechanisms to external stimuli
to solve complex problems. The concept of artificial neural networks can be traced back to the 1940s when



Comput Mater Contin. 2026;86(3):2 15

McCulloch and Pitts proposed the MCP neuron model in 1943. In the 1950s, Rosenblatt developed the
perceptron model for binary classification tasks. It wasn’t until the 1980s, ANN sparked widespread interest
across multiple disciplines with the advent of backpropagation algorithms [71,101,104].

Biological neurons are the fundamental functional units of biological nervous systems. Similarly,
artificial neural networks are composed of artificial neurons that are extensively interconnected based on the
simulation of the structure and function of biological nervous systems. Artificial neural networks can solve
nonlinear, complex mathematical problems and perform operations involving complex logic by organizing
and adjusting the connection relationships among artificial neurons. The connection relationships between
artificial neurons can be represented by directed weighted arcs, which correspond to the axon-synapse-
dendrite structure in human brain neurons. These arcs consist of two parts: direction and weight. The
direction represents the path of information transmission, while the weight represents the strength of
the interaction between artificial neurons, influencing the degree to which input signals activate the
neurons [100,105].

There are different neural networks, which are feedforward neural networks, recurrent neural networks,
graph neural networks, and self-organizing neural networks by network structure classification [106].

In a feedforward neural network, information flows from the input layer through hidden layers for
progressive processing before being output from the final layer. This process involves feature extraction and
abstraction at each layer, with unidirectional propagation that excludes any recurrent connections. Each
layer’s output depends solely on its preceding layer’s input, maintaining independence with subsequent
layers. Common feedforward neural networks include Multilayer Perceptrons (MLPs), Convolutional Neural
Networks (CNNs), Deep Feedforward Networks, and Deep Convex Networks [107-109]. These networks typ-
ically disregard temporal lag effects between inputs and outputs, focusing instead on mapping relationships
that can be visualized as directed acyclic graphs (DAGs).

In recurrent neural networks (RNNs), neurons not only receive input signals from other neurons but
also generate their own feedback. The feedback mechanism in RNNs operates through a unique property:
the output of a neuron becomes its new input, shaping its next output based on all previous outputs.
These networks typically account for temporal delays between inputs and outputs, making them ideal
for processing sequential data such as time series prediction and natural language processing. Common
FNN variants include Recurrent Neural Networks (RNNs), Long Short-Term Memory Networks (LSTMs),
Hopfield networks, and Gate-Regulated Recurrent Units (GRUs). RNNs enable internal feedback loops
through recurrent connections, which can be visualized using directed circular graphs [72,95,98].

A self-organizing neural network is a self-learning neural network. It autonomously identifies essential
attributes and inherent patterns in information, thereby adaptively modifying its structure and parameters.
A typical self-organizing neural network architecture consists of an input layer and a competitive layer. This
type of network primarily handles classification and clustering tasks [110].

We summarize the characteristics, typical models, and application scenarios of different approaches,
which are shown in Table 9.
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Table 9: The features of different neural networks [98,111-114]

Methods Features Representative models Applications
Information is passed from Multilayer perceptron »
. i Image recognition,
the input layer to the output (MLP), convolutional .
Feedforward e speech recognition,
layer unidirectionally, neural network (CNN),

neural network

Recurrent
neural network

Self-organizing

without feedback
connections.
Feedback connections in the
network, allow information
to circulate over time, and
suitable for processing time
series data.
Without external
supervision, the network
parameters are automatically
adjusted through

radial basis function
network (RBF), etc.
Simple cycle network
(SRN), long short term
memory network
(LSTM), gate control
cyclic unit (GRU), etc.

Self-organizing map
(SOM), adaptive

natural language
processing, etc.

Natural language
processing, speech
recognition, time
series prediction, etc.

Data clustering,
dimensionality

neural network reduction, feature

extraction, etc.

self-organizing learning resonance theory (ART)

mechanism to form the network, etc.
feature representation of
input data.
It specializes in processing

graph-structured data, such Social network

as social networks and Graph convolutional analysis,
Graph neural molecular structures, and network (GCN), graph recommendation
network captures local and global attention network (GAT), system, chemical
features of graphs through etc. molecular property

information transmission prediction, etc.

between nodes.

4.2 Deep Learning (DL)

The research and application of deep learning in the field of gas turbine fault diagnosis, through
automatic extraction of data features and modeling of complex nonlinear relationships, has significantly
improved the accuracy, real-time, and generalization ability of fault detection [115-117]. Extreme learning
machine is a single-hidden layer feedforward neural network with an input layer, hidden layer, and output
layer, which is shown in Fig. 6 [46].

Traditional methods rely on manual extraction of time-domain and frequency-domain features (such
as mean, variance, spectral peaks), whereas deep learning models like CNNs and LSTMs can directly learn
multi-level features from raw data (vibration signals, images, logs, etc.), reducing dependence on expert
knowledge. Industrial equipment failures typically manifest as complex nonlinear dynamic processes, where
deep learning models can capture latent patterns that traditional methods struggle to model. By integrating
multi-source data such as vibration signals, temperature, pressure, and acoustic signals through multimodal
fusion networks, diagnostic robustness is enhanced. End-to-end deep learning models can be deployed on
edge devices for real-time monitoring, while transfer learning techniques enable rapid adaptation to new
equipment or operating conditions, reducing the cost of data annotation [118-120].
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Output layer

Input layer

Training dataset Hidden layer

The topological architecture of original ELM

Figure 6: The typical architecture of an extreme learning machine

When the number of samples in one class in a dataset is significantly smaller than that in another
class, the model may tend to predict the majority class, leading to a decline in classification performance for
the minority class. SMOTE (Synthetic Minority Oversampling Technique) is a classic algorithm designed
to address class imbalance in datasets. It enhances the model’s ability to recognize the minority class by
generating synthetic samples to increase the quantity of minority class samples [82].

To address the ‘black box’ nature of deep learning, researchers are developing explainable AI (XAI)
techniques, such as SHAP values, to interpret model decisions. Additionally, incorporating physical domain
knowledge into deep learning models can improve transparency and trust in safety-critical systems.

4.2.1 Convolutional Neural Network (CNN)

CNN is one of the representative algorithms in the field of deep learning, which can perform convolu-
tional calculations, excel at extracting image features, and perform exceptionally well in image classification
tasks. A convolutional neural network (CNN) primarily consists of an input layer, convolutional layers,
pooling layers, fully connected layers with Softmax activation, and an output layer as shown in Fig. 7 [87].
The core component of CNN is the convolution-pooling layer. Convolutional layers extract features by
applying convolution kernels to input images, featuring weight-sharing characteristics that reduce network
parameters and prevent overfitting caused by excessive weights. Pooling layers reduce neural network
parameters by compressing features extracted from convolutional layers through downsampling. Common
pooling operations include maximum pooling and average pooling [97,99,121].

Fully connected

layer
Convolution layer 1 Convolution layer 2

Output layer

Pooling layer 1 Pooling layer 2

Input layer

Convolutions Max pooling Convolutions Max pooling

Figure 7: Architecture of a convolutional neural network. Reprinted with permission from reference [87]. © 2023
Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics
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CNN, renowned for its powerful deep feature extraction capabilities that eliminate the need for tedious
manual feature extraction, has been adopted by researchers worldwide to diagnose gas turbine health status.
Conventional CNN models typically employ Softmax activation functions in their final layer to transform
input values from previous layers into outputs. However, the Softmax function may cause gradient vanishing
or explosion, which can hinder model training. Additionally, this approach increases model complexity and
computational costs when handling tasks with multiple categories.

The superior classification capability of CNNs stems from their ability to learn rich feature repre-
sentations from large annotated datasets. However, this characteristic currently limits CNN applications
in scenarios with limited sample sizes. A transfer learning approach combining Convolutional Neural
Networks (CNN) and Support Vector Machines (SVM) is demonstrated to efficiently transfer the feature
representations learned by CNNs on large-scale annotated normal gas turbine datasets to fault diagnosis
tasks with limited data [15]. A mapping method is designed to extract fault dataset features by leveraging
internal layers trained on normal datasets, while employing SVM for fault detection. Experimental results
show that despite differences between the two datasets, the transferred feature representations significantly
enhance fault diagnosis performance while markedly reducing individual variations and data noise effects.
Moreover, the internal layer of the CNN can act as a generic mapper, which can be trained on one annotated
dataset and then reused on other target tasks, as shown in Fig. 8.

Training set Source task
T
Training samples Convolutional Pooling Fully-connected layers
layers layer Source task
1:Feature| |[ Nomal™Nomal | labels
learning | | === S g FCé ' Normal
+
Generic Mapper Classifier
\ 4
2:Feature Transfer Classifier
transfer parameters replaced
Mapped feature Ta; gztltaSk
Tag samples abels
-
3:Classifier —» C1-C2 » S3 —>» —» SVM —>
casettor | _Leora
Nagma | @ S>—mm— —_—— e mndaex
TAT index Generic Mapper New classifier
e ”
Tag set Feature space
Vv Y
Target task

Figure 8: Transferring parameters of CNN. Reprinted with permission from reference [15]. © 2019 Elsevier Ltd. All
rights reserved

4.2.2 Long Short-Term Memory (LSTM)

LSTM (Long Short-Term Memory) is a special type of recurrent neural network (RNN) specifically
designed to address the issues of gradient vanishing and gradient explosion encountered by traditional RNNs
when processing long sequence data. A general view of an LSTM is shown in Fig. 9. This enables it to better
capture and learn long-term dependencies within sequential data [73,122,123]. In recurrent neural networks
(RNNs), the output of neurons is determined by weights, biases, and activation functions through a chain-like
structure with fixed parameter settings at each time step. When processing longer sequences using gradient
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descent optimization for weights, the system must consider information from all preceding time points while
accumulating loss function values. Additionally, the application of activation functions requires derivative
calculations, which involve multiplying activation functions. This computational process makes RNNs prone
to issues like gradient explosion or gradient disappearance, rendering them unsuitable for handling long
sequence data [2,7,123].

Network
layer

Figure 9: A general view of an LSTM. Reprinted with permission from reference [50]. © 2024 Elsevier Ltd. All rights
reserved

To address the limitations of recurrent neural networks (RNNs), researchers developed LSTM by
enhancing RNNs. The LSTM architecture introduces three gate mechanisms: forget gate, input gate, and
output gate—to regulate information flow, along with a state transfer mechanism for storing transmission
states. These gate structures enable precise control over which information to retain, forget, or update at
each time step, effectively resolving long-term dependency issues in RNNs and overcoming challenges like
gradient explosion and vanishing gradients in long sequence data processing.

4.3 Knowledge-Based Fault Diagnosis

Knowledge-based fault diagnosis methods establish knowledge bases by accumulating effective experi-
ence and expertise. Through continuous monitoring of equipment status, classifiers analyze observed data
to determine how closely the equipment operational conditions match predefined knowledge base entries.
This matching evaluation enables accurate fault detection. Current knowledge-based approaches primarily
include expert systems, fault tree analysis (FTA), signed directed graphs, and fuzzy logic.

This kind of method is highly interpretable, in line with engineering logic, has low dependence on
data, adapts to structured problems, security and compliance assurance. However, the disadvantages of
this approach are also obvious. The cost of knowledge acquisition and update is high, the ability to deal
with unknown faults is poor, the modeling of complex systems is difficult, and the ability to recognize
complex patterns is insufficient. The advantages and disadvantages of this fault diagnosis method are shown
in Table 10.

Obviously, knowledge-driven approaches demonstrate significant advantages in interpretability, secu-
rity, and data efficiency. However, their implementation remains constrained by knowledge acquisition
costs and complex pattern processing capabilities. Looking ahead, the advancement of hybrid intelligence
technologies will further expand their application scope, particularly in scenarios requiring high reliability,
compliance, or human-machine collaboration, where they will continue to play a pivotal role.
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Table 10: The features of Knowledge-based fault diagnosis

Fault diagnosis

A Di
method dvantages isadvantages

Requires extensive accumulation of

domain expertise. The system’s size
Rapid fault diagnosis, reducing both pertt Y8 ,
) i . grows exponentially with increasing
Expert systems  time and costs. enhanced diagnostic .
e fault patterns, resulting in
capabilities and accuracy. e . .
prohibitively high computational

costs.
Detailed examination of system

. . _ Required substantial fault data and
components to identify potential

Fault Tree . oy probabilistic information as analytical
) failure pathways and critical nodes, i .
Analysis e . support, effective analysis and
facilitating system improvement and . . )
N diagnosis may be challenging.
optimization.
Required substantial computational
Effectively illustrates fault logic d comp
. . . resources and analytical workloads,
. relationships, enabling both forward A . .
Directed graph ; . resulting in suboptimal efficiency and
. and backward reasoning, efficiently . . .
notation e 1 ! accuracy in fault diagnosis. demanded
extracts critical information through ° ) .
. _ specialized technical expertise and
integrated search methodologies. _
increases labor costs.
Effectively handle problems with Complex mathematical operations and
high uncertainty that are difficult to logical reasoning, leading to high
Fuzzy logic describe precisely, strong robustness computational complexity for
¥708 against data noise and large-scale, challenges in parameter
incompleteness, holds significant selection and suffers from poor
application value. interpretability.

4.4 Information Fusion

Information fusion is an information processing technology that integrates data from multiple sources
through computer analysis guided by specific criteria, aiming to obtain more valuable, complete, and accurate
information than any single source. The development of information fusion technology originated in the
1970s, when it was synonymous with data fusion. However, with the rapid advancement of information
technology, the definition of information has expanded significantly. Consequently, information fusion now
encompasses not just data integration but also multi-sensor fusion, image fusion, feature fusion, classifier
fusion, and other aspects. Research in this field primarily focuses on two core areas: information fusion
patterns and algorithms. The foundational models and frameworks of information fusion determine how
data is organized, processed, and integrated. Meanwhile, fusion algorithms serve as the key implementation
methods, utilizing various mathematical tools and techniques to comprehensively process information from
different levels and sources.

Research in information fusion technology primarily focuses on two core domains: information
fusion patterns and algorithms. The system’s model and framework form the foundational architecture
of information fusion, determining how information is organized, processed, and integrated. Information
fusion algorithms, meanwhile, serve as the key implementation mechanism. These algorithms encompass
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various mathematical tools and techniques designed to comprehensively process information from different
levels and sources.

Among various fusion algorithms, estimation theory methods hold a significant position. These
methods are primarily used for estimating and predicting target states, with the most representative being
Kalman filters and their extended variants. In addition to estimation theories, uncertainty reasoning methods
constitute another major category in information fusion. Such approaches focus on processing uncertain
information through frameworks like fuzzy theory, probability theory, and evidence theory. They effectively
address uncertainties and ambiguities in information, thereby enhancing the accuracy and reliability of
fusion outcomes. Table 11 shows the information fusion algorithm.

Table 11: Information fusion algorithm

Uncertainty reasoning method Intelligent algorithm Estimation theory method
Genetic algorithm Kalman filter
Bayesian th Th f t
ayesian theoty corTy of grey systetis State estimation method
D-S evidence theory support vector machine

Information entropy theor
Fuzzy inference algorithm Py y
neural network

Theory of possibility

With the advancement of sensor technology, it has become feasible to deploy numerous sensors on
target equipment to collect multidimensional operational data. The fusion diagnosis method, integrating big
data and deep learning technologies, aims to enhance both the efficiency and accuracy of fault detection. By
consolidating data from diverse sources, this approach provides deep learning networks with richer input
data, significantly improving their capability to diagnose equipment failures. Information fusion technology
proves particularly effective in managing complex industrial systems, where coordinated efforts among
various sensors and data sources enable comprehensive solutions for predictive maintenance and health
monitoring. This methodology can be implemented at multiple levels, with fusion diagnosis primarily
applied across three tiers: data layer, feature layer, and decision-making layer in Fig. 10.

Sensor 1 Feature extraction Classification identification

Monitorin, Data . Feature P e Decision
. & Sensor 2 . Feature extraction . Classification identification .
facilities fusion fusion fusion

Sensor n Feature extraction Classification identification

Figure 10: Flow charts of three information fusions

(1) Data layer fusion

Data layer fusion represents the most fundamental integration approach, processing acquired data
directly without complex analysis. It involves collecting diverse raw data types from multiple measurement
points, such as sound, vibration, and stress measurements. These data are consolidated into a unified dataset,
where feature extraction and fault classification enable integrated fault diagnosis. This method’s advantage
lies in preserving maximum data integrity while delivering optimal diagnostic outcomes. However, it requires
substantial data volume, excessive redundant information, and demands significant time investment for
analysis. Moreover, this approach is limited to integrating signals of a single type.
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(2) Feature layer fusion

Feature-layer fusion, as an intermediate-level integration approach, combines multi-source data by
extracting individual features from each source. Through methods such as feature dimensionality reduction
and the combination of feature vectors, it generates a fused feature set for fault characteristic extraction.
This method significantly reduces redundant information, enabling real-time processing while integrating
multiple signals. However, it inevitably loses partial information during the fusion process.

(3) Decision-making layer fusion

Decision fusion represents the highest-level integration. After each sensor acquires data and generates
corresponding classification results, relevant fusion algorithms synthesize multiple diagnostic outcomes
to produce a final diagnosis. This method demonstrates strong anti-interference capabilities, maintaining
accurate results even when partial sensors malfunction. Common decision fusion approaches include
D-S theory criteria, Bayesian inference, and fuzzy set theory. The D-S theory criteria excel in handling
information uncertainty representation and comprehensive analysis, making them widely adopted in fault
diagnosis applications.

While information fusion technology has been extensively researched and applied across multiple
domains, a unified theoretical framework remains lacking to precisely define various fusion systems. The
diagnostic framework for information fusion is not a rigid process but rather a natural reasoning mechanism
that relies on rich data and enhances information quality through systematic abstraction concepts. The
methodologies encompassing information fusion are remarkably diverse, spanning not only mathematical
fields like category theory, uncertainty theory, and mathematical logic, but also computational domains such
as ontology and algorithmic theory. Therefore, constructing a comprehensive formal framework to fully
describe and analyze information fusion technologies presents significant challenges, requiring in-depth
analysis and customization tailored to specific application scenarios and requirements.

5 Conclusion

Gas turbine fault diagnosis technology plays a vital role in ensuring the safe and reliable operation of
gas turbines. In recent years, with the rapid development of interdisciplinary integration and automation
technologies, the accuracy and real-time performance of fault detection have been significantly enhanced.
This paper reviews the latest advancements in this field, particularly emphasizing the application of multidi-
mensional data feature extraction, cluster analysis, and adaptive optimization algorithms in fault detection.
The conclusions drawn are as follows:

1. Model-based methods rely on accurate mathematical modeling, but in the face of complex gas turbine
systems, it is difficult to establish high-precision models that can adapt to variable working conditions,
and the maintenance cost of the model is high.

2. The data-driven method excavates data features through statistical analysis and machine learning
technology, which improves the flexibility of diagnosis, but it relies heavily on the integrity, quality, and
comprehensiveness of data collection. Data loss or noise may aftect the diagnostic effect.

3. Deep learning method has outstanding performance in gas turbine fault diagnosis due to their powerful
feature extraction ability, but it has some problems, such as high demand for computing resources,
long training time, and opaque decision-making process, which still need improvement in application
scenarios with high safety requirements.

Future research should focus on hybrid models that integrate physical fault mechanisms with data-
driven techniques to improve interpretability and robustness. Additionally, real-time multi-fault diagnosis
systems and transfer learning approaches for cross-domain applications are promising directions to explore.
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With the advancement of diagnostic technologies, model optimization has emerged as a critical
approach to enhancing fault diagnosis performance in gas turbines. Future research should focus on inte-
grating physical models with data-driven methodologies to improve diagnostic accuracy and applicability.
The following aspects require particular attention:

1. In feature selection, automated methods like recursive feature elimination have improved diagnostic
efficiency, but they may still miss critical features in complex systems. Furthermore, while deep learning
models excel at feature extraction, their current lack of effective physical constraints makes some
extracted features difficult to interpret physically.

2. Interms of parameter optimization, the selection of hyperparameters has a significant impact on model
performance, but it still mainly relies on experience or grid search, and it is difficult to find the optimal
balance between calculation efficiency and diagnostic accuracy.

3. Although the fusion model can combine the advantages of various methods, it still has some challenges
in determining the weight of the model combination, and increases the calculation complexity.
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