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ABSTRACT: With the advent of sixth-generation mobile communications (6G), space-air-ground integrated net-
works have become mainstream. This paper focuses on collaborative scheduling for mobile edge computing (MEC)
under a three-tier heterogeneous architecture composed of mobile devices, unmanned aerial vehicles (UAVs), and
macro base stations (BSs). This scenario typically faces fast channel fading, dynamic computational loads, and energy
constraints, whereas classical queuing-theoretic or convex-optimization approaches struggle to yield robust solutions
in highly dynamic settings. To address this issue, we formulate a multi-agent Markov decision process (MDP) for an
air-ground-fused MEC system, unify link selection, bandwidth/power allocation, and task offloading into a continuous
action space and propose a joint scheduling strategy that is based on an improved MATD3 algorithm. The improvements
include Alternating Layer Normalization (ALN) in the actor to suppress gradient variance, Residual Orthogonalization
(RO) in the critic to reduce the correlation between the twin Q-value estimates, and a dynamic-temperature reward
to enable adaptive trade-offs during training. On a multi-user, dual-link simulation platform, we conduct ablation and
baseline comparisons. The results reveal that the proposed method has better convergence and stability. Compared with
MADDPG, TD3, and DSAC, our algorithm achieves more robust performance across key metrics.

KEYWORDS: UAV-MEC networks; multi-agent deep reinforcement learning; MATD3; task offloading

1 Introduction

With the continuous evolution of 5G and 6G, cellular services have expanded from “human-
information” to “things and intelligence,” and coverage has transitioned from purely terrestrial to
space—air-ground-near-space connectivity [1]. In the IMT-2030 vision [2], future networks demand high
computing capacity, ultralow latency, and native intelligence. MEC is regarded as a key enabler for
low-latency and customized services. However, traditional terrestrial BS deployments are limited by site
acquisition, power, and fibre backhaul, making elastic coverage difficult in emergency response, disasters,
event hotspots, or rural areas. Low-altitude UAV's, with agility, high-quality LoS links, and rapid deployment,
can carry lightweight edge servers to form mobile computing nodes in the air. With ground MEC nodes and
the core cloud, low-altitude UAVs constitute a three-tier air-ground fused computing fabric [3].

Because MEC-equipped UAVs are integrated, coverage, latency, and elasticity are improved. Compared
with fixed edge nodes, UAVs provide strong mobility, rapid deployment, and 3D reconfigurability (position
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and attitude), enabling on-demand temporary coverage for events, emergencies, and rural weak-coverage
areas. The elevated LoS links of UAVs yield better channels and lower access latency, which are suitable
for ultra-low-latency and highly concurrent services. Offloading some of the computation to nearby UAV's
reduces backhaul overhead, decreases end-to-end latency, and decreases terminal energy consumption.
When coverage is absent or BSs are impaired, UAVs—as components of non-terrestrial networks—can
quickly establish continuous service at a manageable cost. Coordinated multi-UAV and ground MEC systems
significantly improve throughput and task success rates [1,3-5]. These benefits, however, result in higher-
dimensional states, stronger resource coupling, and stricter multiconstraint management, making online
joint optimization central.

In an air-ground fused system, mobile devices, UAVs, and BSs are tightly coupled in wireless channels,
computing slack, energy budgets, and task loads, resulting in high nonstationarity. Achieving millisecond-
scale joint optimization over link selection, bandwidth shares, transmit power, and UAV trajectories becomes
a new challenge in 6G N'TN settings [4].

First, states are highly time-varying and noisy: UAV mobility causes frequent LoS/NLoS transitions,
with shadowing/multipath inducing sharp channel fluctuations; traffic arrivals are bursty and spatially
skewed, creating hotspots; and battery SoC, motor heating, and wind gusts dynamically decrease the available
flight time and alter onboard computing power and serviceable users [5,6]. Static, averaged models or preset
parameters are thus insufficient; scheduling must adapt online. Second, resources and topology are strongly
coupled: per-slot decisions jointly determine link choice, bandwidth shares, power, and local/edge CPU
frequencies; UAVs and BSs share spectrum and time, causing cross-layer interference; and UAV queues
limit each other, and hard limits on access channels and backhaul create bottlenecks resulting in congestion,
rapid energy drain, task backlog, and handover costs [7]. Third, hard constraints coexist with QoS targets:
balancing latency, throughput, energy, reliability, and fairness while respecting spectral masks, interference
thresholds, queue stability, deadlines, flight safety and no-fly zones, minimum reserve energy and return-
to-base constraints; many critical states are only partially observable with delay/noise [8]. These realities set
performance ceilings and pose rigid challenges to connecting density and service continuity.

Current practice emphasizes system-level coordination, e.g., building a multilayer edge fabric, via
3D UAV mobility to stand up hot spot cells and compute near data, and easing backhaul and queuing
delay [1,3,4,6]. Multi-UAV collaboration and spatial reconfiguration of service pointsvia formation parti-
tioning, dynamic trajectories, and service migration—balance load, and immersive services push rendering
forwards to compress end-to-end delay [5,6,9]. When backhaul is limited or shadowing is severe, air-to-
air/air-to-ground multihop relays deliver tasks to better nodes; extended to space-air-ground clusters, this
yields cross-domain continuity and robust backhaul [10,11]. Robustness can be further improved with RIS-
aided interference rejection, security-aware deployment, and network slicing, with transfer learning and
partially observable decision-making for cross-scenario adaptation [8,12-14].

Despite progress, practical gaps remain: limited onboard computing and energy tightly couple queues
and power on UAVs; under hotspots or backhaul impairments, UAV queues can quickly develop, increasing
the return/swap frequency and negatively affecting service continuity [3,9]. Cross-layer coupling persists:
under dual connectivity, bandwidth division, interference thresholds, UAV-BS backhaul occupancy, and
uplink scheduling interact to form bottlenecks; multi-user concurrency is bounded by hard access/backhaul
limits, inducing congestion, rapid energy drain, and backlog [4,5]. Multiple engineering constraints and
stringent real-time QoS targets coexist; key states are often partially observed with delay/noise [8,15]. Cross-
domain governance and O&M—slicing isolation/SLA compliance, space-air-ground clock alignment,
backhaul redundancy and failover—have not been systematized [1,11].
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Classical optimization and game-theoretic methods rely on stationarity or relaxations and scale
poorly to high-dimensional continuous joint actions under partial observability. Online control provides
stability but is short-horizon and sensitive to hand-tuned multipliers; heuristics are brittle across scenar-
ios. Discrete-action MARL requires joint discretization of multiple resources, causing granularity loss or
action-space blow-up. Prior MADDPG-style works show feasibility but face instability and seldom offer
queue-stability guarantees or deployment guidance. These gaps motivate our centralized training with
decentralized execution (CTDE) based continuous-action design with explicit queue/violation shaping and
practical deployability.

Our contribution is an online cooperative scheduling scheme for air-ground-fused UAV-MEC under
CTDE hierarchy. During training, the ground side aggregates global information to update policies; dur-
ing execution, UAVs and devices act independently with lightweight messaging, reducing backhaul and
inference latency. Mechanism-wise, we

(i) build a UAV-MEC system model to support DRL training/validation;

(ii) introduce an ALN-Actor to suppress feature distribution drift and gradient jitter while balancing
inference latency and representation;

(iii) use an RO-Critic with twin-Q residual orthogonalization to reduce the estimator correlation and
tighten the upper bound of the value;

(iv) design a dynamically reward temperature to enforce hard constraints early and enable fine-grained
optimization later.

The remainder of this paper is organized as follows: Section 2 reviews related work on air-ground-
fused MEC, multi-UAV coordination and service placement, classical optimization, and multiagent DRL
in wireless/MEC. Section 3 presents the system model and assumptions. Section 4 details the proposed
MATD3-all framework. Section 5 describes the experiments (setups, baselines, metrics, results, ablation, and
sensitivity). Section 6 concludes and discusses limitations and future directions.

2 Related Work

For air-ground-fused UAV-MEC systems, the literature has created a distinct taxonomy across sys-
tem modelling, resource orchestration, and intelligent control. Azari et al. [I] surveyed the evolution of
non-terrestrial networks from 5G to 6G, highlighting three-dimensional heterogeneous coverage with low-
altitude platforms, terrestrial macro cells, and the core cloud, and summarized spectrum and backhaul
codesign. Xia et al. [3] provide a resource-management perspective on UAV-enabled edge computing,
articulating “channel-bandwidth-power-compute” coupling for offloading and coordination and laying out
constraints and metrics, which support subsequent learning/optimization formulations.

Deep reinforcement learning (DRL) learns policies end-to-end without explicit modelling and has
achieved breakthroughs in high-dimensional continuous control (e.g., games [16] and large-scale power
grid control [17]). In MEC, DRL addresses latency-constrained problems: Bertoin et al. [15] propose time-
constrained robust MDPs to maintain reachability and QoS under uncertainty and observation noise;
Chen et al. [18] embed Lyapunov-assisted DRL into joint trajectory/resource allocation for UAV-MEC by
converting stochastic arrivals and delay constraints into drift penalties in actor—critic objectives, yielding
online schemes that bound average delay and minimize energy. Lyapunov and constrained RL offer generic
tools to incorporate average constraints and safety margins [19,20]; Dai et al. [21] present Lyapunov-guided
DRL, which transforms queue stability and energy constraints into differentiable penalties with stability
guarantees. In practice, this transformation is often defined as “soft constraints + dynamic penalties”: larger
penalties early to reach feasibility and smaller penalties later to avoid spiky objective surfaces.
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With many concurrent users and coupled links, multiagent RL (MARL) has become the dominant
paradigm [22-24]. Zhao et al. [4] model each terminal as an agent to jointly learn link selection and
power control in UAV-assisted MEC, resulting in better elasticity/robustness than heuristics under strong
coupling. Du et al. [6] use CTDE via MADDPG for joint service placement and offloading in air-ground
integrated networks, mitigating nonstationarity during training with centralized critics and enabling low-
latency execution. Queue-aware rewards explicitly penalize backlog and violation to reduce tail latency
(e.g., Hevesli et al. [25]). Common to CTDE is the use of more information during training (centralized
critics) while maintaining lightweight decentralized execution, which is well matched to online control in
UAV-MEC [26].

To avoid overestimation and training oscillation in continuous action spaces, MATD3-based variants
have proliferated. Cao et al. [27] integrate attention into the centralized critic to focus on influential peers,
reducing variance and accelerating convergence. MATD3 inherits twin-Q and delayed policy updates and,
combined with CTDE, fits continuous, strongly coupled joint actions (bandwidth, power, and link selection)
well; thus, MATD?3 is a strong baseline for UAV-MEC resource coordination [28]. For scalability, Ma
et al. [29] presented engineering practices (parallel sampling, experience reuse, and structured nets) for
large-scale network control. Moreover, architectural advances—value decomposition, attention, and residual
decoupling—reduce estimator correlation and increase sample efficiency [30,31]. Layer normalization [32]
stabilizes deep policies/values by suppressing activation drift. To reduce online exploration costs and handle
strict safety margins, adversarially trained offline actor—critic and transfer learning support cold starts,
cross-region reuse, and partial observability [33].

Recent UAV-MEC optimization research spans game-theoretic, online optimization, and heuristic
paradigms, each with distinct trade-offs: game-theoretic models seek Nash equilibria but require iterative
computation and often assume common knowledge—fragile under partial observability [34]; online opti-
mization (e.g., Lyapunov-drift minimization) offers stability guarantees yet tends to be myopic, lacking
long-horizon foresight [35]; and heuristics can degrade under dynamics without careful, scenario-specific
tuning [36]. In contrast, DRL learns policies whose value functions capture long-term consequences,
enabling anticipatory resource allocation. Prior MARL efforts for UAV-MEC (e.g., MADDPG-based
offloading [4,6]) demonstrate feasibility but suffer from gradient instability and value overestimation in
high-dimensional continuous spaces. Our CTDE + MATD3 approach natively supports continuous control,
mitigates non-stationarity via centralized critics, and keeps on-device execution lightweight; we further
introduce Alternating Layer Normalization (ALN) and Residual Orthogonalization (RO) to reduce gradient
variance and twin-critic correlation, together with a dynamic reward temperature schedule to curb constraint
violations. Collectively, these choices yield faster, smoother convergence and a steadier Pareto across
throughput, power, queue, and violations than the above alternatives in highly dynamic MEC-UAV regimes.

In addition, two representative directions deserve mention—ground-to-UAV sub-terahertz channel
measurement and modeling, which informs realistic air-ground link assumptions [37], and joint UAV
deployment and edge association for energy-efficient federated learning [38], which emphasizes system-
level training energy under mobility. We view these as complementary to our focus on unifying continuous,
tightly coupled control of association-bandwidth-power-CPU under CTDE, with queue/violation shaping
and lightweight deployability.

3 System Model

This chapter establishes a discrete-time, slotted system model for the UAV-assisted MEC setting,
termed the air-ground integrated collaborative computing model, which provides a unified mathematical



Comput Mater Contin. 2026;86(3):79 5

foundation for the subsequent algorithm design and performance evaluation. The system model is illus-
trated in Fig. . The air-ground integrated network consists of three layers of entities: a set of N ground
mobile terminals J = {1,2,...,N}, a set of M low-altitude unmanned aerial vehicles (UAVs) indexed by
M={1,2,...,M}, each UAV can carry an onboard edge-computing unit, and one terrestrial macro base
station (BS) equipped with an edge server. Tasks generated at a terminal can be executed locally, offloaded
over the air interface to a specific UAV, or offloaded to the BS; both the UAV side and the BS side maintain per-
user computation queues. The system operates in discrete time slots t € {0,1,2, ...}, within which sensing,
decision-making, and state evolution take place. We next develop the task-queuing and task-oftloading
models and finally present the long-term optimization objective.
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Figure 1: Air-ground integrated collaborative computing model

We adopt centralized training with decentralized execution (CTDE). During training, a ground con-
troller aggregates joint observations and actions to update the centralized critics; during execution, each
UAV relies only on local observations plus lightweight messages for on-device inference. Policy checkpoints
are versioned and periodically pushed to UAVs and terminals over secure links; a watchdog triggers rollback
to the last stable version in case of anomalies.

Within each time slot, the pipeline is observation — selection actions — inner resource solve - queue
update. Agents proceed in parallel and synchronize at shared constraints (e.g., bandwidth and concurrency
caps). This design preserves consistency while keeping runtime overhead low.

3.1 Task Queuing Model
3.1.1 Queuing

First, we model the task queues based on the task arrivals at the mobile terminals. In the air-ground
integrated collaborative computing model, let the number of tasks arriving at a mobile terminal in slot be
denoted by:

Ai(f) NPOiS(Ai),Ai(t)ERZO (1)

Second, we define three types of task queues in the system model. Let the local task queue at mobile
terminal i be Q;°°(¢), the UAV-side task queue be Q¥4 (), which corresponds to the m-th UAV;, and the BS-
side task queue be Q?*(¢). Each queue follows a first-infirst-out (FIFO) discipline and applies the nonnegative
truncation operator [x]* = max{x, 0}. The recursive update equations for the three queues are then given as



6 Comput Mater Contin. 2026;86(3):79

follows:

QP(t+1) = [Q°° (1) - By (1) = Uy (1) - U ()] + A; (1) (2)
uaV(t + 1) [ uaV (t) BUaV exe (t)] Uuav (t) (3)

QP (t+1) = [Q?S(f) =B ()] + U (1) 4)

where B{*“ (t) represents the number of bits that terminal i can execute locally in slot t; BY}"~“*¢ (¢) denotes
the number of bits the m-th UAV can execute in slot ; and B*~¢*¢(t) indicates the number of bits the BS
can execute in slot t. Moreover, U} (t) and UY(t) denote the numbers of bits offloaded (uplinked) from
the terminal to the UAV and from the terminal to the BS, respectively, in slot ¢.

The number of serviceable bits within a single slot ¢ is computed as follows:

B?XE (t) — ﬂloc (t) A

©)
uav A
pavese (1) - f it) (6)
bs
Bli)sfexe (t) - fl Sct) A (7)

where f1°° (t), f*av (t), f2*(t) represent the effective computation rates allocated to terminal i at the local
device, the m-th UAV, and the BS, respectively, and « denotes the number of CPU cycles required per bit.

3.1.2 Queuing Delay

Under steady-state and light-load assumptions, the average waiting delay of the computation task queue
can be approximated by Little’s law as follows:

Q< () Ly Q5 (1) . Q (1)
floc (t) m uaV (t) fbs (t)

K K K

T (1)

®)

To guarantee finite delay, we use mean-rate stability: if Tlim 1 YELE[Q(t)] < oo, the task queue is

deemed stable.

3.1.3 Virtual Queues

To suppress long-term overflow of the physical queues and facilitate online optimization, we explicitly
accumulate any excess above the threshold into virtual queues, yielding state variables that can be penal-
ized/controlled. For each mobile-terminal agent, we define two types of virtual queues—local and remote—as
follows:

Z%(t 4 1)& = [Z1°(1) + 22(Q (1 +1) - Q1) ©)
Z8 (¢ +1)& = [Z(8) + A(Q™ (£ +1) - Q1) "
where Z and Q share the same units. When the physical queue is below the threshold Q', the term in

parentheses is negative, and the operator [-]* prevents the virtual queue from growing; after the threshold is
exceeded, the surplus is accumulated into Z proportionally.
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By imposing a linear penalty on Z in the reward/cost, we obtain a smooth “hardening” effect—
penalizing when the threshold is exceeded and no penalty otherwise.

We set a backlog threshold Q™ that corresponds to an implicit delay/violation budget. When the
physical queue stays below Q' the virtual queue does not grow; excess beyond Q' is accumulated and
penalized linearly in the reward, yielding a differentiable soft hard-constraint. Specifically, (i) ablation
without virtual queues results in higher violation counts and heavier tails in delay; (ii) the virtual-queue level
tracks the risk of constraint overruns (bandwidth/concurrency caps), correlating with violation-rate metrics
used in practice. To operationalize the virtual-queue mechanism, we use an overflow-aware priority score
mi(t) = Zé(t,f) +ay Qé(t}f) +azAge;(t) — asSlack;(t) to rank users for Top-K and proportional resource
allocation with per-user caps. Persistent overflow triggers temporary priority boosts, spillover to the BS,

optional quality downscaling, and probabilistic deferral/drop for non-critical tasks with negative slack.

3.1.4 Queues Stability

Tasks arriving have finite second moments and the inner resource allocation (bandwidth, concurrency;,
power and CPU) admits a feasible set. The penalty weight and an annealing floor such that minimizing a
one-step Lyapunov drift upper bound yields bounded time-average backlogs for both physical and virtual
queues; by Little’s law, the average delay is bounded.

Using a quadratic Lyapunov L(t), we bound the one-step drift and combine it with the shaped
objective to obtain AL + VE[g;] < C- € ¥; E[Q;(t)], and where C, € > 0. The penalty is hard early (rapidly
steering policies into the feasible region) and soft late (smoothing gradients), which stabilizes backlogs
under dynamics.

3.2 Task Offloading Model
3.2.1 Task Offloading Actions

In the air-ground integrated collaborative computing model, the task-oftloading policy is implemented
under a centralized-training, decentralized-execution (CTDE) framework.

Under this policy, the i-th mobile-terminal agent, which is based on the slot state
8 = {Suav (t),8bs(t)}, outputs continuous actions in slot t and selects the association action A =

{ai (1), Bi ()}

Suav(t) = TopK ({s"*"i} i =17, Kuav), Sbs(t) = TopK ({sbsi} i =1~, Kbs) (11)
a; (t) =1{i e Suav(t)} (12)
Bi(t) =1{i e8Sbs(t)} (13)

where Kuav and Kbs denote the maximum concurrent access capacities of the UAV and BS, respectively.
When dual connectivity to both the UAV and BS is disallowed, the action of the terminal agent is limited such
that it satisfies a; (t) + 8; () <1, Yi. Moreover, prior to forming 8bs(t), users already selected for a UAV are
removed from the BS candidate set.

3.2.2 Transmit Power and Bandwidth

When terminal agent i has established an uplink to the UAV or the BS, it is allocated normalized
bandwidth shares b2 (¢) and b%(¢) in [0, 1], satisfying the following equation:

=i (1) <1, i =1V (1) <1 (14)
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The uplink transmit power of terminal i is denoted as P;(t) € [0, Pyax]-

3.2.3 Task Offloading Bits

Within each slot, terminal agent uploads some of its queued tasks over the air to a UAV or the BS.
We define the net number of bits that are successfully transmitted within the slot and admitted into the
corresponding edge queue as the offloadable task volume (in bits). The calculation proceeds as follows:

First, the channel gain in this model follows a distance-based path-loss model with log-normal
shadowing, specifically:
d; (t)
do

-
hi (t) = Bo ( ) xi (t),x € {uav,bs} (15)
where h? (t) denotes the effective power gain from terminal agent i to node x (UAV or BS), 3 represents
the reference gain at distance dy, d¥ () indicates the three-dimensional distance (m) between terminal i and
node x, 1 denotes the path loss exponent, and y7 (t) represents the log-normal shadowing factor.

Second, the uplink rate of the terminal agent i is computed as follows:

Pi (t) hy (f))

NObf (t) Bx (16)

Rj (t) = b (1) By log, (1 +
where B, denotes the total bandwidth available at node x (Hz) and b? (t) € [0,1] represents the bandwidth
share allocated to terminal agent i at node. Thus, b} () B, represents the actual subbandwidth, and
Nob? (t) B, denotes the corresponding noise power. P;(t) € [0, P,y | represents the uplink transmit power
of terminal i (W), and N, denotes the thermal-noise power spectral density (W/Hz).

Last, the numbers of bits offloadable to the UAV and to the BS are jointly limited by the access association
and the uplink rate, expressed as:

Uy (t) <a; (8) RS, (1) At (17)
U (t) < Bi (£) R} (1) At (18)

3.2.4 Task Offloading Latency

Within each slot ¢, terminal agent i can transmit bit volumes (U“®"(t), U (t)) over its respective
uplinks to the UAV and the BS. Let the link rates be (R“*"(t), Rb(¢)) (in bits/s). If terminal agent i employs
a single RF chain with time-division uploading (sequentially via the two links within the same slot), then the
pure transmission delay in that slot can be approximated as the sum of the two transmission times:

U () | UP ()
RE(6) R (1)

T (t) = (19)

The computation latency represents the pure processing time required for the bits assigned to each side
at their respective CPU frequencies. Assume that each bit requires \kappa CPU cycles. In slot t, the CPU
frequencies allocated to terminal agent i locally at the m-th UAV and at the BS are f/°°(t), T (t), and
fE5(t), respectively. If the numbers of bits scheduled for processing in this slot are X'°¢(¢), Xt (t), and
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XPs(t) (in bits, typically consistent with the service queue length or the number of new arrivals/offloads),
then:

TS™ (1) = K)IQ'OC (1) £y KX () N kX7 (t) 20)
flee(r)y Emo ey @) fE ()
The complete end-to-end latency of the system model can then be approximated as follows:
T () = T (1) + TP (1) + TP (1) (21)
3.2.5 Energy
The uplink transmission energy consumption of the mobile terminal is as follows:
EX(t) = P (t) At (22)
The local computational energy consumption of the mobile terminal is as follows:
E;™ (1) = &(f°° (1))’ At (23)

The energy consumption of the onboard edge-computing unit of the UAV is calculated as follows:

Ecmp(£) = e 30, (f™ (1)) At (24)

where «. represents an effective aggregate constant that accounts for efficiency losses due to intercore paral-
lelism.

The energy consumption for UAV reception and related communication overhead is as follows:
E™ (1) = 3, &exati (1) U™ (1) (25)

where &, denotes the per-bit energy constant for reception/processing.

The present energy model excludes UAV propulsion and counts only communication/compute terms
(Eqs. (22)-(27)). For short-range hotspot/emergency coverage, this approximation preserves comparative
conclusions; for long-range or highly maneuvering missions, a speed-dependent propulsion term should be
integrated in future work.

3.3 Optimization Objective

We aim to achieve low latency, low energy consumption, and few constraint violations during long-term
operation. Accordingly, in each time slot, we define three core quantities for use in the subsequent objective
and constraints.

The throughput in slot ¢ is defined as follows:
© (1) =3, (U™ (1) + U (1) + X (1)) (26)

Throughput (units: bit/slot or Mb/slot) is the sum of the bits offloaded to the UAV, offloaded to the BS,
and executed locally, indicating how much effective work is completed in the current slot.
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The total energy of the system includes four communication/compute components, with the specific
formulas given as follows:

E(t) =, (EX (1) + E™ (1)) + Edy, (1) + E™ (1) (27)

cmp

The task queue serves as a direct proxy for delay; by Little’s law, a smaller average queue length indicates
a lower average waiting time. The specific formula is as follows:

Qs (1) =, (QP () + Q% (1) + Q¥ (1)) (28)

3.3.1 Relevant Constraints
To better optimize the system objectives, we define the following constraints:

The bandwidth normalization constraint is as follows:

SBE(H) <L Y b (1) <1 (29)
Yo i (1) < Kuavs -, Bi (1) < Kig (30)

This constraint ensures that the allocated normalized bandwidth shares at the UAV and BS do not exceed
the available resources.

The concurrent access constraint is as follows:
a; (1) +Bi(t) <1 (31)

This limits the maximum number of users that can simultaneously access the UAV or BS.

The system energy budget constraint is as follows:
> (E™ (1) + E™ (1) + E&, (1)) < Gy (32)

The total communication and computation energy in each slot are limited to ensure that they remain
within the allowable system budget.

Dynamic coupling between queues, constraints, and decisions. Spikes in arrivals A; increase backlogs
Q;(t) via Egs. (2)-(4). The policy raises link-selection scores «; (and f; for BS) and—if selected by
Top-K—proposes larger normalized shares b%2¥(¢)/b>(t) and transmit power P;(t), which boost R (¢)
(Eq. (16)) and U7 (¢t) (Eq. (17)) to drain queues. Bandwidth normalization and concurrency caps (Eqs. (29)
and (30)) enforce }; by*' <1,3; b'l?s <land }; a; < Kyay> 2.; Bi < Kps, inducing competition; the energy
budget (Eq. (32)) further couples aggressive offloading with battery drain. These trade-offs are handled
by the inner-loop solver and reinforced by the drift-plus-penalty framework introduced below. The actor
observes s;(t), and uses the shaped reward defined below to balance short-term queue relief with long-term
energy/feasibility.

3.3.2 Long-Term Constrained Optimization Objective

Under random arrivals and time-varying channels, the policy (which may be stochastic and nonlinear)
induces a Markov chain that renders the cost process stable. We minimize the time-averaged composite cost
as follows:

1 T-1

min] () = Tlir?o T Yo E [wy > (Qi»oC (£) + Q™ () + weE (t) —wg® (1)] (33)
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Given weights w = (w4, W, wg) > 0, w, penalizes the backlog to reduce delay, w, suppresses energy
consumption, and wy rewards throughput.

3.3.3 Drift-Plus-Penalty (DPP) and Reward Shaping

To ensure queue stability and enable online optimization, we use the Lyapunov drift-plus—penalty
method. The quadratic Lyapunov function, including physical queues and delay-related virtual queues, is
chosen as follows:

L= 53, ((Q(0) + (Q (1) + (Z05(0)* + (28 (1))?) 64)
Let the one-step conditional drift be:

A(t)=E[L(t+1)-L(t)] stateat t] (35)
Then, in each slot, we minimize the following upper bound:

minA (t) + V -E[w.E (t) —wg® (t) + B (t) - ¥ (1)] (36)

where V' > 0 represents a trade-off parameter and W (t) aggregates the instantaneous excesses of all the soft
constraints (e.g., positive parts of ¥°; 6% (t) =1, ¥, b (t) = 1, ¥; ai(t) — Kyav> 2 Bi () — Kps, and a; () +
Bi(t) — 1 when the dual connectivity is disallowed), passed through a differentiable saturation function, and
we can use a dynamic exponential annealing schedule.

t
B(1) = ﬁo-exp(—@) (37)
Tp
For compatibility with policy gradient methods, the problem is equivalently written as maximizing the
per-slot reward:

r(t) =we®(t) —w E(t) —wy ). (Ql-OC (1) + Q™ (t)) - B(t)¥(1) (38)

Assume: (Al) exogenous arrivals have finite second moments; (A2) the per-slot inner resource subproblem is
feasible and the action set is compact; (A3) a Slater condition holds—there exists a stationary policy that strictly
satisfies all long-term constraints with slack €y > 0; and (A4) the penalty weight/temperature 3 (t) in Eq. (36) is
bounded and eventually lower-bounded by 3,,i, > 0 (the “hard-early or soft-late” schedule plateaus to a positive
floor). Let L(t) =1/2%; (Q7(t) + Z#(t)) be the quadratic Lyapunov function over physical queues Q; and
virtual queues Z;, and let A(t) = E[L(t +1) — L(t) | state at t] denote the one-step drift.

Proposition 1: Under (A1)-(A4), the policy induced by the drift-plus-penalty objective (Eq. (36)) that approx-
imately minimizes the per-slot upper bound ensures there exist constants C < oo and € >0 such that, for
sufficiently large t, A (t) + VE [penalty (£)] < C-€ Y, E[Q; (t) + Z; (t)]. Hence all physical and virtual
queues are mean-rate stable; by Little’s law, long-run average delays are finite.

4 UAV-MEC Cooperative Scheduling Model Based on MATD3-all

Building on the system modelling in Section 3, we formulate the joint resource allocation problem
among mobile terminals, UAVs, and the BS in the air-ground integrated setting as a multiagent MDP under
a centralized training, decentralized execution (CTDE) paradigm. We subsequently use MATD3 as the core
training framework and incorporate an actor network with alternate layer normalization (ALN), a critic
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network with Q-value residual orthogonalization (RO), and a dynamic reward temperature mechanism. The
result is a cooperative scheduling model that achieves stable long-term convergence and robust decision
performance in highly dynamic environments. We refer to this integrated, improved model as MATD3-all,
as elaborated below.

4.1 Multi-Agent MDP (CTDE) Modelling

In the air-ground integrated UAV-MEC scenario, ground mobile terminals, low-altitude UAVs, and
the BS make parallel decisions over a shared three-dimensional wireless resource pool, forming a multiagent
interaction pattern. For a convenient DRL formulation, we abstract the system as a multiagent Markov
decision process (MMDP), which can be represented by a tuple M as follows: M = (N, S, A, P, 1, y), where
N ={nj,ny,...,n;} represents the set of mobile-terminal agents. The decision model follows the CTDE
architecture: During training, the critic networks centrally access the global state-action set, whereas during
execution, each user agent acts independently on the basis solely of its local observations.

Observation and joint state space S. The local observation of the i-th user agent in slot t is as follows:
5i (1) = [H{™ (1), B (1), QP (), Q™ (1), Z1° (1), Z™ (1)] (39)

The joint state during training is S(t) = {s; () }Y,.

Action space A. Each user agent outputs continuous action scores:

a;(t) = [score?™(t),score>(t)] € [0,1]? (40)
The environment applies a top-K mapping to obtain binary associations:

a; (t) = 1{i € TopK ({score""j} ,Kuav)}, B; (t) = 1{i € TopK ({scorebsj} ,Kbs)} (41)

When dual connectivity is disallowed, «; () + 8;(#) < 1is enforced. Subsequently, continuous resources
such as bandwidth, power, and CPU frequency are determined by solving a near-convex inner subproblem
within the environment to obtain a feasible optimum, after which the queues are updated.

The transition dynamics P are jointly determined by the channels, arrivals, queues, and resource
subproblem; the reward function is r, and the discount factor is y € (0,1).

4.2 MATD3 Training Procedure

MATD3 is a robustness-improved variant of MADDPG for continuous action spaces. During training,
each agent is equipped with two centralized critics to curb overestimation via the “twin-Q” mechanism; the
actor is updated with delayed policy updates to reduce policy jitter; and target policy smoothing is applied
to the target branch to mitigate high-frequency oscillations of target networks. In multiagent RL, two major
pain points are nonstationarity and credit assignment. Because the policy of every agent continues to change,
the environment appears to drift for any single agent, while the global reward is difficult to decompose.
The CTDE paradigm addresses this challenge by letting centralized critics read the joint state—action during
training to better reflect true dynamics and provide consistent gradients to all agents, whereas at run time,
each terminal acts decentrally from local observations with very low communication and inference overhead.

To further increase sample efficiency and generalizability, we use parameter sharing for actors among
homogeneous users and use a shared replay buffer to store joint transitions (S, A, r,S"), preserving cross-
agent correlations while avoiding distribution shifts during training; a reward decomposition is used to
ease credit assignment. On this backbone, we add two stabilizers: ALN in the actor to renormalize the
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activation layer-by-layer and reduce the gradient variance under delayed updates and RO in the critics
to decorrelate the TD residuals of the twin Q-networks via in-batch orthogonal projection, alleviating
value overestimation. Overall, twin-Q, delayed updates, and target smoothing in MATD3—combined with
CTDE, parameter sharing, reward decomposition, and ALN+RO—yield both training stability and real-time
decision efficiency in the high-dimensional, strongly coupled, partially observable UAV-MEC setting.

For implementation and reproducibility, we detail one gradient-update step: how targets are built, how
losses are defined, and how update rhythms are arranged. From the shared replay buffer, a mini-batch (S, A,
r, §') is sampled. The target actor is used to perform policy smoothing and obtain noisy target actions. Both
target critics are evaluated, and the minimum is used to suppress overestimation. The current critics are fit
to the target with MSE, and the RO regularizer is added. The actor is updated with a delay using Critic-1 as
the surrogate objective. Formally:

Targeted actions and twin-Q targets. Given a batch (S, A, r, §), the smoothed target actions is computed
as follows:

A" =1 (S") +clip (6, —c,¢) e~ N(O,az) (42)
The target value is then obtained as follows:

y=r+ymin(Q'¢:(S",A"), Q"¢:(S", A7) (43)
The critic loss is as follows:

Lyiatps = MSE (Qq, (S, A), y) + MSE(Qq, (S, A), y) (44)

Leritic = Lmatps + AroLro (45)

The actor loss is as follows:
Lactor = _ES [Q¢1 (S’ 7o (S))] (46)

Update the actor once every K, critic updates.

Soft updates are:
9'<—T9+(1—T)9,,¢;(<—T¢k+(1_7)¢;< (47)

The training loop follows the CTDE procedure: at each step, each terminal-side actor samples an action
from its local observation with Gaussian exploration noise.

a; =mg(s;)+ N(O, 02) (48)

The continuous outputs are linearly mapped from [-1,1] to [0, 1] to serve as scores for the two links.
The environment then performs Top-K association and solves the inner resource-allocation subproblem
(bandwidth/power, etc.) under concurrency and bandwidth-power constraints, yielding the transition
(S,A,r1,S"), which is written to the shared replay buffer. After enough samples have accumulated, a joint
mini-batch is drawn from the buffer, and target policy smoothing with the target actor is subsequently applied
to obtain target actions with clipped Gaussian noise. Computationally, each slot incurs O(N log N) for Top-
K selection and a worst-case O(p*) inner resource solve (near-linear O(p) — O(plog p) in practice under
structured projections), where N is the number of terminals and p the count of per-slot resource variables.
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The detailed code is as follows:

1 Initialize each agent.

2 Randomly initialize the twin critic networks Qq,_,, and their corresponding target networks Q,: .

3 Initialize the actor network mg and its target network mg, via a heuristic policy fit with a warm start.

4 Initialize the replay buffer B <« &

5 While episode < max_episode do:

6
7
8

10

1

12

13

14

15

16

17

18
19

20
21

22

23

Reset the environment and obtain the initial observations S

fort=0,1,2, ..., until episode terminal do

every agent performs the following action:
A(t) =mp (s;) + N (0,0%)
Apply A(t) to the environment to obtain the next state Sy.; and reward r,.
B« B U (S, Ay, 1y, Sey1, done)
if |'B| > B then
Sample from the buffer B
every agent performs the target action:
A’ =my (8') +clip (e, —c,¢) , e~ N (0, 0%)
compute the Q value:
(91,92) = Qg (S, A)
compute the target value:
y =r+ymin(Q'¢; (S, A7), Qb2 (S, A7)
compute the actor and critic loss:
Leritic = Lmarps + AroLro
Loctor = ~Es [Qg, (S, 6 (5))]
update the critic network parameters:
1(:12) = i(t) - 7\qV¢i(t)£critic
if step mod Kpol = 0 then

update the actor network parameters:
0" =08 — \o Vo Lactor
end if ‘
update the target network parameters:
¢ < 1hi+ (1-1) ¢, 0 < 10+ (1-1)0

Dynamic exponential annealing:

B Poexp(—72)

end for

24 end while
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4.3 Actor-Critic Network Architecture

Although the twin-Q and delayed policy updates of vanilla MATD3 help suppress overestimation,
several issues remain. The gradient variance of the actor increases with depth and dimensionality, making
“jitter—recoil” more likely after delayed updates; the TD residuals of the twin critics are highly correlated,
so even the min-Q target can oscillate and feed noise back to the actor; and fixed penalty weights cannot
simultaneously support the hard penalties needed early to enter the feasible region and the soft surface
needed later for fine-grained optimization. To address this issue, we propose a coordinated design of ALN-
actor + RO-critic + dynamic reward temperature, which stabilizes learning from three angles: gradient
denoising, value decorrelation, and adaptive penalization.

As shown in Fig. 2, the upper part corresponds to decentralized execution: Each user deploys a
lightweight actor (ALN-actor) with the alternating normalization backbone Linear-LayerNorm-Linear-
LayerNorm-tanh. The input is the local observation S (including link gains, physical and virtual queues);
the output is a continuous action A (scores for the two links), which is range-mapped and then fed to
the environment to perform Top-K association and address the inner resource allocation. The lower part
corresponds to centralized training: two shared critics and their target networks receive the joint state—action
pair, compute and target to form the TD target y, and backpropagate policy gradients to all actors. A residual
orthogonalization regularizer is imposed between the critics to reduce estimation correlation, while delayed
actor updates increase stability. All the interaction data are written to a shared replay buffer. During training,
critics can access global information; during execution, each actor relies solely on local observations while
adhering to CTDE. With ALN for denoising and twin-Q + RO for stabilizing value estimates, the method
achieves smooth, convergent policy learning in high-dimensional continuous control.

. .l
| RONAeri) [ ADNAder?) CRiNKewor i)
I : Linear L1 | : Linear L1 I : Linear L1 (-
| | ¥ | | v | | v [
I Layer | | Layer | | Layer | |
| Nor? N1 | | Non;n N1 | | Non;l N1 |
| | | | |
| : Linear L2 | : Linear L2 | : Linear L2 | |
. | . | " | | : o
| Layer | | Layer | | Layer |
|, (NormN2 | | NormN2 | | (NormN2 I
| | |
L | : | | Lol
| . ___l ___l - ____l |
i L ; l g l I
|
g (A (1) () !
I UE1 UE2 UEI |
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|
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! | Critic2 r—ﬂ garoet
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Figure 2: Actor-critic network architecture diagram
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4.3.1 Alternate Layer Normalization (ALN) Actor Network

With multiple users, the action dimensionality increases linearly with N. In a vanilla fully connected
actor, deep stacking tends to cause an activation distribution shift and increase gradient variance; coupled
with delayed updates, this manifests as “jitter-recoil” To alleviate this problem, we propose the ALN-actor
(see the upper part of Fig. 2). At execution time, each user deploys a lightweight actor whose architecture
repeatedly pulls activations back to a neutral scale layer by layer, markedly reducing gradient variance.

The input of the actor is the local observation s;(t) = {h{"*", hE’S, Q;, L;, Z}"C, 7}, and its output is a
pair of continuous scores a;(t) = [scorel'®’, score ]. After linear mapping to [0, 1], these scores are passed to
the outer top-K association and the inner resource allocation module.

ALN mechanism and numerical stability. The linear output of the I-th layer is expressed as follows:

B = wD (=1 (1) (49)

Feature-wise normalization is applied per-sample to it:

LN (h) :y(l)h% +ﬁ(1) (50)
o-+ €
x) = ReLU (LN (h1)) (51)

When the LayerNorm scale parameter is initialized as y{!) ~ 1, we obtain Var[ LN (h("))] = 1. Activations
are pulled back to a “neutral” scale layer by layer, decreasing the multiplicative amplification of Jacobians
1] and reducing policy-gradient variance. Because LayerNorm computes per-sample statistics only along
the feature dimension, its cost is O(d;), which is negligible compared with the O(d;_;d;) of a linear layer,
resulting in minimal additional runtime overhead.

Compatibility with CTDE/delayed updates. MATD3 updates the actor once every K, Critic steps
(delayed policy update). By continually renormalizing the activation scales, the ALN makes the single
parameter jump after the delay decreases and is better conditioned, mitigating the jitter and overshoot.

AB =-avVy](0) (52)

4.3.2 Q-Value Residual Orthogonalization (RO) Critic Network

Owing to strong nonstationarity, the TD residuals of the twin critics tend to shift in sync; their high
correlation makes min(Q;, Q,) oscillatory, which increases the noise backpropagated to the actor.

With strongly time-varying links/loads and sparse penalties, the TD residuals of the two critics are as
follows:
er=y—Qq (S, A) (53)
e2=y-Qy, (S, A) (54)
Because they often increase and decrease simultaneously, the correlation is high. As a result,

min(Q1, Q) still oscillates, feeding noise back to the actor and slowing convergence. Hence, the premise of
orthogonalization is to centre the batch (i.e., subtracting the batch mean).

1
Ek=ex——= ., Ckb (55)
3 ,
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The core idea is to strip from the second residual its component along the first residual, keeping only
the orthogonal part:

1 ~ <é2> él) ~

ey = e — e 56
R Y P o

where the inner product and norms are computed over the batch and ¢ > 0 ensures numerical stability.

The orthogonalized residual is appended as a regularizer to the critic loss:

1
Lro = 3 | ey | 2° (57)

Lcritic = Lyiatps + AroLro (58)

Intuitively, the first critic focuses on the principal residual, whereas the second critic is limited to fit
only the component orthogonal to the first critic (the complementary residual). This approach explicitly
reduces their covariance, yielding a more stable target min(Q;, Q,) and more consistent gradient directions
for the actor. The procedure operates only on batch-level vectors and adds no forwards parameters or
inference latency.

4.4 Dynamic-Temperature Reward Function

To jointly optimize throughput, energy, and delay while suppressing violations, we use a decomposed
reward structure comprising global cost + constraint penalty + per-agent gain.

(1) Log-compression and smoothing of the global cost

The objective Jopi(¢) output by the inner optimization subproblem (bandwidth/power/frequency
allocation) has a large dynamic range and is scale sensitive. We therefore use logarithmic compression and
smoothing as follows:

¢ (t) = -k, tanh (log (1 + ‘]Op;—(t”)) (59)

Cc

This compresses extreme values into (—x.,0), preserving the property that “better is closer to 0” while
avoiding gradient explosion.

(2) Constraint penalty and dynamic reward temperature

The constraint penalty is as follows:

() =Py [a+Bi =11+ P[>, b3 = 1]  + P[> b —1]" + - (60)
The penalty weight follows a dynamic exponential annealing schedule:
ste
B(t) =B exp(——p) (61)
B

Hard guardrails early on drive the policy quickly into the feasible region, whereas “softer” penalties later
facilitate fine-grained tuning.

(3) Per-agent gain and credit assignment
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To address credit assignment while steering the policy towards high throughput, low queuing, and low
power, we define a per-user term:
Q; (t
b; (t) = k¢, tanh (%) —x4Q; (t) — k. log (1+ P (1)) (62)
0
where ©; represents the effective throughput of agent i; Q; denotes its aggregate queue length; and P/*!
indicates its power proxy. The coefficients are chosen so that their units are on comparable scales.

(4) Instantaneous reward and CTDE alignment

Aggregating the above, the training-time per-slot reward is:
1
r(t) =we® (1) —wE (1) —wyQs (t) = (1) ¥ () + N Zi b; (t) (63)

During centralized training, the critics read the global r(¢) and the joint (S, A). During decentralized
execution, each actor makes decisions on the basis solely of its local observation s;(¢), with negligible
communication and inference overhead.

5 Experimental Validation

This chapter validates the proposed UAV-MEC cooperative scheduling strategy. We describe the
experimental setup, evaluation metrics, and baselines and then report and analyze the results across multiple
figures. Our experiments focus on continuous-control MARL baselines (TD3, DSAC, MADDPG, MATD3)
because the decision variables—association, bandwidth shares, transmit power, and CPU frequency—are
continuous and tightly coupled. Discrete MARL methods such as MAPPO/QMIX operate on discrete
action spaces; applying them here would require discretizing multiple resources jointly, which either yields
coarse bins that lose control granularity, or explodes the action space and training cost under the same
compute budget. To ensure a fair and tractable comparison, we therefore restrict empirical baselines to
continuous-action methods.

5.1 Experimental Setup

We use a self-built air-ground integrated UAV-MEC simulation platform with 10 ground terminal
agents, 2 UAVs onboard MEC, and 1 terrestrial BS. The system operates in discrete time slots; terminal
agent task arrivals follow a Poisson process. Wireless links include distance-based path loss with log-normal
shadowing. Both the UAV onboard computation and the local computation of the terminal agent are limited
by the DVES and energy models. Constraints on bandwidth, transmit power, concurrent access, and dual
connectivity are implemented as described in Section 3. Training and evaluation are carried out under the
same environmental distribution.

The evaluation metrics include algorithmic indicators during training and system-level KPIs:

Training indicators: reward (per-episode average return), actor loss, and critic loss (sliding-window
averages of actor/critic losses).

System KPIs: throughput (per-episode cumulative throughput, Mb), queue (average queue length,
Mb/slot; lower is better), power (average power, W/slot; lower is better), and vio (cumulative constraint
violations; lower is better).

To facilitate independent verification, we consolidate key environment and training settings in one
place: slot length At, total bandwidth B, noise Ny, power cap P, .., CPU-frequency ranges, concurrency caps
Kyav, Kb, dual-connectivity flag, arrival distribution and mean A, shadowing variance, path-loss exponent
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1; training hyper-parameters (episodes, batch size, policy delay K}, soft-update, exploration noise, and the
penalty-weight schedule 8: Bo = Bmin)-

5.2 KPI Definitions and Explanations
1) Throughput

The effective work completed in a single slot, which includes local execution, oftloading to the UAV, and
offloading to the BS, is averaged over the entire training/evaluation horizon:

O (1) =Y, (X1 () + U™ (1) + UM (1)) (64)

throughput = % ZL O (1) (65)

The rate-feasibility constraints are as follows:

UM (t) < R¥™ (t) At (66)
U (t) < R (t) At (67)

Units: Mb/slot. The throughput is higher than better, which represents greater task completion effi-
ciency.
2) Queue

The in-flight workload of the system (by default, the local queue of the terminal agent in addition to
the UAV-side remote queue of that terminal agent, including the BS side as well if enabled) is averaged. It is
averaged across users and then averaged over time:

Quum (1) = 3oy (Q° (1) + Q™ (1)) (68)
_ L,
queue = o Z t=1" Qsum (1) (69)

Units: Mb (megabits). The queue value is smaller than better, which indicates lower queue-
ing/waiting pressure.

3) Power

The total communication and computation power per slot, which includes the terminal agent’s uplink
transmit power, local compute of the terminal agent and onboard the UAYV, is averaged over time:

Peoc(t) = 30, PY() + 20 i&i(fi°(1))° + 20 mE (Fu (1)) (70)
power = % S t=1"Ptot(t) (71)

Units: W. The power is lower than better.
4) vio (constraint violation)

Instantaneous soft/hard-constraint overruns, typically including access uniqueness, total-bandwidth
caps, and concurrency caps, are made nonnegative (and, if desired, smoothed) and then weight-summed.
Some implementations are multiplied by the dynamic reward temperature j(¢).

W(1) = [, () + Bi(r) ~1)]* + [0, b1 (1) ~1]" + [, bP*(1) - 1]* (72)
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(73)

oo {‘I’(t), witout weights
B(t)¥(t), wuse the B(t)

If vio is smaller than better, the ideal value is 0. If the logs record S(¢)¥(t), the values are typically
larger early (higher ) and decrease as 3 anneals. Larger vio indicates overruns of access uniqueness, total-
bandwidth caps, or concurrency limits, mapping to latency spikes, backlog growth, and handover costs in
real systems. Hence, suppressing vio serves both safety margins and QoS targets.

5.3 Convergence and Steady-State Behaviour

We analyse the convergence of MATD3-all. As shown in Fig. 3, the actor loss decreases monotonically
from the start of training and gradually stabilizes; within the first 1000 episodes, it decreases rapidly
from approximately 11 to approximately 4.5 and then decreases slowly and converges to a narrow band of
3.6-4.0 by 20,000 episodes. No obvious second blow-up phenomenon is observed during this period. This
finding is consistent with the expectation that the ALN-actor reduces policy-gradient variance and stabilizes

delayed updates.
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Figure 3: Convergence metrics of MATD3-all

Moreover, the critic loss falls from 100 to the 0-5 range within 300-600 episodes, exhibits a few short
pulses at approximately episodes 5000, 7000, and 11,000, and thereafter remains with small oscillations.
This finding confirms that RO effectively weakens the correlation between the twin-Q residuals, mitigates
overestimation and the move-together effect, and reduces noise back-propagated to the actor.

Occasional early/mid-stage spikes are associated mainly with target-action noise, top-K association
switches, or shifts in the replay buffer distribution. Owing to the exponential annealing of the dynamic reward
temperature, hard penalties early on pull the policy quickly into the feasible region, whereas softer penalties
subsequently smooth the gradients and curves. Overall, relative to the initial stage, the actor loss decreases



Comput Mater Contin. 2026;86(3):79 21

by approximately 65%, and the critic loss decreases by >95% at convergence, indicating good convergence
and overall stability.

As shown in Fig. 4, considering all four KPIs concurrently, MATD3-all attains the steady-state target of
few violations, stable queues, preserved throughput, and controlled power after it reaches steady operation.
In early training (the first 2000 episodes), the vio metric exhibits several pronounced spikes, after which it
is rapidly suppressed towards a tight stable band; peak values decrease by approximately 60%+ relative to
the first spike, and steady-state variance is minimal. The queue remains on a high plateau (approximately
19.8-20.2 Mb), dipping only when throughput surges (“drained” lows) with amplitudes of approximately
10%-15%, which are infrequent. Throughput shows many spikes during early exploration (peaking at
approximately 100-103 Mb/slot). After 10,000 episodes, the spikes markedly diminish, the curve becomes
smooth, and the steady-state median is 87.4 Mb/slot, with 95% of observations in 86.5-88.0. The power
remains close to alow-power baseline (approximately 1.9-2.0 W) and increases briefly to 2.1-2.2 W only when
it coincides with throughput peaks; the overall variability is small. These patterns indicate that the dynamic
reward temperature achieves a balance between rapid entry into the feasible region and subsequent fine-
grained tuning. The occasional throughput peaks with queue dips and slight power upticks are controlled
trade-offs, not signs of instability.
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Figure 4: KPI metrics of MATD3-all
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5.4 Ablation Study

To quantify the independent contributions and synergies of our three improvements (ALN, RO, and
dynamic reward temperature), we conduct ablations under identical training budgets and network sizes.
With MATD3 as the baseline, we add one module at a time to obtain MATD3+ALN, MATD3+RO, and
MATD3+ and compare them with the combined MATD3-Full. All other conditions (seed set, learning
rate, target noise, delayed-update frequency, replay size, training episodes, etc.) are held constant for
fair comparison.

As shown in Fig. 5, the curve trends indicate that ALN reduces the number of episodes to reach 90% of
the steady-state plateau by approximately 30%-50% and decreases the mid/late-stage standard deviation by
20%-35%. The dynamic reward temperature markedly suppresses violations and jitter in the first 1000-2000
episodes, bringing earlier entry into the feasible region by 20%-40% and cutting the rolling variance of the
steady-state reward by 15%-25%. Q-residual RO damps correlated noise between the twin Qs, shrinking
peak-to-valley swings by 20%-30% in the mid/late stages; when it is used alone, it typically lifts the final
steady-state median reward by only 2%-5%. The full combination (all three) benefits simultaneously in
terms of faster convergence, lower variance, and fewer violations: relative to vanilla MATD3, episodes
to 95% of the peak decrease by 40%, the steady-state median reward increases by 5%-10%, the steady-
state variance decreases by 30%-50%, and the peak-to-valley amplitudes narrow by 25%-40%. Overall,
the three mechanisms target different phases—entering feasibility vs. late-stage fine optimization—and
are complementary.
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Figure 5: Rewards in the ablation study

As shown in Fig. 6 Panels (a)-(c), we further analyse the throughput, power, and queue in the ablations:

Throughput (a). MATD3-all has an interquartile range (IQR) 25%-45% narrower than that of vanilla
MATD3, with whiskers ~30%—-50% shorter. The IQRs of ALN and RO are wider than those of MATD3-all
by 15%-35% and 10%-25%, respectively, revealing the more aggressive throughput lift of ALN and the more
conservative value estimates of RO.
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Queue (b). Across four windows (1-5000, 5001-10000, 10001-15000, and 15001-20000), ALN decreases
the average queue by 12%-30% vs. vanilla MATD3 (more pronounced early, converging to 10%-15% later).
MATD3-all is similar to or slightly below baseline (mainly 0%-8% reductions). B lies between 5%-12% lower
than baseline.

Power (c). The ALN consumes the most power—8%-22% above the baseline. RO and MATD3-all
are more energy efficient—10%-20% and 12%-18% below baseline, respectively; B again is in the middle
(3%-10% lower).

Trade-offs: If low delay/fast queue draining is prioritized, the ALN reduces the queue mean by >10%
in all windows at a cost of ~10%-20% higher energy. If energy efficiency is prioritized, RO and MATD3-all
draw less power, with MATD3-all maintaining lower power (-12%-18%) across all windows while ensuring
acceptable queues (baseline level or up to 8% lower) and, per (a), the tightest throughput distribution
(narrowest IQR and fewest extremes)—a more balanced Pareto trade-off among throughput, queueing,
and energy.
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Figure 6: KPI metrics in the ablation study. (a) Throughput distribution across ablation variants showing interquartile
ranges and outliers; (b) Segment-wise mean queue length; (c) Segment-wise mean power consumption

5.5 Comparative Experiments and Analysis

To assess the relative advantages and applicability against mainstream baselines, we compare algorithms
representing different paradigms: MADDPG (multiagent deterministic policy gradient), TD3 (strong single-
agent, continuous-control baseline), DSAC (distributed soft actor—critic), and our MATD3-all. All are
trained in the same environment on the same data trajectories with identical budgets, the same replay
size/batch/optimizer, and a fixed seed set while keeping the recommended key hyperparameters of each
method for fairness.

As shown in Fig. 7 (Reward), MATD3-all converges fastest to the highest and smoothest plateau—
typically reaching >90% of its final level within 2000-3000 episodes. The final average return is 10%-20%
above MADDPG, 15%-30% above TD3, and 25%-40% above DSAC. The 500-episode sliding variance of
MATD3-all is the lowest: approximately 40%-60% of the MADDPG’s and 50%-70% of the TD3’s. MADDPG
ranks second—centralized critics help with nonstationarity, but single-critic bias and overestimation cause
plateau wobble, and it lags MATD3-all by 2000-3000 episodes. TD3 reaches a reasonable plateau but, as
a single-agent method, struggles with multiagent coupling and partial observability, showing phase-wise
“dips” and greater variability. DSAC yields the lowest long-term reward here—consistent with its tendency
towards higher throughput and lower queues at the expense of higher energy and penalties under our
weighting, leaving it disadvantaged vs. TD3 and slower to converge. The ALN (stabilized policy gradient),
RO (reduced twin-Q residual correlation), and dynamic reward temperature (hard-early/soft-late shaping)
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are complementary in MATD3-all, providing simultaneous advantages in terms of speed, final return,
and smoothness.

As shown in Fig. 8, three subplots jointly reveal the trade-offs among throughput, queue, and power for
each method:
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Figure 8: KPI comparisons across baselines. (a) Throughput distribution for MATD3-all, MADDPG, TD3, and DSAC;
(b) Segment-wise mean queue length; (c) Segment-wise mean power consumption

Throughput (a). The DSAC has the highest median/upper whisker and a “thicker” distribution—it tends
to saturate the spectrum and power, followed by MADDPG. MATD3-all and TD3 have similar medians, but
MATD3-all has a 20%-40% narrower IQR and shorter tails—it is more robust in the steady state (median
on par with TD3 or 3%-8% higher).

Queue (b). DSAC yields the lowest average queue, followed by MADDPG; MATD3-all and TD3
are slightly higher, which is consistent with more conservative offloading/power. The segment means for
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MATD3-all fluctuate less (the segment std is 25%-35% lower), indicating smoother handling of bursts in the
steady state.

Power (c). MATD3-all is the most energy-efficient (or tied), TD3/DSAC is higher, and MADDPG is
typically the highest. The segment-mean power of MATD3-all is approximately 10%-20% below the DSAC
and 15%-25% below the MADDPG.

Reading the three, the “high-throughput, low-queue” edge of DSAC is offset by higher energy and
penalties; thus, its overall reward is not superior. MATD3-all achieves a more robust Pareto balance across
throughput-queue-power-constraints, with similar or slightly higher median throughput, tighter steady-
state distributions, lower segment-mean power, and lower variability—this matches our design intent
(ALN to stabilize gradients, RO to decorrelate twin-Q residuals, and dynamic reward temperature for
hard-early/soft-late constraint shaping).

In the multi-terminal, dual-link UAV-MEC setting, MATD3-all exhibits the best convergence speed,
steady-state smoothness, and overall return: its reward reaches a higher, smoother plateau, while violations
drop rapidly early and remain stably low thereafter. Across KPIs, MATD3-all attains the tightest distributions
without sacrificing median throughput, achieves lower average power, and maintains acceptably low queues,
yielding a superior throughput-queueing-energy-constraints trade-off.

Taken together, when the objective over-weights ultra-low queue, DSAC can trade energy for more
aggressive queue reduction; by contrast, MATD3-all delivers a steadier Pareto with lower power and fewer
violations. Under extremely tight energy budgets or very limited training horizons, performance may
degrade due to restricted exploration; in such cases, raise the penalty-weight floor, increase the RO weight to
further de-correlate critics, and tighten Top-K selection, accepting a modest throughput sacrifice for stability.
Consistently, MATD3-all’s traces show narrower KPI distributions and fewer violation spikes at comparable
throughput, indicating resilience to workload/channel volatility. Mechanistically, RO reduces twin-critic
correlation so actor updates are less sensitive to abrupt channel shifts; ALN stabilizes gradient scale; and the
dynamic reward temperature acts as a guardrail that tightens near constraint boundaries.

6 Conclusion

Focusing on the air-ground integrated UAV-MEC cooperative computing scenario and the operational
goals of low latency, low energy, and few violations, this paper builds a discrete-time, slotted system
model that encompasses task arrivals and queueing, link access and bandwidth/power allocation, edge-
computing service, and energy consumption. On this basis, we propose a robustness-oriented policy learning
framework for continuous, high-dimensional, strongly limited environments with MATD?3 at its core. Under
the CTDE paradigm, we design an ALN-actor (alternate layer normalization) to reduce policy-gradient
variance and stabilize delayed updates. We present a Q-value RO critic (residual orthogonalization) to
weaken twin-Q residual correlation and suppress overestimation. Additionally, we incorporate a dynamic
reward temperature to realize a “rapid entry into the feasible region—smooth fine-tuning thereafter” training
schedule. With the Top-K association and an inner-loop resource solver, these three improvements recast
the joint scheduling of mobile terminals-UAVs-BS as a learnable and convergent multiagent MDP.

Experiments on a multiuser, dual-link simulation platform validate the effectiveness of both conver-
gence dynamics and steady-state KPIs. Compared with vanilla MATD3 and baselines such as MADDPG,
TD3, and DSAC, MATD3-all converges faster, fluctuates less, and yields higher overall returns. Without
sacrificing median throughput, MATD3-all achieves tighter queue and power distributions and maintains
low levels of constraint violations over time. Ablations further confirm complementarity: the ALN accelerates
convergence and markedly reduces queues; RO stabilizes value estimation and lowers energy; and the
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dynamic reward temperature smooths the transition from exploration to feasibility. Overall, the three yield
the most favourable and stable Pareto trade-off. Overall, this work provides a learning-based scheduling solu-
tion for highly dynamic, high-dimensional UAV-MEC systems that is convergence controllable, lightweight
in execution, and practical for engineering deployment.

Real-world outlook. To move beyond simulation, we envision a hotspot-coverage pilot with 2-4
UAV relays and a BS, where measured traffic arrivals and air-ground link logs drive online fine-tuning,
and a hardware-in-the-loop (SDR) rig emulates fast fading and blockage during flight. For production-
like operation, an on-prem training/monitoring node orchestrates versioned model delivery to UAVs,
health-metric gating (violations/queue/power) with clear thresholds, update windows (e.g., every AT)
and canary rollouts, plus safe rollback for robustness under dynamics and faults. On-device infer-
ence uses a compact actor, while centralized critics are used only during training; online telemetry
(aggregated queues, $-weighted violations, power) feeds a lightweight policy monitor. Subject to site policy,
field results and anonymized traces will be reported. This integration plan enables incremental, low-risk
deployment without altering the core algorithm.

Future work. Real-world uncertainties (e.g., wind fields, blockage, and interference) are more complex
and call for out-of-distribution robustness and adaptive mechanisms. Scalability to dense networks (50+
users, 10+ UAVs) requires hierarchical clustering, parameter sharing across agent groups, and distributed
critic architectures to maintain sub-second inference while avoiding exponential state-action growth.
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