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ABSTRACT: Accurate segmentation of breast cancer in mammogram images plays a critical role in early diagnosis
and treatment planning. As research in this domain continues to expand, various segmentation techniques have been
proposed across classical image processing, machine learning (ML), deep learning (DL), and hybrid/ensemble models.
This study conducts a systematic literature review using the PRISMA methodology, analyzing 57 selected articles to
explore how these methods have evolved and been applied. The review highlights the strengths and limitations of each
approach, identifies commonly used public datasets, and observes emerging trends in model integration and clinical
relevance. By synthesizing current findings, this work provides a structured overview of segmentation strategies and
outlines key considerations for developing more adaptable and explainable tools for breast cancer detection. Overall,
our synthesis suggests that classical and ML methods are suitable for limited labels and computing resources, while
DL models are preferable when pixel-level annotations and resources are available, and hybrid pipelines are most
appropriate when fine-grained clinical precision is required.
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1 Introduction
Breast cancer remains a significant global health challenge, affecting millions of women and ranking

as one of the leading causes of cancer-related deaths [1]. In 2020, approximately 2.3 million women were
diagnosed with breast cancer, resulting in 685,000 deaths worldwide. Early detection is essential, as it
substantially improves survival rates, with up to 90% of women surviving when the disease is identified
at an early stage [2]. The need for timely and accurate diagnostic methods underscores the importance of
developing advanced tools and techniques [3,4].

Breast cancer detection can be performed using a range of approaches, including clinical breast
examination [5,6], histopathological analysis [7,8], and various imaging modalities such as mammog-
raphy, ultrasound, and magnetic resonance imaging (MRI) [9]. Among these, mammography remains
the most widely used screening tool due to its accessibility and effectiveness in early detection [10–13].
With the growing volume of medical images, image processing techniques, particularly in the context of
Computer-Aided Detection (CAD) systems, have become essential for assisting radiologists in analyzing and
interpreting mammograms with consistency and efficiency [14,15]. In a typical CAD system, the diagnostic
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pipeline includes image acquisition, preprocessing, segmentation, feature extraction, classification, and
decision support.

Among these stages, segmentation serves as a crucial step in isolating regions of interest (RoI),
such as mass or calcifications, from surrounding breast tissue. The accuracy of segmentation strongly
affects the performance of subsequent processes like feature extraction, classification, and diagnosis. Mis-
segmentation can lead to poor feature representation and ultimately compromise clinical decisions [16].
However, segmentation can be challenging due to the complex structure of breast tissue and variations in
tumor characteristics. These challenges often make accurate boundary delineation difficult, which can impact
diagnostic outcomes [17]. Therefore, improving segmentation performance is not only a technical challenge
but also a clinical necessity. Its role as the bridge between raw image data and meaningful diagnostic insight
makes segmentation both urgent and impactful in breast cancer detection workflows.

To improve segmentation performance in breast cancer detection, a wide range of techniques have
emerged over time, evolving from classical image processing methods to increasingly sophisticated ML,
DL, and hybrid/ensemble models. Classical approaches, such as thresholding, region growing, and edge
detection, laid the foundational groundwork by offering simple, interpretable, and computationally efficient
methods [18]. However, their limitations in handling complex tissue textures and subtle tumor boundaries
led to the exploration of ML-based techniques like fuzzy clustering and k-means, which introduced learning-
based adaptability into segmentation [19]. The recent decade has witnessed a rapid surge in deep learning
applications, especially convolutional neural networks (CNNs) with U-Net architectures [20–22], which
are capable of capturing high-level features and spatial hierarchies in mammographic images. In practice,
U-Net and its variants have been implemented for automated abnormality detection in mammography,
enabling end-to-end segmentation of suspicious regions such as masses and microcalcifications without
manual localization. By leveraging skip connections and encoder–decoder symmetry, these models achieve
precise boundary delineation even in dense breast tissues and have shown superior performance.

Most recently, hybrid and ensemble methods have gained attention for their potential to combine the
strengths of previous approaches, balancing accuracy, robustness, and adaptability [23,24]. For example,
hybrid CNN frameworks have combined classical clustering techniques with deep architectures, where
Fuzzy C-Means assists ROI identification and CNNs refine tumor boundaries [25]. Other designs integrate
Transformer modules into U-Net to simultaneously capture local textures and global breast context [26].
More clinically inspired hybrids even incorporate radiologist eye-tracking patterns into CNN attention
mechanisms, mimicking expert visual strategies for subtle lesion detection [27]. Rather than replacing
earlier approaches, this progression reflects a diversification in segmentation strategies, where classical,
ML, DL, and hybrid methods continue to coexist and evolve in parallel. Each approach offers unique
advantages depending on the clinical context, computational constraints, and data availability. Recognizing
this methodological landscape is important not only for mapping research trends but also for understanding
which techniques are best suited to specific diagnostic scenarios in breast cancer imaging.

Several previous review studies have discussed segmentation techniques in breast cancer imaging, each
with varying scope and depth. Michael et al. categorized segmentation techniques into classical, ML, and
DL approaches, and provided performance metrics across various methods [17]. In contrast, Ranjbarzadeh
et al. reviewed segmentation methods by classifying them into supervised, unsupervised, and DL-based
approaches, without explicitly discussing performance metrics or future research directions [28]. Rezaei
presented a broader review of image-based breast cancer detection, segmentation, and classification across
multiple modalities, including mammography, ultrasound, and MRI, but offered only general descriptions
of segmentation methods without categorization or comparative performance analysis [29]. In response
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to these earlier works, the present review broadens the discussion by examining not only classical, ML-
based, and DL-based segmentation approaches, but also emerging hybrid strategies, such as Fuzzy C-Means
and CNNs combination [25]. Beyond these methodological inclusions, this review also emphasizes struc-
tured performance comparisons and systematic analysis of dataset distribution, offering contributions not
explicitly addressed in prior works.

To provide a structured and in-depth understanding of segmentation approaches in breast cancer
detection, this review adopts a systematic literature review (SLR) using PRISMA method. The study is guided
by several research questions designed to explore not only the current state of segmentation methods, but
also the datasets commonly used:
RQ1: What segmentation approaches are commonly used in breast cancer detection, and how do they
compare in terms of performance and limitations?
RQ2: What are the current trends and performance outcomes of segmentation approaches used in breast
cancer detection?
RQ3: What datasets are most frequently utilized in breast cancer segmentation research?

Through this review, we aim to inform researchers and practitioners about the current landscape
of segmentation in breast cancer detection and support the development of more accurate and effective
diagnostic tools. The rest of this study is organized as follows: Section 2 describes the method, including the
PRISMA framework and criteria for study selection for SLR. Section 3 covers results and discussion, where
we apply this simple RQ-based taxonomy, including various segmentation approaches, trends, outcomes,
and datasets that are frequently used as an answer for all of the Research Questions (RQ1–RQ3). Section 4
discusses challenges and future directions in breast cancer research, and Section 5 concludes the findings of
this review.

2 Method
This review employs the PRISMA methodology, which is widely recognized in biomedical research

for ensuring transparency, reproducibility, and systematic reporting. Compared with other frameworks,
PRISMA is particularly well suited for reviews that involve extensive literature searching, screening, and
eligibility assessment, as is the case in breast cancer segmentation studies. Its structured flow diagram
and checklist enable clear documentation of inclusion and exclusion processes, thereby strengthening the
reliability of the evidence synthesis. The PRISMA flow diagram in Fig. 1 visually illustrates the overall review
process [30]. This systematic and structured approach ensures that the review is based on the highest-
quality and most relevant articles, providing a comprehensive overview of the current state of segmentation
techniques using mammography.

2.1 Search Strategy and Identification
To locate relevant studies, specific keywords were used in the search across multiple academic databases.

Keywords included terms such as “CAD for mammogram”, “mammogram segmentation”, “deep learning
mammogram segmentation”, “machine learning mammogram segmentation”, and “hybrid/ensemble mam-
mogram segmentation”. The search was restricted to articles published in English between 2018 and March
2025. The focus on this timeframe ensures that the review covers the most recent advancements in the field,
with studies reflecting cutting-edge technologies, including several segmentation and classification methods
to process mammograms.
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Figure 1: PRISMA flowchart illustrating the identification, screening, eligibility, and inclusion of studies in this review

The databases searched included Scopus, IEEE, PubMed, and Springer. These databases were chosen
based on their comprehensive coverage of scientific literature in the fields of medical imaging, artificial
intelligence, and cancer research. The initial search yielded a total of 3845 records, distributed across the
following databases:
– Scopus: 2252
– PubMed: 655
– Springer: 647
– IEEE: 291

This wide-ranging search aimed to capture all potentially relevant studies for CAD techniques in breast
cancer detection using mammography, ensuring that both well-established research and newer studies were
included. However, not all identified records were suitable for this review. A total of 2822 records were
removed before the screening stage for the following reasons:
– 891 records were excluded as they were not original research articles, such as conference proceedings,

book chapters, or reviews.
– 1751 duplicate entries were identified and removed to ensure that each study was counted once using

Microsoft Excel.
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– 180 articles published before 2018 were excluded. A decision was made to remove articles published
before 2018 as an additional precaution against outdated techniques and technologies.

2.2 Screening Process
At the screening stage, 1023 studies were reviewed by their titles and abstracts. The screening process

involved a detailed examination of whether the studies matched the scope of the review, focusing on their
relevance to segmentation and classification techniques for breast cancer detection using mammograms. The
following exclusion criteria were applied rigorously to ensure only high-quality and relevant studies were
considered:

(a) Type of Publication: Only peer-reviewed journal articles were included. Conference papers, book
chapters, and other non-journal articles were excluded because they often lack the rigorous review
process necessary for ensuring the validity and reliability of the findings. Journal articles are more
likely to undergo a thorough peer review, which strengthens the quality of the data and conclusions.

(b) Data Source: The study must use mammogram datasets as the primary data source. Articles focusing
on other imaging modalities, such as ultrasound, MRI, or CT scans, were excluded. The exclusive
focus on mammogram datasets ensures the review remains consistent with its aim of exploring CAD
techniques specific to mammography, which is a key imaging method for breast cancer screening.

(c) Study Focus: The articles needed to center on segmentation tasks in CAD for breast cancer detec-
tion. Studies that primarily discussed preprocessing, image enhancement, feature extraction, feature
selection, classification, or optimization techniques were excluded.

(d) Access: Articles that required purchase or were not available through institutional subscriptions were
excluded from the review. This ensured that all included studies were accessible for further analysis
and could be evaluated in full.

After applying these exclusion criteria, 936 studies were excluded, leaving 87 studies for a full-text
review. The stringent screening ensured that the remaining studies were closely aligned with the objectives
of this review.

2.3 Eligibility Assessment
In the eligibility phase, the full texts of 87 studies were examined in detail. Each article was thoroughly

assessed for its relevance to the review’s focus areas of segmentation and classification in mammogram-based
CAD systems. The eligibility assessment was guided by the need to include only studies that contributed
substantial findings to these key areas. At this stage, an additional 30 studies were excluded for one or more
of the following reasons:

(a) Some studies did not provide sufficient focus on segmentation or classification tasks, instead centering
on preprocessing techniques or enhancement methods.

(b) A few studies, while discussing segmentation or classification, lacked adequate performance metrics
or methodological detail, making it difficult to assess the techniques’ effectiveness.

(c) Others presented methods that, upon closer inspection, did not align with the goals of the review, such
as focusing on imaging modalities other than mammography.

2.4 Final Inclusion
After the thorough identification, screening, and eligibility assessment processes, a total of 57 studies

were included in this systematic review. These studies represent the most relevant and high-quality research
in the field of breast cancer detection using CAD techniques, specifically focusing on segmentation and
classification methodologies applied to mammogram images. The studies included offer insights into a wide



6 Comput Mater Contin. 2026;86(3):6

range of machine learning and deep learning approaches, and datasets, contributing to the understanding of
advancements in this area.

3 Results and Discussion
This section presents the findings of the systematic literature review in response to the research questions

outlined in the introduction. It is organized into three parts, corresponding to the three main areas of
investigation: segmentation approaches, performance trends, and dataset characteristics, which we use as a
simple RQ-based taxonomy to interpret and compare the studies.

3.1 RQ1: What Segmentation Approaches Are Commonly Used in Breast Cancer Detection, and How Do
They Compare in Terms of Performance and Limitations?
Segmentation is a foundational process in CAD for breast cancer detection, as it isolates regions of

interest (ROI) within mammographic images that may indicate abnormal tissue [31]. Effective segmentation
is essential for accurately delineating RoI boundaries, enabling further analysis and classification [32]. In
this section, we categorize segmentation methods into four main groups: classical, ML-based, DL-based, and
hybrid approaches, reflecting both chronological development and increasing algorithmic complexity, and
we illustrate this grouping as a hierarchical taxonomy in Fig. 2.

Figure 2: Hierarchical taxonomy of mammography segmentation methods. Techniques are grouped into four families:
Classical, Shallow ML, Deep Learning, and Hybrid/Ensemble, with representative examples in each branch

3.1.1 Classical Segmentation Approach
Classical segmentation methods in breast cancer detection usually rely on well-established image

processing techniques to extract regions of interest (ROI) from mammograms [33]. These methods typically
focus on the separation of suspicious masses or micro-calcifications from normal breast tissue [17]. Several
classical approaches, such as threshold-based, region-based, and clustering-based segmentation, can be
shown in Table 1.
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Table 1: Overview of classical segmentation methods applied in mammogram analysis, including datasets, techniques,
reported outcomes, and associated limitations

Ref. Datasets Segmentation method Result Limitation

[34]

Mammogram
images

(Unspecified
dataset)

Nonparametric curve
estimation, level-set

techniques
Accuracy: 94.937%

Difficulty detecting tumors <4.9
mm3, overlapping pixel

intensities

[35] MIAS dataset
Ant System based

Contour Clustering
(ASCC) algorithm

F-Measure: 83.77% Tested only on MIAS, needs
more datasets for generalization

[36] CESM images Gradient-based
watershed segmentation

Accuracy: 0.938,
sensitivity: 0.94,
specificity: 0.96

Challenges include the need for
large, annotated datasets and

potential overfitting of models

[37] MIAS,
CBIS-DDSM

Gradient Weight Map,
Morphological

Operations

Accuracy: 97.64%
(MIAS), 94.66%
(CBIS-DDSM)

Challenges in detecting large
masses, issues with dense tissues

[38]

Mammogram
images

(Unspecified
dataset)

Neutrosophic set (NS)
clustering with Shannon

entropy

Average
misclassification

error: 1.75%
Limited number of datasets

[39] MIAS dataset

Improved Artificial Bee
Colony (ABC) algorithm

with Otsu multilevel
thresholding

PSNR: 84%,
execution time:

249 s

Struggles with noise, weak
images, does not fully mitigate

these issues

[40]

Mammogram
images

(Unspecified
dataset)

Otsu’s multiple
thresholding DSC: 81% Limitations of Otsu’s method in

complex cases.

[41] Mini-MIAS,
DDSM datasets

Multilevel image
thresholding (Otsu’s

method)

Accuracy: 99.04%
(mini-MIAS),

98.33% (DDSM)

Challenges in precise
thresholding with Otsu’s

method

[42] Mini-MIAS dataset
Multi-thresholding using

Otsu’s method with
morphological operations

Accuracy: 96%,
Sensitivity: 83%,
Specificity: 98%

Comparison of accuracy with
other methods is challenging
due to variability in databases

and case types

[43] Mini-MIAS
Multi-level thresholding
using Otsu’s method and

Kapur’s entropy

MSE: 92.27, PSNR:
28.47

Generalizability to other
datasets might be limited

(Continued)
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Table 1 (continued)

Ref. Datasets Segmentation method Result Limitation

[44] Mini-MIAS
Deformable image

registration with Demon’s
algorithm

Jaccard Index:
95%, Hausdorff

Distance: 74.22%

External objects and noise affect
segmentation

[45] DDSM

Adaptive Thresholding
with Region Growing

Fusion Model
(AT-RGFM)

FDR improvement:
24.4% to 19.8% vs.

existing models

Complexity in automatic mass
segmentation

[46] MIAS, DDSM
datasets

Variational level set
method with mesh-free

radial basis function
(RBF)

Sensitivity:
93.96%, Specificity:
95.01%, Accuracy:

94.48% (MIAS)

Variability in mammogram
quality, potential overfitting

[47] MIAS, DDSM
datasets

Mathematical
morphological-based

segmentation

Sensitivity: 98%,
Specificity:

98.66%, Accuracy:
99.17% (MIAS)

Common limitations include
reliance on specific datasets and

potential model overfitting

One of the earliest and most widely used traditional segmentation techniques is Otsu’s method, which
determines an optimal threshold by maximizing the variance between the foreground and background
intensities. In mammogram segmentation, Otsu serves as the core framework for separating masses from
surrounding tissue by identifying intensity cutoffs that best distinguish suspicious regions. Mamindla and
Ramadevi [39] extended this principle through a multilevel version of Otsu, where instead of a single
binary threshold, multiple thresholds were selected to partition the image into several intensity classes. This
refinement allowed the algorithm to capture subtle differences in tissue density, making the segmentation
more effective, although image noise still reduced accuracy. Similarly, Santhos et al. [43] reinforced the role of
Otsu by combining it with an entropy-based criterion to guide threshold selection in cases of diverse intensity
distributions. Here, Otsu’s variance-based separation remained the foundation, while the additional measure
helped ensure that thresholds preserved more diagnostic information from the image histogram. Across
these studies, Otsu’s method consistently demonstrated its value as a simple, efficient, and interpretable
baseline for mammographic image segmentation, even as its direct application was limited by sensitivity to
noise and contrast variability.

Region and clustering-based techniques have also been widely explored in mammogram segmentation.
In 2023, Ref. [35] employed the Ant System-based Contour Clustering (ASCC) algorithm to segment
the MIAS mammogram images. This method leveraged the combination of contour-based detection and
clustering principles, where marker and walker ants collaboratively identified and refined image contours,
enhancing segmentation accuracy by focusing on relevant pixel groups and minimizing processing time.
Another recent approach was introduced by [45], who developed an adaptive thresholding with Region
Growing Model and applied it to the DDSM dataset (flowchart in Fig. 3). Their workflow began with
preprocessing to normalize intensity variations, followed by adaptive thresholding to produce candidate
regions. These regions were then refined through an iterative region-growing step, where neighboring pixels
were evaluated for similarity to the seed region. This pipeline improved the false discovery rate (FDR) from
24.4% to 19.8%. However, the authors noted that the complexity of mass segmentation remained a challenge,
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especially in cases involving highly irregular tumor shapes, indicating that while adaptive models enhance
accuracy, they do not fully overcome variability in tumor morphology.

Figure 3: Diagram of breast cancer classification using region growing model and binary thresholding (an example
of a classical segmentation approach) [45] applied to the DDSM dataset, illustrating preprocessing, candidate region
generation, iterative refinement, and post-processing for improved segmentation accuracy (Reprinted with permission
from: Umamaheswari et al. (2024) CNN-FS-IFuzzy: A new enhanced learning model enabled by adaptive tumor
segmentation for breast cancer diagnosis using 3D mammogram images. Knowledge Based System)

The most recent advancement in traditional segmentation techniques is presented by [36], who devel-
oped a method using Gradient-based watershed segmentation applied to a dataset of 760 contrast-enhanced
spectral mammography (CESM) images. Their pipeline first enhanced the CESM images using preprocessing
techniques to improve contrast, after which the gradient magnitude of the image was computed to highlight
intensity transitions. Based on these gradients, the watershed algorithm was applied, but with an improved
marker-based strategy to avoid over-segmentation. Specifically, morphological operations were used to
generate reliable markers, guiding the watershed process to separate tumor boundaries more effectively.
Finally, the segmented tumor regions were passed to a DualNet classifier to validate the segmentation and
improve diagnostic accuracy. This integrated workflow reduced false positives and preserved boundary
precision, resulting in promising performance for breast cancer segmentation (accuracy: 0.938, sensitivity:
0.94, and specificity: 0.96).

The comparative findings in Table 1 and the recent extensions of classical methods [35,36,38,41,43,47]
reveal a set of consistent trade-offs. Thresholding-based approaches such as Otsu’s method remain attractive
due to their simplicity and low computational burden, but they are inherently sensitive to noise and intensity
variations, which limits their generalizability in heterogeneous clinical datasets. Metaheuristic extensions
with multilevel thresholding improve stability but introduce additional complexity and parameter tuning,
reducing their clinical practicality. Region-based and clustering methods, such as ASCC and adaptive
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thresholding with region growing, address local intensity variations more effectively, yet they often require
carefully chosen seeds and are prone to false positives when tumor boundaries are irregular. Meanwhile,
watershed segmentation, especially with marker control, can delineate complex tumor shapes more precisely,
but it still depends heavily on preprocessing quality and is vulnerable to over-segmentation. Collectively,
these classical methods highlight the trade-off between simplicity and robustness, simpler methods offer
transparency and efficiency but struggle with variability, while more adaptive variants achieve higher
accuracy at the cost of complexity and reduce ease of integration into clinical workflows. This explains why
classical approaches, despite producing competitive performance on controlled datasets, are rarely adopted
in practice without hybridization or post-processing support.

3.1.2 Machine Learning (ML)-Based Segmentation Approach
Machine learning (ML)-based segmentation techniques have gained prominence in breast cancer

detection due to their ability to learn complex patterns and improve segmentation accuracy [35]; some
references and their overviews can be seen in Table 2.

Table 2: Representative machine learning–based segmentation methods, with corresponding datasets, results, and noted
limitations

Ref. Datasets Segmentation method Result Limitation

[48] DDSM, MIAS

Fuzzy C Means Distorted
Contour-based
Segmentation
(FCM-DCS)

Accuracy: 97.9%
(DDSM), 98.76%

(MIAS)

Challenges in reducing FP and
FN rates

[49] MIAS
Type-II Intuitionistic

Fuzzy C Means
(T2IFCM)

Average error
reduction: 84% on

D15 dataset

Sensitivity to initial parameters;
predefined clusters

[50] INbreast database

Modified Adaptively
Regularized Kernel-based

Fuzzy C-means
(M-ARKFCM)

ROC AUC:
0.96136 ± 0.0030

Potential computational time
issues; blocky segments

[51] Mini MIAS Fuzzy C-means Jaccard index: 96%
Dice index: >98%

Performance lower on real
datasets due to illumination and

noise

[52]

Mammogram
images

(unspecified
dataset)

Histogram-based Fuzzy
C-Means Clustering Accuracy: 98.21%

Reliance on dataset quality and
potential overfitting to training

data

[53] CBIS-DDSM Fuzzy C-means (FCM)
clustering

FDR improvement
of up to 74.07%

compared to CNN,
NN, SVM, and RF

Need for larger datasets and
potential overfitting due to

model complexity

(Continued)



Comput Mater Contin. 2026;86(3):6 11

Table 2 (continued)

Ref. Datasets Segmentation method Result Limitation

[54]

Mammogram
images

(unspecified
dataset)

Adaptive Fuzzy C-Means
(AFCM) Accuracy: 99.3%

Limitations in traditional
feature extraction methods for

mammography modalities

[55]

Mammogram
images

(Unspecified
dataset)

Intuitionistic Fuzzy Soft
Set based Rough

C-Means (IFSRCM)
clustering

Accuracy: 0.87,
DSC: 0.90, Jaccard

index: 0.96

Challenges include poor image
quality and variations among

patients affecting segmentation
robustness

[56]

Mammogram
images

(unspecified
dataset)

K-means, EM, Spatial
Fuzzy C-Means (SFCM)

Precision:
80%–90%

Limited generalizability due to
small dataset

[14]
MIAS,

CBIS-DDSM
datasets

Modified K-means
Accuracy: 94.2%
(MIAS), 90.44%
(CBIS-DDSM)

Variability in performance
across different lesion types

[57] Mini-MIAS
database K-Means

Accuracy: over
90%, Precision:

94.14%, Sensitivity:
96.89%

Lack of integrity in
discrimination and

segmentation of all masses

[58]

Private dataset
from Qassim
Hospital, and
MIAS dataset

K-Means
Accuracy: ~92%
(Qassim), ~97%

(MIAS)

Need for further validation on
diverse datasets

Fuzzy C-means (FCM) has been a widely used method in ML-based segmentation for mammograms;
an example of the scheme can be seen in Fig. 4. The process begins with preprocessing steps including
median filtering and CLAHE, which reduce noise and enhance local contrast. A bounding box is then
applied to isolate the region of interest. The refined image is subsequently segmented using FCM clustering,
where pixels are assigned membership values to multiple classes rather than being strictly classified.
The final segmented image highlights the suspected tumor region, enabling further diagnostic analysis.
Krishnakumar and Kousalya [48] applied FCM to both the DDSM and MIAS datasets. In their model,
FCM was advanced with the Distorted Contour (DC) method to improve handling inappropriate borders
and intensity variations during segmentation. It starts with FCM clustering to segment mammogram
images by assigning membership values to each pixel based on intensity. This is followed by iterative
updates of cluster centers until convergence. The addition of the Distorted Contour (DC) method refines
the segmentation by correcting irregular borders and compensating for intensity variations, resulting in a
more accurate and reliable delineation of tumor boundaries. To improve segmentation efficiency, Ref. [50]
proposed a Modified Adaptively Regularized Kernel-based Fuzzy C-Means method tested on the INBreast
database. This approach first maps pixel intensities into a higher-dimensional kernel space, enabling better
separation of complex tumor boundaries. Adaptive regularization is then applied to stabilize the clustering
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and reduce sensitivity to noise. In the second stage, statistical texture features are extracted from the
segmented regions and classified with a Support Vector Machine (SVM), which further enhances diagnostic
reliability. While the method achieved a high ROC AUC of 0.961, its reliance on kernel transformations and
additional classification steps increased computational cost, sometimes producing block-like segmentations
that required post-processing refinement.

Figure 4: Example of a machine learning-based segmentation workflow using Fuzzy C-Means (FCM), illustrating
preprocessing, region-of-interest isolation, and clustering-based segmentation for tumor detection

In the other hand, Ref. [14] applied a modified K-means clustering algorithm to the MIAS and CBIS-
DDSM datasets. In this study, K-means worked by partitioning the image pixels into clusters based on
similarities in intensity, texture, and shape. This iterative process involved recalculating cluster centers and
reassigning pixel memberships to enhance segmentation accuracy. Their method achieved more than 90%
of accuracy and sensitivity for each dataset. Despite these successes, the variability in performance across
different lesion types raised concerns about the method’s robustness and reliability when dealing with a
variety of tumor shapes and sizes. In another study, Rezaee et al. [57] implemented a K-means clustering
algorithm as a primary step in segmenting mammogram images before classification. After removing
redundant parts and isolating the pectoral region, the remaining breast area was clustered into regions
using K-means based on pixel intensity and spatial properties. The authors experimented with cluster counts
ranging from 3 to 6, identifying that 4–5 clusters yielded optimal segmentation for delineating mass regions.
The K-means algorithm minimized intra-cluster distance using Euclidean distance, iteratively updating
cluster centers to better separate regions of interest from surrounding tissues. This segmentation step helped
isolate suspected masses, which were then processed further using texture descriptors (e.g., GLCM), Pseudo-
Zernike moments, and wavelet features for classification. While effective, the method showed varying
accuracy depending on mass type and shape.

Overall, ML-based methods such as FCM and K-means have advanced segmentation by improving
flexibility in handling noisy or ambiguous regions and by offering computational simplicity, respectively.
FCM provides adaptability through partial membership assignments, which helps preserve boundary details
in complex tissues, but its high computational burden, depends on parameter tuning [49], and sensitive to
initialization limit scalability for large or heterogeneous datasets [53]. K-means, in contrast, remains efficient
and easy to implement, yet its reliance on a predefined number of clusters and limited ability to manage
irregular tumor morphologies reduce its robustness across varied lesion types [14]. The trade-off between
flexibility and efficiency is therefore evident, which is FCM achieves finer boundary delineation at the cost of
computational expense, while K-means offers speed and simplicity but sacrifices accuracy in complex cases.

3.1.3 Deep Learning (DL)-Based Segmentation Approach
Deep Learning (DL) has revolutionized segmentation tasks in breast cancer detection by leveraging neu-

ral networks to automatically learn hierarchical representations from mammogram images [59]. DL-based
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segmentation methods, like convolutional neural networks (CNNs) with variations of U-Net architectures,
are widely utilized due to their ability to effectively capture spatial and contextual information, making
them well-suited for various segmentation tasks [60], other methods and their performance are presented
in Table 3.

Table 3: Representative deep learning-based segmentation methods with corresponding datasets, results, and limitations

Ref. Datasets Segmentation method Result Limitation

[61] INbreast YOLO
Precision: 91%,

Recall: 84%
(YOLOv5x)

Memory and GPU constraints,
small dataset size

[62] CBIS-DDSM,
INBreast

YOLO LOGO
(Local-Global)

TPR: 95.7%,
F1-score: 74.5%,

IoU: 64%

High computational
requirements

[63] DDSM, private
Dataset

Reinforcement
Learning-based Semantic

Segmentation (RLSS)

Accuracy: 99.56%
Sensitivity: 99.66%

(DDSM)

Preprocessing challenges,
feature extraction limitations

[64] CSAW-S dataset

Two-stage cascaded
framework

(convolutional neural
network)

Dice score
increased by 6%

Issues with false positives and
false negatives

[65] MIAS, DDSM CNN
Accuracy: 93.3%,

Sensitivity: 91.41%,
Specificity: 97.03%

Potential overfitting,
generalization challenges

[66] DDSM Dense U-Net with
Attention Gates (AGs)

Sensitivity: 77.89%,
and overall

accuracy: 78.38%

Limited dataset, risk of
overfitting

[60] DDSM U-Net
Sensitivity: 92.32%,
Specificity: 80.47%,
Accuracy: 85.95%

Risk of overfitting due to
limited images

[67] INBreast, MIAS Fully Convolutional
Network (FCN) U-Net

Dice coefficient >
90%

Prolonged execution time on
low-spec systems

[68] DMID dataset UNet, Attention-UNet

UNet Dice Score:
0.60,

Attention-UNet
Dice Score: 0.64

Despite providing high-quality
annotations, the dataset size

(510 images) may still be
considered relatively small for
training deep learning models

[22] DDSM, INbreast U-Net
Dice Coefficient:
99.19% (DDSM),

99.66% (INbreast)

The class imbalance in
mammogram data, where

normal tissue dominates the
image

(Continued)
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Table 3 (continued)

Ref. Datasets Segmentation method Result Limitation

[69] CBIS-DDSM U-Net

Accuracy: 99.65%,
precision: 99.59%,

recall: 99.69%,
F1-Score: 99.64%

Although the model includes a
segmentation step using

UNet++, the study does not
report standard segmentation
evaluation metrics like Dice

coefficient or IoU, leaving the
actual quality of lesion
delineation uncertain

[70] Private dataset

Paired mammogram
view-based Network

(PMVNet), backbone:
U-Net

Dice coefficient:
0.709

The lesion types were not
subdivided or categorized

during training, which may
have impacted on the model’s
ability to accurately delineate

lesion boundaries across
varying shapes and densities

[71] CBIS-DDSM: 2600 U-Net Accuracy: 99.2%

The segmentation approach
depends heavily on manually

defined region-of-interest
extraction methods such as
edge-based detection, which

might not be robust in all case

Li et al. [66] developed an attention-dense U-Net for automatic breast mass segmentation using images
from the DDSM dataset. The model integrates dense connections within the encoder–decoder framework
to enhance feature propagation and capture fine-grained details, while attention gates filter irrelevant
information from skip connections, allowing the network to focus on tumor regions more effectively.
This combination improves boundary precision and robustness against noise compared to the original U-
Net. Fig. 5 illustrates the workflow, where data are augmented and passed through the encoder–decoder
network to predict segmentation masks. While the Attention Dense U-Net achieved superior performance
over baseline U-Net and state-of-the-art models, the authors acknowledged a risk of overfitting due to the
limited dataset size, which could restrict its ability to generalize to broader clinical applications. Moreover,
Zeiser et al. [60] applied U-Net for mass segmentation using 2500 cases which the model was enhanced by
applying data augmentation techniques, including horizontal mirroring and zooming, to address the limited
size of the DDSM dataset and reduce overfitting. The model’s architecture featured down-sampling through
convolutional layers with ReLU activation and max pooling to extract features, followed by up-sampling
using deconvolution layers to reconstruct the segmented image. The final layer used a 1 × 1 convolution to
map outputs to the desired classes, enabling precise mass delineation.
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Figure 5: Example of DL-based approach using the attention dense U-Net [66], showing the encoder–decoder structure
with attention gates and dense connections for improved breast mass segmentation [Reprinted from: Li, et al. (2019)
Attention Dense-U-Net for Automatic Breast Mass Segmentation in Digital Mammogram. IEEE Access 7:59037–59047,
doi:10.1109/ACCESS.2020.3036610. Licensed under CC BY 4.0]

Another DL-based method is YOLO, which is commonly used for object detection and has recently been
adapted for breast cancer segmentation. Su et al. [62] introduced the YOLO-LOGO segmentation model,
which combines the fast ROI detection of YOLO with a Local-Global (LOGO) transformer for precise mass
delineation. YOLO first localizes suspicious regions, and the LOGO module then applies dual attention
mechanisms: local attention to capture fine tumor boundaries and global attention to preserve contextual
breast tissue information. Tested on the CBIS-DDSM and INbreast datasets, the model achieved a high True
Positive Rate (95.7%), demonstrating its robustness in complex mammogram backgrounds. However, dual-
stage architecture substantially increased computational requirements, limiting scalability for deployment
in resource-constrained clinical environments. Similarly, Coskun et al. [61] applied the YOLOv5 model for
mass detection using the INbreast dataset. To enhance performance, they integrated a Swin Transformer into
the YOLOv5 framework, where YOLOv5 performed fast bounding-box detection of candidate masses while
the Swin Transformer enriched feature representations through its window-based self-attention mechanism.
This model improved segmentation performance compared to earlier YOLO versions by capturing both local
and global contextual information, particularly for irregularly shaped or small tumors. Nevertheless, the
added complexity significantly increased GPU memory demands and computational cost, posing challenges
for scaling larger datasets.

We can conclude that DL-based segmentation methods have substantially advanced breast cancer
analysis by combining hierarchical feature extraction with attention mechanisms. U-Net variants, such as the
Attention Dense U-Net [66], and data-augmented U-Net [60], demonstrate strong capabilities in capturing

http://dx.doi.org/10.1109/ACCESS.2020.3036610
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fine structural details and improving boundary definition, yet they remain highly dependent on dataset size
and risk overfitting, and may also suffer from prolonged execution times on low-spec systems, which poses
practical limitations for clinical deployment. The trade-off here lies between architectural complexity and
practical usability: dense connections and attention modules increase accuracy and robustness, but they also
heighten computational cost and require large, diverse datasets to generalize effectively. On the other hand,
YOLO-based approaches [62], Coskun et al. [61] provide real-time detection, can achieve high sensitivity
even in challenging cases with irregular or small tumors. However, these models demand considerable GPU
memory and computational resources, making large-scale clinical deployment difficult. Thus, while deep
learning approaches currently represent the state of the art in mammogram segmentation, their clinical
translation will depend on striking a balance between accuracy, computational efficiency, and robustness
across heterogeneous datasets because of overfitting [18,72].

3.1.4 Hybrid/Ensemble Approach
Hybrid/ensemble segmentation methods have emerged as a powerful approach to breast cancer detec-

tion, combining the strengths of multiple segmentation techniques to overcome the limitations of individual
methods. These hybrid/ensemble models often integrate traditional methods with machine learning (ML)
or deep learning (DL) techniques, resulting in enhanced segmentation accuracy and robustness in detecting
breast masses and abnormalities, the preview of methods can be seen in Table 4.

Table 4: Representative hybrid and ensemble methods for breast cancer image segmentation, including the datasets
used, segmentation techniques, reported outcomes, and noted limitations

Ref. Datasets Segmentation method Result Limitation

[73] Mini-MIAS dataset

Otsu multilevel
thresholding +Havrda &

Charvat entropy +
w-BSAFCM (Weighted

Backtracking Search
Algorithm-Based Fuzzy

C-Means)

Accuracy: 96.87%,
Specificity: 96.34%,

DSC: 92.44%

Although the segmentation
results are promising, the paper

does not fully integrate these
results into a complete

classification framework

[24]

Mammogram
images

(Unspecified
dataset)

ET-SegNet
(Edge-Attention +

SegNet)

Accuracy: 90.3%,
TNR: 90.9%, TPR:

90%

Specific dataset dependency,
potential overfitting, extensive

computational needs

[26]

Mammogram
images

(Unspecified
dataset)

Swin transformer +
ResNET + Unet3+

Improved
accuracy: 13% over
DNN, 13.7% over
CNN, 14.2% over
DenseNet, 15.7%
over MAD-ELM

Structural and computational
complexity with ELM

integration

[25] MIAS dataset Fuzzy C-Means + CNN
Accuracy: 98.59%

(2-scale), 99%
(5-scale)

Limited dataset reliance,
potential model overfitting

(Continued)
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Table 4 (continued)

Ref. Datasets Segmentation method Result Limitation

[72]
Multiple datasets

(Mini-MIAS,
DDSM, DR)

Iterative region growing
+multilevel thresholding Sensitivity: 80%

Variability in mass appearance,
dense breast tissue obscuring

masses

[74] Mini-MIAS,
DDSM, BCDR

K-Means++ Clustering +
Cuckoo Search
Optimization

Accuracy: 96.42%
(Mini-MIAS),

95.49% (DDSM),
96.92% (BCDR)

Small dataset evaluation,
complexity in algorithm

comparisons

[75] DDSM, MIAS
datasets

Color space and intensity
variation analysis

Accuracy: 98.00%
(MIAS), 97.00%

(DDSM)

Challenges in achieving high
accuracy due to diverse textures

[76] MIAS, DDSM
Multi-objective

evolutionary algorithms
+ cuckoo search

Accuracy: 96.74%
Dependence on dataset quality,
potential overfitting to image

characteristics

[77]

Mammogram
images

(Unspecified
dataset)

Connected component
labeling + adaptive fuzzy

region growing

Sensitivity: 91.67%,
Specificity: 58.33%

(improves to
84.44% sensitivity

with combined
features)

Specificity indicates room for
improvement in reducing false

positives

[78] MIAS Dataset
Optimized U-net +

Adaptive Black Widow
Optimization (A-BWO)

Accuracy: 96%
F1-Score: 95%

The performance is highly
dependent on the optimization
of the U-net and LSTM models

[79] MIAS, DDSM

FCM+ calculating the
differences between a
pixel and its adjacent
pixels along cardinal

directions (vertical and
horizontal) and

inter-cardinal directions
(diagonal)

DSC of: 0.9309
(MIAS dataset),
0.9557 (DDSM

dataset). Jaccard
Coefficient: 0.9024

(MIAS dataset),
0.9132 (DDSM

dataset)

The method involves the use of
several thresholds (e.g., α, β, γ)

for fine-tuning the
segmentation, which may

require expert knowledge and
manual intervention

[80] MIAS, DDSM

FCM+ computing the
sum of differences

between a central pixel
and neighboring pixels
along orthogonal and

diagonal directions

Accuracy:
MIAS dataset:

91.37%,
DDSM dataset:

93.22%

The use of thresholds (e.g., α, β,
γ) for spiculation extraction

requires expert knowledge for
proper tuning, which may limit
the applicability of the method
in larger or real-time settings

(Continued)
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Table 4 (continued)

Ref. Datasets Segmentation method Result Limitation

[81] CBID-DDSM,
DMR-IR

Context-Aware Spatial
Decomposition Network

(CASDN)

Dice Coefficient:
0.91, IoU: 0.855,

Boundary
Accuracy: 0.87

The method’s complexity:
integrating numerous advanced
preprocessing techniques and

the multi-phase CASDN
architecture, may result in high

computational costs.
Additionally, the segmentation

model heavily relies on
high-quality input images and
may degrade when faced with
low-resolution or noisy data in

real-world scenarios.

[82] Mini-MIAS,
CBIS-DDSM

Geometric Deformable
Contour Model (GDCM)
+ Fractal analysis (FA)

Accuracy: 99.78%

The segmentation process using
the geometric deformable

contour model still requires
manual initialization, which can

hinder full automation and
consistency. In addition,

detection becomes particularly
challenging in dense breast

tissues, where malignant masses
may be masked or resemble

normal structures, increasing
the likelihood of false negatives.

The size variability of the
detected masses, especially

smaller lesions, presents
difficulties in consistent

identification.

[83]

Private dataset
from Fortis

Hospital India,
DDSM

GoogleNet-based
Multi-Dilated

Convolution (GN-MDC)

Jaccard index: 99.3,
Dice: 0.98, IoU:

0.98

Although the model handles
pectoral muscle removal

effectively, it is unclear how it
performs in highly dense breast
tissue cases or with overlapping

lesions

(Continued)
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Table 4 (continued)

Ref. Datasets Segmentation method Result Limitation

[84] CBIS-DDSM,
INBreast, MIAS

IEUNet++ (encoder:
InceptionResNetV2 +

EfficientNetB7)

Dice index: 0.972
(INBreast), 0.907

(CBIS-DDSM)

The primary drawback lies in
the computational complexity
of the ensemble-based encoder

design, which integrates
InceptionResNetV2 and

EfficientNetB7

[85] CBIS-DDSM,
INBreast YOLOv5n + SegNet-DSC

CBIS-DDSM:
IoU: 81%, Dice:

89.4%
INBreast:

IoU: 77.3%, Dice:
87%

Although lightweight, the
segmentation model trades off

some accuracy compared to
deeper architecture

[27] INBreast Grouped Fusion Network
+ Gaze Attention

Dice: 94.95%
(+1.18%)

Although the gaze information
was only used during training,

the added complexity in
training and model architecture

may limit accessibility for
general deployment

Ghuge and Saravanan [26] introduced the SRMADNet, a hybrid method combining the strengths
of Swin ResUnet3+ for segmentation and Adaptive Multi-scale Attention-based DenseNet with Extreme
Learning Machine (AMAD-ELM) for classification. This hybrid model combines the Swin Transformer with
the Unet3+ framework, leveraging the transformer’s capacity for global contextual awareness and Unet3+’s
detailed feature mapping through skip connections and multi-scale feature integration. The Swin Trans-
former acts as an encoder, capturing complex image representations, while Unet3+ refines these features
through its advanced decoder structure, ensuring high-resolution segmentation. This combination enhances
boundary delineation and segmentation precision, which is crucial for effectively identifying abnormal
regions in mammograms. The model was tested on a public dataset and demonstrated a performance
improvement of 13.7% over CNN and 14.2% over DenseNet. Furthermore, Jha et al. [25] proposed an
ensemble learning-based hybrid segmentation approach utilizing a combination of Fuzzy C-Means (FCM)
and Convolutional Neural Networks (CNNs). The FCM is used for initial segmentation, which clusters
the image data into regions of interest based on pixel intensities, effectively handling the variability in
image intensity. The CNN model then refines the segmentation by learning from these clustered outputs,
enhancing the accuracy and precision of the segmented regions. This combined method allows for improved
delineation of tumor boundaries and better performance in handling complex mammographic features. The
model achieved an accuracy of 98.59% (2-scale segmentation), which further improved to 99% (5-scale
segmentation).

One of the most recent innovations in hybrid segmentation incorporates gaze tracking data to enhance
model supervision and mimic radiologist attention. Xie et al. [27] proposed a Grouped Fusion Network
that integrates eye-tracking information with deep learning-based segmentation to improve performance,
particularly in detecting challenging regions such as small masses and microcalcifications. The architecture
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consists of two segmentation streams using Attention U-Net variants, each processing different spatial scales
of the mammogram. A gaze attention map, derived from radiologist eye-tracking data collected during
screening, is used to guide the secondary segmentation stream toward previously under-attended regions.
This multi-stream fusion mechanism ensures more comprehensive detection by simulating expert diagnostic
behavior, the method development can be seen in Fig. 6.

Figure 6: Eye Tracking for Breast Cancer Segmentation (an example of hybrid/ensemble segmentation approach) [27],
which integrates radiologist eye-tracking maps with dual Attention U-Net streams at different spatial scales to improve
sensitivity in detecting subtle lesions and microcalcifications (Reprinted with permission from: Xie et al. (2025)
Integrating Eye Tracking with Grouped Fusion Networks for Semantic Segmentation on Mammogram Images. IEEE
Trans Med Imaging)

Overall, hybrid segmentation methods represent an important bridge between traditional, machine
learning, and deep learning approaches by integrating complementary strengths within a single pipeline.
Architectures such as ET-SegNet [24] and SRMADNet [26] highlight how edge-aware modules and
transformer-based encoders can enhance boundary precision and contextual understanding, delivering
more accurate delineation of tumors compared to single-paradigm models, though they do so at the cost of
increased architectural complexity and higher training demands. Ensemble approaches, like the combination
of FCM and CNN [25], demonstrate the effectiveness of cascading classical clustering with deep refinement,
producing very high accuracy and robustness across heterogeneous data, even if they remain sensitive to
intensity variability and require careful parameter tuning. Optimization-based hybrids such as K-Means++
with Cuckoo Search [76] further emphasize stability and adaptability, successfully addressing intensity
inhomogeneity and complex tissue structures, yet their reliance on iterative metaheuristics raises concerns
about scalability when applied to large clinical datasets. Meanwhile, novel paradigms such as gaze-driven
fusion networks [27] provide a unique advantage by explicitly transferring radiologists’ visual attention
into the model, improving sensitivity to subtle lesions such as micro-calcifications and reducing false
negatives in challenging cases. This strategy shows strong potential for bridging human diagnostic expertise
with automated systems. However, the need for eye-tracking data during training requires specialized
equipment and expert involvement, which may limit reproducibility, while the multi-stream architecture
increases computational overhead. Taking together, these methods illustrate a clear trade-off: hybrids achieve
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superior segmentation and improved clinical relevance by combining multiple paradigms, but their added
complexity, higher computational cost, and reliance on enriched training data still present hurdles for
routine deployment.

3.1.5 Focused Highlights: Cutting-Edges Techniques within Segmentation Approaches
In this subsection, we highlight several cutting-edge techniques drawn from the four segmentation

approaches: Attention/Transformer U-Net, detector-led cascades (YOLO→U-Net), FCM→CNN hybrid
refinement, and gaze-guided attention. These techniques were selected for their complementary innovations
and clinical relevance under typical data and compute constraints.

1. Attention/Transformer U-Net

U-Net variants enhanced with channel/spatial attention or lightweight transformer blocks strengthen
the flow between global context and fine local detail. In mammography, this often tightens boundaries around
small or low-contrast masses when pixel-level annotations and sufficient compute are available. For example,
Attention U-Net [26,66] has been reported to improve delineation, at the cost of additional parameters and
training time.

2. Detector-led segmentation (e.g., YOLO-based pipelines)

In detector-led segmentation, a detector first proposes suspicious regions on the full mammogram, and
then a dedicated segmenter (or a detection-to-mask head) refines the lesion outline within each crop. This
two-stage pattern reduces full-image compute and can lower false negatives for sparse or small lesions, which
is attractive in screening settings with many negatives [61,62]. But their performance depends on annotated
datasets and high computational resources.

3. FCM-based hybrid refinement (e.g., FCM + Otsu; FCM + CNN)

A fuzzy clustering step supplies a coarse mask or saliency prior that is then refined, either by classical
post-processing or by a CNN. The appeal is combining FCM’s robustness on ambiguous tissue with learned
features for sharper edges. For instance, hybrids such as Otsu/entropy with FCM [73], and FCM + CNN
ensembles [25] are especially useful on weak label dataset, but they add steps and hyper-parameters to tune.

4. Gaze -guided attention

Radiologists’ eye-tracking traces can be injected as soft priors to steer network attention toward clinically
meaningful regions, improving sensitivity to subtle findings without heavy pixel-wise supervision. As noted
in our corpus (e.g., gaze-driven fusion [27]), gains depend on the availability and integration quality of gaze
data; when present, this cue can complement both DL and hybrid pipelines.

A concise summary of the Section 3.1.5 spotlights is provided in Table 5. For each technique we list the
core innovation, practical applicability, and key trade-offs.
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Table 5: Spotlighted techniques for mammography segmentation: innovation (mechanism), practical applicability, and
trade-offs

Technique Innovation (mechanism) Practical applicability Trade-off

Attention/
Transformer

U-Net

Add attention or
lightweight transformer
blocks to U-Net to mix

global context with local
detail

Small or low-contrast
masses; finer boundaries
when pixel-level labels &

adequate compute are
available

More parameters and
training time

Detector-led
cascades

(YOLO→U-
Net)

Detector proposes ROI;
segmenter refines masks

within crops

Screening with many
negatives; small/sparse

lesions; reduces full-image
compute and false negatives

Cropping/imbalance
sensitivity; depend on

annotated dataset

FCM→CNN
hybrid

refinement

Fuzzy prior provides coarse
mask refined by CNN or

post-processing
Weak label dataset Extra steps; prior-error

propagation; tuning effort

Gaze-guided
attention

Integrate eye-tracking
traces as soft priors to steer

network attention

Emphasizes clinically
meaningful regions; helps

with subtle findings

Requires gaze data;
integration effort

3.2 RQ2: What Are the Current Trends and Performance Outcomes of Segmentation Approaches Used in
Breast Cancer Detection?
The following chart in Fig. 7 illustrates the distribution of segmentation methods based on references

in this article, specifically including only those techniques that are employed by at least two studies.
This approach highlights the most recurrent methods, providing insight into the preferred segmentation
techniques in breast cancer detection.

In breast cancer detection, an ML-based approach, Fuzzy C-Means (FCM), is the most widely used
segmentation method. FCM’s popularity stems from its ability to manage ambiguous boundaries by assigning
each pixel to a degree of membership across clusters rather than a strict binary assignment [86]. This benefit
is ideal for mammographic images, where tumor borders are often unclear, allowing FCM to capture nuanced
segmentation in complex textures [87]. Krishnakumar and Kousalya [48] applied FCM, achieving high
accuracy rates (97.9% on DDSM and 98.76% on MIAS). Similarly, Parvathavarthini et al. [51] used FCM
on the Mini MIAS dataset, achieving strong Jaccard and Dice indices (96% and above 98%). Although
effective in controlled settings, FCM’s performance can drop due to variations like noise and parameter
tuning, showing its sensitivity to specific imaging conditions [59,88]. Followed by the Deep learning U-
Net model is favored for its encoder-decoder structure that captures detailed image features. U-Net’s
architecture incorporates skip connections, retaining high-resolution spatial information that’s crucial for
accurate tumor segmentation [20]. Soulami et al. [22] used U-Net on the DDSM and INbreast datasets,
achieving Dice coefficient above 99%. Despite its precision, the study noted class imbalance dataset, where
predominant healthy tissue could potentially overshadow smaller malignant areas. Then, Otsu thresholding,
this traditional-based method segments images by finding an optimal threshold to separate foreground and
background, minimizing intra-class variance [19]. Otsu’s method is beneficial in cases with strong contrast
between tumor and healthy tissue, but it can be less effective when dealing with noise or weakly contrasted
areas [47].
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Figure 7: Distribution of segmentation methods reported in the reviewed studies. Fuzzy C-Means (FCM) and U-Net
variants were the most frequently adopted approaches, followed by combinations of CNN models, Otsu thresholding,
and k-means. Less commonly used techniques included YOLO, ELM, level-set methods, and morphological operations

Another ML-based method (K-means clustering), appearing in 9% of studies, is a segmentation method
chosen for its simplicity and computational efficiency. It assigns pixels to a single cluster based on proximity
to the nearest centroid, making it suitable for images with clear tumor contrasts [89]. Almalki et al. [58]
used K-means on datasets from Qassim Hospital and MIAS, achieving accuracy rates of around 92% and
97%, respectively. Similarly, a hybrid/ensemble approach, such as FCM with other algorithms, enhances
its adaptability to different segmentation challenges. For example, Toz and Erdogmus [73] combined
Otsu’s thresholding and entropy-based methods with FCM on the Mini MIAS dataset. This approach
leverages FCM’s fuzzy clustering with additional algorithmic features to capture detailed tumor structures
while minimizing false positives, though further integration into a complete classification framework was
suggested for comprehensive diagnostic support [90]. Methods like Level Set, Morphological Operations,
Region Growing, YOLO, and ELM each account for 4% of segmentation approaches. These techniques are
often applied in specific scenarios where their unique attributes enhance segmentation results. Level Set and
Morphological Operations are beneficial for refining boundaries [91], while YOLO has been adapted for
rapid segmentation in mammography [92].

Moreover, Table 6 translates these findings into a conceptual framework that captures the performance
range for every representative method, qualitative strengths, trade-offs, and clinical implications of each
methodological family. Classical methods, though limited in adaptability, remain valuable in low-resource
or educational contexts due to their speed and simplicity. Machine learning approaches, represented by
FCM and K-means, extend adaptability to ambiguous regions but require careful parameter tuning and are
best applied to small-or medium-scale datasets, or as complementary modules within larger pipelines. For
example, a study by Chinnasamy and Shashikumar [52] achieved over 99% accuracy by combining FCM
with Grey Code Approximation Preprocessing (GACP) and optimizing with Opposition-based Cat Swarm
Optimization (OCSO). In contrast, Rathinam et al. [54] who also used FCM embedded in an intuitionistic
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fuzzy soft set without any preprocessing or optimization, reported a much lower accuracy of around 87%.
This contrast emphasizes how tuning and adaptive strategies significantly influence the performance of the
same core algorithm. Deep learning models, such as U-Net variants and YOLO, deliver state-of-the-art
accuracy and excel in capturing complex morphologies, but their dependency on large, annotated datasets
and high computational resources restricts deployment in under-resourced settings. For instance, Soulami
et al. [22] used a standard U-Net trained on full images with preprocessing model and achieved Dice scores
exceeding 99% on DDSM and INbreast. On the other hand, Oza et al. [68] modified U-Net into an Attention
U-Net and trained it on a more complex, patch-based dataset (DMID). Despite extensive preprocessing, their
model achieved a lower Dice of 0.64, largely due to limited input and the absence of optimization techniques.
Lastly, Hybrid methods emerge as the most flexible paradigm, combining complementary strengths across
categories: ranging from FCM +CNN ensembles to gaze-driven fusion [27], making them highly promising
for precision-driven and clinically oriented applications, albeit at the cost of increased complexity and
data dependence.

Table 6: Conceptual framework of segmentation approaches, presenting performance metrics alongside strengths,
trade-offs, and clinical relevance

Category Representative
methods

Performance range Strengths Trade-
offs/limitations

Clinical
implicationsAccuracy DSC

Classical
Otsu

thresholding,
watershed,

region growing

93.8%–
99.04% [41] 81% [40]

Simple, fast, low
computational cost,

useful for basic
intensity-based

separation.

Sensitive to noise,
poor generalization
with heterogeneous

tumors, limited
adaptability.

Suitable for
resource-limited

settings,
educational use, or

as preprocessing
steps.

Machine
learn-

ing

K-means,
Fuzzy C-Means

(FCM)
87%–

99.3% [54]
90%–

98% [51]

More adaptive than
classical, handles

ambiguous regions,
captures

texture/shape
features.

Sensitive to
parameter

initialization, it
requires tuning,

performance varies
with dataset.

Effective for
small/medium

dataset, useful in
combination with

classi-
fiers/optimization.

Deep
learn-

ing

U-Net variants
(Dense,

Attention),
FCN,

YOLO-based
models

78.38%–
99.65%
[60,69]

60%–
99.66%
[22,68]

State of the art
accuracy,

hierarchical feature
learning, captures

complex
morphology.

Requires large,
annotated datasets,

high computa-
tional/GPU cost,
risk of overfitting.

Promising for
automated
large-scale

screening requires
robust datasets and

infrastruc-
ture/compute

resources.

Hybrid

FCM
combination,

CNN
combination,
gaze-driven

fusion

90.3%–
99.78%
[24,82]

87%–98%
[83,85]

Combines
complementary

strengths,
improved

performance,
adaptable to

complex contexts,
innovative use of
radiologist priors.

Increased
complexity, higher
training demands,

may depend on
specialized data

(e.g., eye-tracking).

High potential for
clinical translation

if validated, best
suited for

precision-driven
applications.

To operationalize the synthesis in Table 6, Fig. 8 maps the four method families to common
data/compute scenarios (S1–S4): S1 = small data with weak labels and low compute; S2 = medium data
with some labels and moderate compute; S3 = large data with pixel-level labels and high compute; S4 =
precision-driven clinical cases requiring fine-grained boundaries.
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Figure 8: Method–data–compute decision matrix for mammography segmentation. Rows are method families (Clas-
sical, ML, DL, Hybrid/Ensemble); columns denote scenarios S1–S4: S1 small data + weak labels + low compute; S2
medium data + some labels +moderate compute; S3 large data + pixel-level labels + high compute; S4 precision-driven
clinical cases. Cell labels indicate Not ideal/Possible/Good/Best fit

As indicated by Fig. 8, classical and Machine Learning methods score well in S1–S2 because they are
efficient and robust under limited resources, although their performance degrades on complex textures. Deep
learning becomes the best choice in S3, where large, pixel-level annotations and sufficient compute enable
state-of-the-art accuracy. Hybrid/ensemble pipelines are most suitable in S4, where combining detectors
and segmenters, like fusing FCM with CNNs helps achieve finer boundary delineation at the cost of greater
complexity. Practically, classical and ML are preferable for low-resource preprocessing or small cohorts, DL
is appropriate for automated screening when annotated data and compute are available, and hybrid designs
are recommended when clinical precision is the priority.

Taking together, this structured comparison allows readers to align methodological choices with
practical scenarios: for example, prioritizing classical or ML methods in constrained environments, adopting
DL for high-performance automated pipelines, and turning to hybrid solutions when the clinical objective
requires both robustness and fine-grained accuracy.

3.3 RQ3: What Datasets Are Most Frequently Utilized in Breast Cancer Segmentation Research?
In this breast cancer detection research, several key datasets are pivotal for training and validating

segmentation models. The MIAS/MINI-MIAS dataset [28], established in 2003 with 322 mammogram
images, is the most frequently used dataset, appearing in 27 studies. Despite its relatively small size, its
historical significance and detailed radiologist reports have made it foundational for traditional and early
machine learning models. The DDSM dataset [93], with 10,480 images, is also highly regarded, used in
19 studies, and provides pixel-level annotations for masses and calcifications, making it valuable for deep
learning models that require precise training data.

The CBIS-DDSM dataset [94], a more recent addition from 2017 with 3012 images, is used in four
studies and stands out due to its pixel-level annotations, supporting advanced segmentation algorithms. The
INbreast dataset, with 410 high-resolution DICOM images, appears in six studies and is noted for its detailed
pixel-level annotation, enhancing its utility in deep learning applications that demand precise image details.
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Other datasets like DMID and BCDR [95], used in each of two studies, provide a range of mammogram
views and annotations that cater to both traditional and modern segmentation methods. The DMID dataset,
created in 2023 with 510 images, includes comprehensive radiologist reports and supports both MLO and
CC views. Similarly, BCDR, with 7315 images, supports a variety of lesion types and mammogram views,
contributing to its role in segmentation research. Two studies utilize private datasets, offering customized
images that meet specific research needs. However, their limited access can hinder reproducibility and broad
applicability. The list of distribution datasets can be found on Fig. 9. In addition, Table 7 shows the common
public mammogram datasets widely used for mammogram CAD research.

Figure 9: Distribution of mammogram datasets used in the reviewed studies. MIAS/MINI-MIAS and DDSM were
the most frequently employed datasets, while INbreast, CBIS-DDSM, BCDR, DMD, and private datasets appeared less
frequently

Table 7: Overview of widely used public mammogram datasets, detailing size, lesion types, annotation availability,
imaging formats, and clinical categories

Datasets Year Total
images

Lesion
type

Radiology
report

Pixel level
annotation

Image
format View Image category

MIAS/MINI-
MIAS 2003 322 All kind Yes No PGM MLO Normal, Benign,

and Malignant

CBIS DDSM 2017 3012 Mass, cal-
cification No Yes DICOM MLO,

CC Benign, Malignant

DDSM 1999 10,480 Mass, cal-
cification No Yes LJPEG MLO,

CC
Normal, Benign,
and Malignant

INbreast 2017 410 All kind Yes Yes DICOM MLO,
CC

Normal, Benign,
And Malignant

DMID 2023 510 All kind Yes Yes DICOM,
TIFF

MLO,
CC

Normal, Benign,
and Malignant

BCDR 2012 7315 All kind No Yes TIFF MLO,
CC Normal, Cancer

VinDr-
Mammo

Hanoi Medical
University

(HMU)
Dataset [96]

2022 20,000 All kind Yes Yes DICOM MLO,
CC

Normal, Benign,
and Malignant

(Continued)
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Table 7 (continued)

Datasets Year Total
images

Lesion
type

Radiology
report

Pixel level
annotation

Image
format View Image category

RSNA [97] 2023 54,713 All kind Yes Yes DICOM MLO,
CC Benign, Malignant

4 Segmentation Challenges and Future Directions
Breast cancer detection through mammogram analysis has seen rapid advancements with the adoption

of machine learning (ML), deep learning (DL), and hybrid/ensemble methods. However, despite the impres-
sive progress, several opportunities for improvement and challenges remain in the practical deployment of
these models.

4.1 Segmentation Challenges
Segmentation, which involves identifying the regions of interest (ROI) in mammogram images, is

a critical step in breast cancer detection. Despite the advancements in segmentation techniques, several
persistent challenges remain:

(a) The Complexity of Breast Tissue: Many segmentation methods struggle with the inherent complexity
of breast tissue, particularly in dense mammograms [98–100]. Traditional methods, such as Otsu’s
thresholding or region-growing, often fail to effectively segment tumours from dense tissues or over-
lapping structures [39,43]. Machine learning-based techniques like Fuzzy C-Means (FCM), though
more adaptive, also face issues with irregularly shaped masses and poorly defined boundaries [48].
Even advanced DL methods like U-Net have difficulty segmenting small or faint lesions in dense tissue,
leading to lower sensitivity in such case [33].

(b) Imbalanced Datasets: Many segmentation models are trained on small and homogeneous datasets,
such as MIAS and DDSM, which limit their ability to generalize to diverse or complex real-world
cases [46,47]. DL models like U-Net require large amounts of annotated data to perform optimally,
but overfitting often occurs when trained on limited datasets, reducing performance on unseen
images [60,66]. This limitation is further compounded by the lack of large-scale multi-center datasets,
meaning that most models are validated only on single-institution cohorts, which restricts their clinical
translation and external generalizability.

(c) Spiculated Region Segmentation: Spiculated regions, which represent star-shaped masses with
radiating lines, are one of the most challenging aspects of breast cancer segmentation. The sharp,
irregular edges of spiculated masses are difficult to capture using traditional segmentation methods.
Techniques like Fuzzy C-Means (FCM) and gradient-based approaches have been applied, but even
in recent works, achieving precise segmentation of spiculated regions remains a challenge. Pezeshki
et al. [79,80] developed a model using FCM combined with texture and shape features. While effective,
fine-tuning thresholds in these models require expert knowledge, limiting the method’s broader
clinical application.

(d) Computational Complexity: Advanced segmentation techniques, especially DL-based methods like
CNN-based U-Nets and YOLO, require substantial computational resources [62]. Hybrid approaches
that combine DL models with optimization techniques, are highly accurate but significantly increase
computational costs, making real-time clinical deployment challenging [69,74].

(e) Noise and Artifacts: Noise and artifacts in mammogram images, caused by poor image quality or
device variability, present challenges for segmentation methods [78]. Misclassified artifacts, often
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mistaken for regions of interest, contribute to false positives [101]. While advancements in segmenta-
tion techniques have improved robustness against noise, challenges persist in maintaining accuracy,
particularly in low-quality images [14]. To address these limitations, incorporating a refinement step
after segmentation has become increasingly essential [102]. This post-segmentation treatment can
help correct errors in delineated boundaries [103], reduce false positives, and ensure that segmented
regions align more closely with true anatomical structures [104], enhancing the overall reliability of
segmentation outcomes.

4.2 Future Directions
Despite significant progress in breast cancer segmentation research, numerous opportunities remain

to improve clinical applicability, scalability, and diagnostic robustness. These following directions highlight
concrete pathways where segmentation research can move beyond technical improvements to enable
adoption in diagnostic practice:

(a) Development of Large, Diverse, and High-Quality Datasets: Existing datasets such as MIAS and
DDSM are limited in terms of imaging variability, lesion types, and patient demographics. This
limitation restricts model generalizability in real-world clinical practice. Future research should
focus on creating or utilizing more comprehensive datasets that include dense breast tissues, spic-
ulated masses, and multi-institutional sources. Generative Adversarial Networks (GANs) can be
employed [53,105,106] to synthetically expand existing datasets by generating realistic mammogram
images with controlled characteristics (e.g., specific tumor shapes or densities). GAN-based aug-
mentation can improve model robustness, especially in underrepresented lesion categories, and has
shown promise in improving generalization for deep learning models trained on limited data. Such
approaches also can provide a controlled way to simulate rare clinical scenarios.

(b) Design of Lightweight and Efficient Models for Clinical Deployment: High-performing segmenta-
tion models often require substantial computational power/GPUs, which limits their integration into
low-resource or real-time clinical settings. There is a growing need for lightweight [85,107] architec-
tures (e.g., MobileNet, EfficientNet, or pruned U-Nets) that maintain high accuracy while reducing
latency and memory usage. This makes them suitable for telemedicine, portable mammography
devices, where real-time inference on modest hardware is essential in clinical setting.

(c) Post-Segmentation Refinement for Enhanced Precision: Even with accurate initial segmentation,
minor boundary inaccuracies and misclassified regions often persist [102], especially in dense or low-
contrast mammograms. Future work should explore refinement techniques, such as morphological
filtering, boundary smoothing, or region reclassification that are applied after the initial segmenta-
tion. These post-processing steps can improve boundary precision, reduce false positives, and align
segmented regions more closely with true anatomical structures. Combining automated segmentation
with refinement mechanisms can substantially enhance the clinical reliability and trustworthiness of
AI-assisted diagnostics, as radiologists depend on precise tumor margins for treatment decisions.

(d) Explainable and Clinically Interpretable Models: The adoption of segmentation tools in clinical
workflows depends not only on accuracy but also on transparency. Explainable AI (XAI) frameworks,
such as attention visualization, saliency maps [108], or decision heat maps, should be incorporated
to allow radiologists to understand and verify model decisions. Future research should prioritize
human-centered AI design, enabling AI to act as a support system rather than a black box.

(e) Multistage and Multimodal Integration: Rather than relying solely on pixel-level mammogram
data, integrating segmentation with clinical metadata (e.g., patient history, genetic markers) [109],
radiomics, or gaze-tracking [27] data (as explored in recent hybrid models) can enhance diagnostic
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performance. Furthermore, integrating segmentation with downstream tasks (classification, progno-
sis) will enable comprehensive end-to-end diagnostic systems that support clinical decision-making.

(f) Self-Supervised and Semi-Supervised Learning: Annotating mammograms are resource-intensive
and often a bottleneck for training large-scale models. Future research should explore self-supervised,
semi-supervised, or weakly-supervised methods to leverage unlabeled data effectively [110]. Tech-
niques such as contrastive learning or pseudo-labeling reduce dependence on expert annotation,
improving scalability and enabling continuous model refinement from clinical data streams.

(g) Federated Learning for Privacy-Preserving Collaboration: Privacy regulations and data-sharing
restrictions often limit the creation of large, diverse datasets. Federated learning offers a promising
solution by enabling model training across multiple institutions without requiring data centralization.
This approach not only preserves patient confidentiality but also improves model robustness by
incorporating heterogeneous data sources [111]. In the long term, federated learning could facilitate
cross-border collaboration and establish standardized, clinically validated segmentation systems
suitable for regulatory approval.

(h) Mobile Screening Application for On-Device Use: Mobile and point-of-care screening require
segmentation pipelines that operate under tight data, privacy, and compute constraints. Future
work should consolidate recent advances into an edge-friendly workflow that integrates screening,
segmentation, and downstream detection or prognosis on portable hardware. Utilize label-faithful
generative augmentation, preferably diffusion models conditioned on masks or regions of interest, to
synthesize rare or subtle patterns without requiring the acquisition of new patient data.

From a practical perspective, these directions can be translated into actionable recommendations
for future tool development. Lightweight models should be prioritized for deployment in low-resource
or point-of-care settings, while explainable AI components are critical for clinical adoption where trust
and interpretability are required. Multi-center robustness can be addressed through federated learning
strategies and the integration of diverse datasets, whereas refinement modules remain essential for high-
precision applications such as pre-surgical planning. Semi-supervised and self-supervised methods offer
pragmatic solutions for research groups with limited annotation budgets, facilitating wider adoption in
real-world practice. At the same time, the most promising directions for clinical translation appear to
be those that combine efficiency, transparency, and clinical realism; for example, gaze-tracking–guided
attention, which mimics radiologists’ diagnostic behavior, together with lightweight and interpretable
architectures, represent concrete pathways toward robust, scalable, and clinically meaningful breast cancer
segmentation systems.

5 Conclusion
This study presents a systematic literature review of 57 selected articles, identified through the PRISMA

methodology, to evaluate segmentation techniques in breast cancer detection. The review covers a range
of segmentation approaches, including classical, machine learning (ML)-based, deep learning (DL)-based,
and hybrid methods, with attention to their advantages, limitations, and contexts of application. Classical
and ML-based techniques remain relevant due to their simplicity, interpretability, and lower computational
requirements, particularly in resource-constrained settings. DL-based models, especially U-Net and its
variants, show superior performance in handling complex tissue structures when sufficient annotated data
is available. Meanwhile, hybrid approaches are gaining interest for their potential to combine the strengths
of various methods, offering flexibility and improved robustness in segmenting diverse mammographic
features. In addition, Segmentation performance across studies varies considerably, influenced by differences
in datasets, image quality, preprocessing techniques, and implementation goals. Publicly available datasets
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such as MIAS, DDSM, CBIS-DDSM, and INBreast serve as essential benchmarks, though challenges remain
regarding annotation consistency, limited diversity, and class imbalance. However, recent datasets, such as
DMID, RSNA, and VinDR-Mammo, reflect a notable shift toward greater scale and clinical richness, offering
larger volumes of images, pixel-level annotations, and accompanying radiology reports. Looking ahead,
future work should focus on refining hybrid and lightweight architectures, improving dataset quality and
availability, and enhancing post-segmentation refinement. Promoting explainable models and validating
them in clinical environments will be essential to bridge the gap between experimental development
and real-world diagnostic support. Furthermore, innovations, such as eye-tracking-guided attention, may
significantly enhance the applicability of segmentation tools by aligning model predictions more closely with
radiologists’ focus patterns, thus supporting more intuitive and collaborative decision-making.
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CAD Computer Aided-Detection
ML Machine Learning
DL Deep Learning
FCM Fuzzy c-Means
SVM Support Vector Machine
CNN Convolution Neural Network
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
RoI Region of Interest
SSIM Structural Similarity Index Measure
PSNR Peak signal to Noise Ratio
FDR False Discovery Rate
GLCM Gray Level Co-occurrence Matrix
RBF Radial Basis Function
YOLO You Only Look Once
IoU Intersection over Unit
DSC Dice Similarity Coefficient
AUC Area Under Cover
CI Confidence Interval
JI Jaccard Index
MSE Mean Square Error
ROC Receiver Operating Characteristic
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ELM Extreme Learning Machine
KNN k-Nearest Neighbors
LSTM Long Short-Term Memory
ECA Efficient Channel Attention
MLO Mediolateral-Oblique
CC Cranio-Caudal
DT Decision Tree
HOG Histogram of Oriented Gradients
LDA Linear Discriminant Analysis
CS-LBP Center-Symmetric Local Binary Pattern
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